A Probabilistic Design Methodology for Building Performance Optimisation an Application to Low-Energy Dwellings

Total Page:16

File Type:pdf, Size:1020Kb

A Probabilistic Design Methodology for Building Performance Optimisation an Application to Low-Energy Dwellings ARENBERG DOCTORAL SCHOOL Faculty of Engineering Science A probabilistic design methodology for building performance optimisation An application to low-energy dwellings Liesje VAN GELDER Supervisors Dissertation presented in partial Prof. dr. ir. arch. S. Roels fulfillment of the requirements for the Prof. dr. ir. H. Janssen degree of Doctor in Engineering Science December 2014 A probabilistic design methodology for building performance optimisation An application to low-energy dwellings Liesje VAN GELDER Examination committee: Dissertation presented in partial Prof. dr. ir. J. Vandewalle, chair fulfillment of the requirements Prof. dr. ir. arch. S. Roels, supervisor for the degree of Doctor in Prof. dr. ir. H. Janssen, co-supervisor Engineering Science Prof. dr. ir. G. Lombaert Prof. dr. ir. J. Van Dyck Prof. dr. ir. arch. F. De Troyer Prof. dr. ir. A. Mahdavi (Vienna University of Technology) Prof. dr. ir. arch. G. Verbeeck (Universiteit Hasselt) December 2014 © 2014 KU Leuven Faculty of Engineering Science Uitgegeven in eigen beheer, Liesje VAN GELDER, Kasteelpark Arenberg 40 box 2447, B-3001 Heverlee (Belgium) Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden door middel van druk, fotokopie, microlm, elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming van de uitgever. All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microlm, electronic or any other means without written permission from the publisher. ISBN 978-94-6018-932-6 D/2014/7515/155 Voorwoord It always seems impossible until it’s done - Nelson Mandela Vier jaar geleden begon ik er aan: mijn doctoraat. In het begin waren er veel vraagtekens en gaandeweg kwamen er daar alleen maar bij. Na veel, erg veel, vallen en opstaan, kan ik eindelijk trots zijn op mijn boekje. Het heeft me letterlijk bloed, zweet en tranen gekost, maar ik ben er des te fier op. Daarom zou ik graag iedereen bedanken die mij hierin heeft geholpen. Zonder hun steun was u deze tekst niet aan het lezen. Allereerst wil ik mijn promoter Staf bedanken. Bedankt om mij steeds weer de goede weg te wijzen als ik weer eens verdwaald was. Bedankt om er voor te zorgen dat ik door projecten voldoende financiering had om mijn doctoraat te kunnen voltooien. Bedankt om verder ook te helpen in de nodige bijsturing van zowel projecten als doctoraat zodat deze beter op elkaar afgestemd konden worden en beiden binnen de voorziene tijd konden worden uitgevoerd. Bedankt om me ook steeds weer te motiveren en vooral om in mij te blijven geloven. Mijn co-promotor Hans verdient ook een prominente plaats in dit dankwoord. Bedankt voor de steeds kritische blik op mijn werk. Bedankt om me steeds te dwingen het onderste uit de kan te halen, zelfs als ikzelf dacht dat reeds bereikt te hebben. En uiteraard ook bedankt dat je deur steeds open stond en dat je elke vraag die ik ook maar had steeds met veel plezier beantwoordde. Verder zou ik ook graag alle andere leden van mijn doctoraatscommissie uitdrukkelijk bedanken voor het nalezen van mijn manuscript en hun kritische opmerkingen. Bedankt ook aan Daniel, Evy, Inneke, Jeroen, Philippe en Steven voor het nalezen van (enkele stukken van) mijn tekst en aan Tony voor het helpen bij enkele LaTeX-problemen. Ik bedank ook graag alle collega’s. Met pijn in het hart zal ik de afdeling verlaten. Ik zal de gezellige koffiepauzes en de overvloedige hoeveelheid taart missen, en natuurlijk ook jullie aanwezigheid. Bedank aan al mijn (ex-)rekencollega’s om mij soms voorrang te geven en geduld te hebben met mijn miljoenen simulaties en vervelende opspringende venstertjes. In het bijzonder wil ik nog Evy bedanken voor i ii VOORWOORD alle goede tips en om mijn probabilistische binnenisolatiestudie af te ronden zodat die toch nog (hopelijk) gepubliceerd is geraakt. Verder dank ik ook graag Patricia, Greet, Laura en Esther voor alle logistieke en administratieve ondersteuning van mijn doctoraat. En Wim en An-Heleen voor de lekkere culinaire momenten. Ook buiten de afdeling kon ik samenwerken met toffe en gemotiveerde collega’s. Bedankt Griet en Liesbeth voor de boeiende gesprekken omtrent IWT TETRA BEP2020. Ook bedankt aan alle collega’s van het