Ground Support for Underground Mines

Total Page:16

File Type:pdf, Size:1020Kb

Ground Support for Underground Mines Ground Support for underground mines Yves Potvin & John Hadjigeorgiou Australian Centre for Geomechanics Copyright and Disclaimer © Copyright 2020. Australian Centre for Geomechanics, The University of Western Australia. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form without the prior permission of the Australian Centre for Geomechanics, The University of Western Australia. The information contained in this publication is for general educational and informative purposes only. Except to the extent required by law, the Australian Centre for Geomechanics, The University of Western Australia, makes no representations or warranties, express or implied, as to the accuracy, reliability or completeness of the information stored therein. To the extent permitted by law, the Australian Centre for Geomechanics, The University of Western Australia, exclude all liability for loss or damage of any kind at all (including indirect or consequential loss or damage) arising from the information in this publication or use of such information. You acknowledge that the information provided in this publication is to assist you with undertaking your own enquiries and analyses and that you should seek independent professional advice before acting in reliance on the information contained herein. While all care has been taken in presenting the information herein, no liability is accepted for errors or omissions. The views expressed in this publication are those of the authors and may not necessarily reflect those of the Australian Centre for Geomechanics, The University of Western Australia. Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Production team: Paul Burnett, Garth Doig, Candice McLennan, Christine Neskudla, Josephine Ruddle and Stefania Woodward, Australian Centre for Geomechanics; Kerry Coyle, Coyle Editing Services; and Ian Pavey, Vectis Digital Graphics. Cover photograph by John Hadjigeorgiou, with permission from Agnico Eagle Mines Ltd. ISBN 978-0-9876389-5-3 Australian Centre for Geomechanics The University of Western Australia 35 Stirling Highway (M600) CRAWLEY, WESTERN AUSTRALIA AUSTRALIA 6009 Telephone: +61 8 6488 3300 [email protected] www.acg.uwa.edu.au ABN 37 882 817 280 ii Preface Recent years have seen considerable progress in In preparing the book, we have been fortunate to ground support technology and design techniques in have the support of many practising ground support underground mines, resulting in significant advances and mining engineers worldwide. Numerous in safety and productivity. This book came about as colleagues made important contributions to specific a direct recommendation from the sponsors of the chapters. In particular, Associate Professor Johan Ground Support Systems Optimisation (GSSO) Wesseloo, William Joughin and Joseph Mbenza, as research project conducted by the Australian Centre well as Philani Mpunzi and Denisha Sewnun, for Geomechanics and initiated in 2011. A strong contributed to Section 5 on ‘Probabilistic approach consensus emerged for a state-of-the-art book on to ground support design’. Professor Phil Dight ground support technology and design techniques contributed to Chapter 6 on ‘Rock stress data’, for underground mines. while Gordon Sweby co-authored Chapter 11: Ground Support for underground mines was ‘Numerical modelling for ground support design written to provide a comprehensive reference book – mining applications’. Emeritus Professor Dick for practising geotechnical and mining engineers Stacey, Dr Peter Mikula and Associate Professor faced with the task of designing ground support Johan Wesseloo reviewed the manuscript and systems in underground mines. In this context, made several insightful comments and suggestions the authors reviewed international best practices for improvement. The authors are indebted for and describe existing and novel ground support all their help and gratefully acknowledge their design methods. Throughout the book there is an contributions. We further acknowledge the many emphasis on both theory and practical tools to aid individuals, publishers and organisations who gave practising engineers in all steps of the ground support permission for the reproduction of data, figures design process. and photos. In practice, the selection of ground support Funding for the development of this book systems is not only dictated by the design process and was provided by the Ground Support Systems rock engineering criteria but also by other factors, Optimisation research project Phase 1. Major including workforce skill level, access to ground sponsors were: Minerals Research Institute of Western support supplies, local mining culture and corporate Australia (MRIWA), Codelco Chile, Glencore Mount risk tolerance. These can have a significant influence Isa Mines, IGO Limited, MMG Limited, and the on ground support strategies and installation Australian Centre for Geomechanics. Minor project practices. Nevertheless, given that ground support sponsors were: Atlas Copco Australia Pty Limited failures can have catastrophic consequences, every (now Epiroc), DSI Underground, Fero Strata Australia ground support system implemented in mines (now DSI Underground), Golder Associates Pty Ltd, should be justified by sound engineering design Geobrugg AG, and Jennmar Australia. principles. Ground Support for underground mines has been specifically written to assist practitioners in fulfilling this requirement. Yves Potvin & John Hadjigeorgiou iii Industry Sponsors The Australian Centre for Geomechanics gratefully acknowledges the industry sponsors who provided funding for the development of this book by supporting the ACG Ground Support Systems Optimisation research project Phase 1. Major Project Sponsors Minerals Research Institute of Western Australia Minor Project Sponsors ® iv Contents Preface Industry Sponsors Contents Section 1 : Ground support selection and design considerations Chapter 1 : Introduction 1.1 The principal objective of ground support ..................................................................................... 