WTCB, NAV, Passiefhuisplatform en KU Leuven campus Geel voor de samenwerking rond IWT VIS Renofase. Uiteraard wordt ook de financiële steun voor deze projecten sterk gewaardeerd. I also want to thank my colleagues of IEA EBC Annex 55 RAP-RETRO for the fruitful discussions and especially Payel and Valentina for the pleasant stays abroad. I definitely will miss you girls. Verder ben ik ook al mijn vrienden dankbaar voor de leuke momenten naast mijn doctoraat. Bedankt aan Annelore, Annemie, Dennis, Griet, Hans, Jochen, Jonas, Judith, Liesbeth, Lien, Line, Nathalie, Nathalie, Nicolas, Philippe, Simon, Sofie en alle partners voor de vele leuke avonden en ook de immense steun die ik van jullie kreeg in de 501 voordat ik de liefde nareisde naar het verre Antwerpen. Bedankt aan Daniel en Tony om me tijdens de laatste maanden te vergezellen bij het klimmen zodat ik toch nog een beetje kon ontspannen. Bedankt aan Steven voor de wekelijkse gezonde lunch en om steeds naar mij te luisteren. Verder ook bedankt aan wie nog niet is vermeld voor de leuke concerten, festivals, vrijgezellen, trouwfeesten, babyborrels en avonden op café. Sorry dat ik er niet altijd (lang) bij kon zijn. Ik maak het zeker goed in 2015! Als laatste zou ik graag nog mijn familie bedanken met in het bijzonder mijn ouders. Ondanks alle moeilijkheden hebben jullie mij steeds gesteund en mij alle mogelijke kansen aangereikt. Zonder jullie geloof in mij was ik niet geworden wie ik nu ben. Ook al zeg ik het niet vaak, ik kan jullie daar niet genoeg voor bedanken. Dan rest er mij alleen nog een woordje gericht aan mijn Jeroen. Schat, je hebt me ongelooflijk hard gesteund het laatste jaar. Bedankt voor alle lekkere maaltijden, de taxiritjes, de huistaakjes, de knuffels, de momenten waarop je me gewoon alleen liet, . Het klinkt misschien cliché, maar ik zou écht niet weten hoe ik zonder jou dit boek voltooid zou hebben. Maar het is me gelukt, het is ons gelukt, en dat, lieve schat, dat vergeet ik nooit. Abstract Building performance calculations often use deterministic simulations. Since many influencing parameters are generally inherently uncertain, this may lead to unreliable predictions of design impact and hence excessive deviations between design and reality. Such excessive deviations of building performances are usually undesirable: clients want guarantees that their investments have the desired impact. Hence, the overall aims of this research are (1) the development of a probabilistic robust design methodology to incorporate these uncertainties for building performance analysis and optimisation and (2) its illustrative application on the thermal design of comfortable and affordable robust low-energy dwellings. In the developed methodology, several design options can be compared based on the probability distributions of the studied performances. In order to do so, a multi-layered Monte Carlo uncertainty analysis is performed to subject all options to the same input uncertainties and hence calculate the corresponding performance distributions. An additional sensitivity analysis is applied to investigate which input uncertainties are most dominant for these distributions. Because this approach might be very time-consuming, the computational model is in this thesis optionally replaced by a much faster meta-model, without compromising the reliability. The methodology also enables an explicit evaluation of the design options for potential scenarios, such as the user type or economic evolutions, when desired. In order to numerically compare the probability distributions in view of the robust design principles, effectiveness and robustness indicators are introduced. Here, effectiveness is defined as the ability of the design option to optimise the performance, while robustness is defined as the ability to stabilise this performance for the entire range of input uncertainties. At the end of the thesis, the methodology is illustrated on the thermal design of comfortable and affordable robust low-energy dwellings. Although this application is simplified, general observations can be made. Most attention needs to be paid on the ventilation system and air tightness, since ventilation losses are more important than conductive heat losses when U-values around 0.2 W/m2K are applied for walls, roofs and floors. In order to avoid overheating in summer, sunscreens seem to be essential. Furthermore, raising awareness for the impact of user