3 1.2 Ground conditions .............................................................................................................................. 5 1.2.1 Normal conditions .................................................................................................................. 6 1.2.2 High stress conditions ........................................................................................................... 8 1.2.3 Large deformations ................................................................................................................ 8 Chapter 2 : Rock mass behaviour and failure mechanisms 2.1 Introduction ....................................................................................................................................... 15 2.2 Loading and failure mechanisms ................................................................................................... 15 2.2.1 Gravity failures driven by stress relaxation ......................................................................... 18 2.2.2 Failures driven by compressive stress ............................................................................... 19 2.2.2.1 Progressive or brittle failure (stiff loading) ......................................................... 20 2.2.2.2 Sudden and violent failure (soft loading) .......................................................... 21 2.3 Summary of typical failure mechanisms in underground mines ............................................... 23 2.4 Stress path ......................................................................................................................................... 23 Chapter 3 : Rock reinforcement behaviour, anchoring mechanisms and specifications 3.1 Introduction ....................................................................................................................................... 27 3.2 Rock reinforcement behaviour ....................................................................................................... 27 3.2.1 Strong versus weak rock reinforcement ............................................................................ 28 3.2.2 Stiff versus soft reinforcement elements ............................................................................ 28 3.2.3 Post-peak behaviour: brittle versus ductile ...................................................................... 29 3.2.4 Low versus high energy absorption rock reinforcement .................................................. 30 3.2.5 Rock reinforcement and rock mass behaviour ................................................................. 30 3.3 Point anchor bolts ............................................................................................................................ 32 3.4 Continuous anchor bolts ................................................................................................................. 35 3.4.1 Continuous chemically bonded anchor bolts .................................................................... 35 3.4.1.1 Resin anchor bolts ............................................................................................ 36 3.4.1.2 Cement-grouted continuous anchor bolts ..................................................... 37 v 3.4.2 Continuous friction
Recommended publications
  • Chapter 6 Structural Reliability
    MIL-HDBK-17-3E, Working Draft CHAPTER 6 STRUCTURAL RELIABILITY Page 6.1 INTRODUCTION ....................................................................................................................... 2 6.2 FACTORS AFFECTING STRUCTURAL RELIABILITY............................................................. 2 6.2.1 Static strength.................................................................................................................... 2 6.2.2 Environmental effects ........................................................................................................ 3 6.2.3 Fatigue............................................................................................................................... 3 6.2.4 Damage tolerance ............................................................................................................. 4 6.3 RELIABILITY ENGINEERING ................................................................................................... 4 6.4 RELIABILITY DESIGN CONSIDERATIONS ............................................................................. 5 6.5 RELIABILITY ASSESSMENT AND DESIGN............................................................................. 6 6.5.1 Background........................................................................................................................ 6 6.5.2 Deterministic vs. Probabilistic Design Approach ............................................................... 7 6.5.3 Probabilistic Design Methodology.....................................................................................