behaviour, night ventilation and the size of the dwelling seem to be as important as the application of energy efficient measures. iii Beknopte samenvatting Bij het berekenen van gebouwprestaties worden doorgaans deterministische simulaties gebruikt. Aangezien vele invloedsparameters van nature onzeker zijn, kan dit leiden tot onbetrouwbare voorspellingen van de ontwerpimpact en vandaar tot extreme verschillen tussen ontwerp en werkelijkheid. Zulke verschillen zijn gewoonlijk ongewenst: opdrachtgevers willen immers garanties dat hun investeringen de gewenste impact hebben. Daarom zijn de algemene doelstellingen van dit onderzoek (1) de ontwikkeling van een probabilistische robuuste ontwerpmethodologie om deze onzekerheden mee te nemen in de analyse en optimalisatie van gebouwprestaties en (2) haar illustratieve toepassing op het thermische ontwerp van
Recommended publications
  • Chapter 6 Structural Reliability
    MIL-HDBK-17-3E, Working Draft CHAPTER 6 STRUCTURAL RELIABILITY Page 6.1 INTRODUCTION ....................................................................................................................... 2 6.2 FACTORS AFFECTING STRUCTURAL RELIABILITY............................................................. 2 6.2.1 Static strength.................................................................................................................... 2 6.2.2 Environmental effects ........................................................................................................ 3 6.2.3 Fatigue............................................................................................................................... 3 6.2.4 Damage tolerance ............................................................................................................. 4 6.3 RELIABILITY ENGINEERING ................................................................................................... 4 6.4 RELIABILITY DESIGN CONSIDERATIONS ............................................................................. 5 6.5 RELIABILITY ASSESSMENT AND DESIGN............................................................................. 6 6.5.1 Background........................................................................................................................ 6 6.5.2 Deterministic vs. Probabilistic Design Approach ............................................................... 7 6.5.3 Probabilistic Design Methodology.....................................................................................
    [Show full text]
  • Reliability Analysis of Flood Defence Structures and Systems in Europe
    Reliability analysis of fl ood defence structures and systems in Europe HRPP 380 P. van Gelder, F. Buijs, W. Horst, W. Kanning, C. Mai Van, M. Rajabalinejad, E. de Boer, S. Gupta, R. Shams, N. van Erp, B. Gouldby, G. Kingston, P. Sayers, M. Wills, A. Kortenhaus & H.J. Lambrecht Reproduced from: Flood Risk Management - Research and Practice Proceedings of FLOODrisk 2008 Keble College, Oxford, UK 30 September to 2 October 2008 Flood Risk Management: Research and Practice – Samuels et al. (eds) © 2009 Taylor & Francis Group, London, ISBN 978-0-415-48507-4 Reliability analysis of flood defence structures and systems in Europe Pieter van Gelder, Foekje Buijs, Wouter ter Horst, Wim Kanning, Cong Mai Van, Mohammadreza Rajabalinejad, Elisabet de Boer, Sayan Gupta, Reza Shams & Noel van Erp TU Delft, Delft, The Netherlands Ben Gouldby, Greer Kingston, Paul Sayers & Martin Wills HR Wallingford, Wallingford, Oxfordshire, UK Andreas Kortenhaus & Hans-Jörg Lambrecht LWI Braunschweig, Braunschweig, Germany ABSTRACT: In this paper the reliability analysis of flood defence systems and the probabilistic flood risk analysis approach are outlined. The application of probabilistic design methods offers the designer a way to unify the design of engineering structures, processes and management systems. For this reason there is a grow- ing interest in the use of these methods in the design and safety analysis of flood defences and a separate task on this issue in the European FLOODsite project was defined. This paper describes the background of probabilistic analyses, uncertainties , and system analysis and how this has been dealt with under FLOODsite. Eventually, a case study at the German Bight has been used to illustrate the application of the tools and results are discussed here as well.
    [Show full text]
  • Probabilistic Design Tools for Vertical Breakwaters
    CHAPTER 5 Probabilistic design tools and applications 5.1 INTRODUCTION In this chapter the probabilistic design tools will be presented. This encompasses the methods to combine the inherent uncertainty of the natural boundary condi- tions, the uncertainty due to lack of information of the natural environment, the quality of the structure and the engineering models into the measure of a failure probability that expresses the reliability of a structural system. Also a decision has to be taken whether the structural reliability is sufficient in view of the eco- nomic and societal functions of the structure. As an aid to this decision a safety philosophy has been formulated. As the application of the probabilistic design method requires considerable ef- fort and resources, a simpler approach using partial safety factors is derived within the probabilistic framework. This chapter aims at designers of vertical breakwaters with an interest in the probabilistic design method and the background of a partial safety factor code. It may also serve as an introduction for researchers who want to familiarise them- selves with the theoretical backgrounds. These readers however, are referred to Volume II for more detailed information. This chapter treats the description of the failure modes of a vertical breakwater including the uncertainties in section 5.2.2 and 5.3.2 and the methods to calculate the probabilities of failure of each failure mode in section 5.2.3. In section 5.2.4 the methods to gain insight in the performance of the structure as a whole are treated. The ways to combine the failure probabilities of the various modes into the reliability of the structure are given in section 5.2.5.
    [Show full text]
  • M E 591X: Probabilistic Engineering Analysis and Design (Spring 2018 Schedule: M W F 10 – 10:50 Am, Black 1026)
    M E 591X: Probabilistic Engineering Analysis and Design (Spring 2018 Schedule: M W F 10 – 10:50 am, Black 1026) This is an experimental graduate-level course on engineering design for reliability and failure prevention. The course will be offered in the Spring 2018 semester. Motivation Since the 1980s, major industries and government agencies worldwide have faced increasing challenges in ensuring the reliability of engineered systems. Examples of failures in attaining high reliability include the Chernobyl disaster in Russia (1986), the collapse of the I-35W Mississippi River Bridge in the U.S. (2007), the lithium-ion (Li-ion) battery fire/smoke issues on Boeing 787 Dreamliners in the U.S. and Japan (2013), and the Li-ion battery exploding/smoke issues on Samsung Galaxy Note 7 (2016). The rapidly increasing costs associated with these failures, along with stringent reliability requirements, have resulted in considerable research attention directed towards developing probabilistic analysis and design methods for anticipating and avoiding catastrophic failures. The existing curriculum at ISU does not adequately address reliability and uncertainty in engineering system design and post-design failure prognostics. There is a need to introduce this knowledge to students so that they can directly apply it to their own research studies where uncertainty and/or reliability may play an important role. This course will meet this need by exploring statistical/probabilistic methods for engineering design and prognostics and health management. It will provide students with a hands-on experience on the applications of these methods to analyze and improve the reliability of engineered systems. Description • Applications of probabilistic and statistical methods to engineering system design and post- design failure prognostics.
    [Show full text]
  • Lawrence Berkeley National Laboratory
    Building Technologies & Urban Systems Division Energy Technologies Area Lawrence Berkeley National Laboratory Simulation-aided occupant-centric building design: A critical review of tools, methods, and applications Elie Azar1, William O’Brien2, Salvatore Carlucci3,4, Tianzhen Hong5, Andrew Sonta6, Joyce Kim7, Maedot S. Andargie8, Tareq Abuimara2, Mounir El Asmar9, Rishee Jain6, Mohamed M. Ouf10, Farhang Tahmasebi11, Jenny Jin Zhou12 1 Department of Industrial and Systems Engineering, Khalifa University, Abu Dhabi, UAE 2 Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON, Canada 3 Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia, Cyprus 4 Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway 5 Building Technology and Urban Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA 6 Urban Informatics Lab, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA 7 Department of Architecture, University of California Berkeley, Berkeley, CA, USA 8 Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada 9 School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA 10 Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal, QC, Canada 11 Institute for Environmental Design and Engineering, University College London, London, UK 12 Department of Civil Engineering, Monash
    [Show full text]
  • Engineering Design
    A111D3 Qfifi^3H NATL INST OF STANDARDS & TECH R.I.C. gineering design : }77 C.1 NBS-PUB-C 19 NBS SPECIAL PUBLICATION 487 U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards Engineering Design MFPG 25th Meeting - r»iT--ti>ii-J'fittMni i;f iiff ii i>i<tiiii m NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ was established by an act of Congress March 3, 1901. The Bureau's overall goal is strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research — Lab- oratory Astrophysics^ — Cryogenics^ — Electromagnetics'' — Time and Frequency".