    [Show full text]
  • Falconbridge Limited
    Falconbridge Limited 2004 ANNUAL REPORT 2004 Financial Highlights (US$ MILLIONS, EXCEPT PER SHARE DATA) 2004 2003 Operating Highlights Revenues $ 3,070 $ 2,083 Operating income 969 301 Earnings 672 191 Cash provided by operating activities before changes in working capital 1,067 445 Capital expenditures and deferred project costs 573 370 Financial Position Cash and cash equivalents 645 298 (at December 31) Working capital 933 649 Total assets 5,118 4,172 Long-term debt 1,437 1,427 Shareholders’ equity 2,563 1,938 Return on common shareholders’ equity (ROE) 31% 11% Return on net assets 31% 13% Ratio of net debt to net debt plus equity 24% 37% Per Common Share (US$) Earnings (Basic) $ 3.71 $ 1.03 Earnings (Diluted) 3.69 1.02 Cash provided by operating activities 5.38 2.48 Book value 14.25 10.84 Shares outstanding (millions of shares) 179.8 178.8 Front cover, from left to right: RETURN ON EQUITY RETURN ON NET ASSETS SHARE PRICE 1) Nickel Rim South, Sudbury, Falconbridge achieved a Falconbridge increased its During 2004, Falconbridge Ontario, vent shaft galloway 31% return on equity in RONA to 31% in 2004, maintained an average stock price assembly of two sections 2004 exceeding its 15% surpassing its 18% target. of Cdn$31.88, 60% higher than 2) Nickel end product ROE objective. its 2003 average of Cdn$19.95. 3) Lomas Bayas, Chile 4) Nikkelverk, Norway, refinery (%) (%) (Cdn$) 37 30 30 34 25 25 31 28 20 20 GOAL 18% 25 15 GOAL 15% 15 22 2003 average stock price 10 10 19 16 5 5 13 0 0 10 00 01 02 03 04 00 01 02 03 04 2003 2004 Investment Grade Credit Ratings: Moody’s: Baa3 Standard & Poor’s: BBB– Dominion Bond Rating Service: BBB High Why Invest in Falconbridge? Right metals – nickel and copper Solid production base – upside potential Growth opportunities – within our control Growing value of scarce resources Financial strength to fund operations and growth projects NICKEL PRODUCTION COPPER PRODUCTION Falconbridge achieved Falconbridge achieved record refined nickel production of copper mine production of 100,900* tonnes in 2004.
    [Show full text]
  • Reliability Analysis of Flood Defence Structures and Systems in Europe
    Reliability analysis of fl ood defence structures and systems in Europe HRPP 380 P. van Gelder, F. Buijs, W. Horst, W. Kanning, C. Mai Van, M. Rajabalinejad, E. de Boer, S. Gupta, R. Shams, N. van Erp, B. Gouldby, G. Kingston, P. Sayers, M. Wills, A. Kortenhaus & H.J. Lambrecht Reproduced from: Flood Risk Management - Research and Practice Proceedings of FLOODrisk 2008 Keble College, Oxford, UK 30 September to 2 October 2008 Flood Risk Management: Research and Practice – Samuels et al. (eds) © 2009 Taylor & Francis Group, London, ISBN 978-0-415-48507-4 Reliability analysis of flood defence structures and systems in Europe Pieter van Gelder, Foekje Buijs, Wouter ter Horst, Wim Kanning, Cong Mai Van, Mohammadreza Rajabalinejad, Elisabet de Boer, Sayan Gupta, Reza Shams & Noel van Erp TU Delft, Delft, The Netherlands Ben Gouldby, Greer Kingston, Paul Sayers & Martin Wills HR Wallingford, Wallingford, Oxfordshire, UK Andreas Kortenhaus & Hans-Jörg Lambrecht LWI Braunschweig, Braunschweig, Germany ABSTRACT: In this paper the reliability analysis of flood defence systems and the probabilistic flood risk analysis approach are outlined. The application of probabilistic design methods offers the designer a way to unify the design of engineering structures, processes and management systems. For this reason there is a grow- ing interest in the use of these methods in the design and safety analysis of flood defences and a separate task on this issue in the European FLOODsite project was defined. This paper describes the background of probabilistic analyses, uncertainties , and system analysis and how this has been dealt with under FLOODsite. Eventually, a case study at the German Bight has been used to illustrate the application of the tools and results are discussed here as well.
    [Show full text]
  • Probabilistic Design Tools for Vertical Breakwaters
    CHAPTER 5 Probabilistic design tools and applications 5.1 INTRODUCTION In this chapter the probabilistic design tools will be presented. This encompasses the methods to combine the inherent uncertainty of the natural boundary condi- tions, the uncertainty due to lack of information of the natural environment, the quality of the structure and the engineering models into the measure of a failure probability that expresses the reliability of a structural system. Also a decision has to be taken whether the structural reliability is sufficient in view of the eco- nomic and societal functions of the structure. As an aid to this decision a safety philosophy has been formulated. As the application of the probabilistic design method requires considerable ef- fort and resources, a simpler approach using partial safety factors is derived within the probabilistic framework. This chapter aims at designers of vertical breakwaters with an interest in the probabilistic design method and the background of a partial safety factor code. It may also serve as an introduction for researchers who want to familiarise them- selves with the theoretical backgrounds. These readers however, are referred to Volume II for more detailed information. This chapter treats the description of the failure modes of a vertical breakwater including the uncertainties in section 5.2.2 and 5.3.2 and the methods to calculate the probabilities of failure of each failure mode in section 5.2.3. In section 5.2.4 the methods to gain insight in the performance of the structure as a whole are treated. The ways to combine the failure probabilities of the various modes into the reliability of the structure are given in section 5.2.5.