    [Show full text]
  • Reliability Evaluation and Probabilistic Design of Coastal Structures
    Aalborg Universitet Reliability Evaluation and Probabilistic Design of Coastal Structures Burcharth, H. F. Published in: International Seminar on Hydro-Technical Engineering for Futute Development of Ports and Harbors Publication date: 1993 Document Version Accepted author manuscript, peer reviewed version Link to publication from Aalborg University Citation for published version (APA): Burcharth, H. F. (1993). Reliability Evaluation and Probabilistic Design of Coastal Structures. In International Seminar on Hydro-Technical Engineering for Futute Development of Ports and Harbors Unyusho Kowan Gijutsu Kenkyujo. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: October 10, 2021 International Seminar on Hydro-Technical Engineering for FUture Development of Ports and Harbours ·- Tokyo, 1993 # • RELIABILITY EVALUATION AND PROBABILISTIC DESIGN OF COASTAL STRUCTURES HANS F. BURCHARTH Department of Civil Engineering Aalborg University, Denmark Contents 1 Introduction 2 2 Failure modes and failure functions 2 3 Single failure mode probability analysis 4 3.1 Level Ill methods .
    [Show full text]
  • PROBABILISTIC DESIGN for ROTOR INTEGRITY October 2018 6
    DOT/FAA/TC-18/6 Probabilistic Design for Federal Aviation Administration William J. Hughes Technical Center Rotor Integrity Aviation Research Division Atlantic City International Airport New Jersey 08405 October 2018 Final Report This document is available to the U.S. public through the National Technical Information Services (NTIS), Springfield, Virginia 22161. This document is also available from the Federal Aviation Administration William J. Hughes Technical Center at actlibrary.tc.faa.gov. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The U.S. Government does not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the objective of this report. The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agency. This document does not constitute FAA policy. Consult the FAA sponsoring organization listed on the Technical Documentation page as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center’s Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/TC-18/6 4. Title and Subtitle 5. Report Date October 2018 PROBABILISTIC DESIGN FOR ROTOR INTEGRITY 6. Performing Organization Code 7. Author(s) 8.
    [Show full text]
  • A Probabilistic Approach to Design Civil Engineering Structures Gabrielle
    A probabilistic approach to design civil engineering structures Gabrielle Muller & Gabriele Albertini Semester project Spring term 2015 Professor Jean-Franc¸ois Molinari Supervisor Fabian Barras Computational Solid Mechanics Laboratory -LSMS Ecole Polytechnique Fed´ erale´ de Lausanne -EPFL CONTENTS Introduction 1 I Theoretical considerations and principles of probabilistic approach in civil engineering2 1 about probabilistic and deterministic approach in struc- turedesign 3 1.1 Basic structural design principles 3 1.2 The deterministic approach - The classical approach in civil engi- neering 3 1.3 The probabilistic approach 6 2 mathematical and numerical tools required for a proba- bilistic approach 11 2.1 Define Probability Density Functions and the Monte Carlo method 11 2.2 The Monte Carlo Method 14 2.3 Advantages and limitations of using Monte Carlo 16 II The application of probabilistic theory: from a basic ex- ample in Python to a real structure in Akantu 17 3 anillustrativeexampleofthemontecarlotheoryinpython 18 3.1 Evolution of the accuracy of the results 18 3.2 Study of the accuracy of the Monte Carlo method 23 4 an illustrative example of the monte carlo theory using akantu 28 4.1 Getting started in Akantu 28 4.2 The Model 28 4.3 The analytical method 29 4.4 The Monte Carlo Simulation 29 4.5 Results 29 ii CONTENTS 5 using akantu for an application of the monte carlo the- ory 32 5.1 Introduction 32 5.2 Considerations about the model 33 5.3 The Monte Carlo simulations 39 5.4 Results 40 Conclusion 50 iii INTRODUCTION The goal of this semester project is to study a probabilistic approach to design civil engineering structures.