    [Show full text]
  • M E 591X: Probabilistic Engineering Analysis and Design (Spring 2018 Schedule: M W F 10 – 10:50 Am, Black 1026)
    M E 591X: Probabilistic Engineering Analysis and Design (Spring 2018 Schedule: M W F 10 – 10:50 am, Black 1026) This is an experimental graduate-level course on engineering design for reliability and failure prevention. The course will be offered in the Spring 2018 semester. Motivation Since the 1980s, major industries and government agencies worldwide have faced increasing challenges in ensuring the reliability of engineered systems. Examples of failures in attaining high reliability include the Chernobyl disaster in Russia (1986), the collapse of the I-35W Mississippi River Bridge in the U.S. (2007), the lithium-ion (Li-ion) battery fire/smoke issues on Boeing 787 Dreamliners in the U.S. and Japan (2013), and the Li-ion battery exploding/smoke issues on Samsung Galaxy Note 7 (2016). The rapidly increasing costs associated with these failures, along with stringent reliability requirements, have resulted in considerable research attention directed towards developing probabilistic analysis and design methods for anticipating and avoiding catastrophic failures. The existing curriculum at ISU does not adequately address reliability and uncertainty in engineering system design and post-design failure prognostics. There is a need to introduce this knowledge to students so that they can directly apply it to their own research studies where uncertainty and/or reliability may play an important role. This course will meet this need by exploring statistical/probabilistic methods for engineering design and prognostics and health management. It will provide students with a hands-on experience on the applications of these methods to analyze and improve the reliability of engineered systems. Description • Applications of probabilistic and statistical methods to engineering system design and post- design failure prognostics.
    [Show full text]
  • Falconbridge Limited 2003 Annual Report FUNDAMENTAL STRENGTH Our Operations
    Falconbridge Limited 2003 Annual Report FUNDAMENTAL STRENGTH Our Operations NICKEL COPPER CORPORATE 1 Sudbury 6 Compañía Minera Doña Inés de 9 Corporate Office (Sudbury, Ontario) Collahuasi S.C.M. (44%) (Toronto, Ontario) Mines and mills nickel-copper ores; smelts (Northern Chile) 10 Project Offices nickel-copper concentrate from Sudbury’s Mines and mills copper sulphide ores into (Kone and Nouméa, New Caledonia; mines and from Raglan, and processes concentrate; mines and leaches copper Brisbane, Australia) custom feed materials. oxide ores to produce cathodes. 11 Exploration Offices 2 Raglan 7 Kidd Division (Sudbury, Timmins and Toronto, Ontario; (Nunavik, Quebec) (Timmins, Ontario) Laval, Quebec; Pretoria, South Africa; Mines and mills nickel-copper ores from Mines copper-zinc ores from the Kidd Mine. Belo Horizonte, Brazil; Brisbane, open pits and an underground mine. Mills, smelts and refines copper-zinc ores Australia) from the Kidd Mine and processes Sudbury 3 Nikkelverk A/S copper concentrate and custom feed 12 Business Development (Kristiansand, Norway) materials. (Toronto, Ontario) Refines nickel, copper, cobalt, precious and platinum group metals from Sudbury, 8 Compañía Minera Falconbridge 13 Marketing and Sales Raglan and from custom feeds. Lomas Bayas (Brussels, Belgium; Pittsburgh, (Northern Chile) Pennsylvania; Tokyo, Japan) 4 Falconbridge Dominicana, C. por A. Mines copper oxide ores from an open pit; (85.26%) (Bonao, Dominican Republic) refines into copper cathode through the 14 Technology Centre Mines, mills, smelts
    [Show full text]
  • Ausenco NI 43-101 Template