    [Show full text]
  • Probabilistic Design - the Future of Rock Engineering
    I.J.M.G.E., University of Tehran, Vol. 46, No. 1, June 2012, PP. 33-42 33 Probabilistic Design - The Future of Rock Engineering Nielen van der Merwe* Professor in the Centennial Chair for Rock Engineering University of the Witwatersrand Johannesburg, South Africa (Received 29 March 2011, Received in Revised form 27 June 2011, Accepted 28 November2011) Abstract A brief background to the development of the rock engineering design process is given, showing that since the development of the science of mathematics, deterministic methods have been used to perform various calculations. The variability of rock properties and support characteristics have always been known. However, they were not explicitly used in design but compensated for by the use of a safety factor, i.e. making a design more stringent than required by the calculations. The problem with this procedure is that the effect of increasing a safety factor on the overall stability of the design cannot be known because the range of variability is not incorporated in the design. The only way to overcome this problem is to make use of the science of probability. In doing that, the ranges of rock qualities are explicitly included in the design and the probability of failure is exposed. Examples of common rock engineering calculations in mining are provided, showing that the probabilistic designs are not difficult or time consuming to perform and yield much more useful outcomes than merely using a safety factor. Keywords: Rock Engineering, Deterministic Design, Reliability, Point Estimate method (PEM) Introduction Rock control has been practised ever It became possible to calculate the weight since the first hole in the ground was made of blocks of rock and then to calculate the by man.
    [Show full text]
  • Distributed Control of Interconnected Systems in the Behavioural Framework
    Distributed Control of Interconnected Systems in the Behavioural Framework by Yitao Yan B.E. (Hons) in Chemical Engineering A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Chemical Engineering The University of New South Wales Sydney, Australia December, 2019 Thesis/Dissertation Sheet Surname/Family Name : Yan Given Name/s : Yitao Abbreviation for degree as give in the University calendar : PhD Faculty : Faculty of Engineering School : School of Chemical Engineering Thesis Title : Distributed Control of Interconnected Systems in the Behavioural Framework Abstract 350 words maximum: (PLEASE TYPE) The rapid development of technology has made the design, monitoring and data storage of large-scale, complex interconnected systems possible. These efficient and economical interconnected systems come with a price: the complex dynamics due to convoluted interconnections makes the effective control of such a system incredibly difficult. The behaviour of the subsystems in a network is vastly different than that when it is not, and the inherent uncertainties due to modelling errors may be amplified as a result of the strong interactions. Furthermore, the ability to collect and process large amount of data leads to the paradigm shift from model-centric description to data-centric description or hybrid model/data description of a system. These challenges necessitate the need for a unified foundation for the control of complex systems that is able to admit descriptions of systems other than the conventional differential/difference models. Motivated by these challenges, this thesis aims to develop such a framework for the distributed control of an interconnected system using the behavioural systems theory.
    [Show full text]
  • Assessment of Regional Earthquake Hazards and Risk Along the Wasatch Front, Utah FRONT COVER
    U.S. Department of the Interior U.S. Geological Survey Assessment of Regional Earthquake Hazards and Risk Along the Wasatch Front, Utah FRONT COVER. View to the southeast of downtown Salt Lake City, Utah, circa 1980. Wasatch Range with prominent Lake Bonneville shorelines in the background. Assessment of Regional Earthquake Hazards and Risk Along the Wasatch Front, Utah PAULA L. GORI and WALTER W. HAYS, Editors U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1500-K-R Contributions from Utah Geological Survey, University of Utah, and Utah State University Chapters K R are issued as a single volume and are not available separately. Chapter titles are listed in the volume table of contents. U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Author affiliations given in this volume were correct at the time the report was approved for publication. Published in the Eastern Region, Reston, Va. Manuscript approved for publication October 5,1995. Library of Congress Cataloging in Publication Data Assessing regional earthquake hazards and risk along the Wasatch Front, Utah / edited by Paula L. Gori and Walter W. Hays. p. cm. (U.S. Geological Survey professional paper : 1500K-R) Includes bibliographical references. Supt.ofDocs.no.: 119.16: 1500KZ. 1. Earthquakes Wasatch Range (Utah and Idaho) 2. Earthquakes Utah. I. Gori, Paula. II. Hays, Walter W. III. Series: U.S. Geological Survey professional paper; 1500. QE535.2.U6A84 2000 551.2'2'097922 dc20 92-33618 CIP For sale by U.S.
    [Show full text]