    Crawford Nickel Sulphide Project NI 43-101 Technical Report & Preliminary Economic Assessment Ontario, Canada Effective Date: May 21, 2021 Prepared for: Canada Nickel Company Inc. 130 King St. West Suite 1900 Toronto, Ontario, M5X 1E3 Prepared by: Ausenco Engineering Canada Inc. 11 King St. West Suite 1550 Toronto, Ontario, M5H 4C7 List of Qualified Persons: Paul Staples, P.Eng., Ausenco Engineering Canada Inc. Greg Lane, FAUSIMM, Ausenco Services Pty. Ltd. Scott Jobin-Bevans, P.Geo., Caracle Creek International Consulting Inc. John Siriunas, P.Eng., Caracle Creek International Consulting Inc. David Penswick, P.Eng., Independent Mining Consultant Sheila Ellen Daniel, P.Geo., Wood Canada Ltd. Karel Van Zyl, P.Eng., Wood Canada Ltd. CERTIFICATE OF QUALIFIED PERSON L. Paul Staples I, L. Paul Staples, P.Eng., certify that I am employed as VP and Global Practice Lead with Ausenco Engineering Canada (“Ausenco”), with an office address of 855 Homer Street, Vancouver, BC. This certificate applies to the technical report titled “Crawford Nickel Sulphide Project – NI 43-101 Technical Report & Preliminary Economic Assessment” that has an effective date of May 21, 2021 (the “Technical Report”). I graduated from Queen’s University, Kingston, Ontario in 1993 with a Bachelor of Science degree in Materials and Metallurgical Engineering. I am a member in good standing of the Engineers and Geoscientists of British Columbia, Licence #47467. I have practiced my profession for 28 years continuously. I have been directly involved in many similar projects and studies in Canada and abroad. I have read the definition of “Qualified Person” set out in the National Instrument 43-101 Standards of Disclosure for Mineral Projects (“NI 43-101”) and certify that by virtue of my education, affiliation to a professional association and past relevant work experience, I fulfill the requirements to be a “Qualified Person” for those sections of the Technical Report that I am responsible for preparing.
    [Show full text]
  • Ontario Must Assess the Impacts of Mines and Smelters Before They Are Built!
    ONTARIO MUST ASSESS THE IMPACTS OF MINES AND SMELTERS BEFORE THEY ARE BUILT! Submission on a proposed list of projects which will be subject to the comprehensive environmental assessment requirements in Part II.3 of the Environmental Assessment Act (EAA) and will be designated in a regulation as Part II.3 projects Environmental Registry of Ontario number 019-2377 by Ontarians for a Just Accountable Mineral Strategy Commissioned by MiningWatch Canada November 5, 2020 Executive summary Before new or expanding mines, mills and smelters get their permits and are built in Ontario, we need to know their impacts. The process to do this is known as environmental assessment (EA). On July 8, 2020, Government of Ontario proposed sweeping changes to the Environmental Assessment Act (EAA) as part of the omnibus COVID-19 Economic Recovery Act, Bill 197. One of these changes is to develop a list of high-risk projects that will be subject to EA. Ontario has never required new or expanding mines, mills, smelters, and refineries to undergo an assessment of their impacts on the environment, the economy, or society. Out of 31 mines and mills currently operating in Ontario, only four have gone through an EA, and only one of those was by the province; the other three were reviewed by the federal government. With one exception, mines and smelters in Sudbury, Timmins, and Kirkland Lake have never completed an EA. We are hopeful that mines and smelters will finally appear on a new Ontario list of projects that pose the most risk to us all and we welcome this opportunity to comment.
    [Show full text]
  • Ontario Mine Rescue Competition Awards
    Ontario Mine Rescue Competition Awards JUNE 2018 Table of Contents Provincial Championship Award (M.S.A. Trophy) John Guthrie (Special Equipment) Award Firefighting Award First Aid Award Equipment Technician Award Kirkland Lake District Onaping District Red Lake District Southern District Sudbury District Thunder Bay/Algoma District Timmins District Former District Trophies Provincial Championship Award The M.S.A. Trophy, donated by MSA Canada Ltd., has been awarded to the top team in the annual Provincial Mine Rescue Competition since 1955. A cut and polished granitoid slab with plaque rests above a silver, trapezoidal engraved scene of a linked six-man mine rescue team wearing McCaa breathing apparatus. The team is traversing a double-tracked drift, as the lead rescuer holds a Wolf flame safety lamp, while the second holds a self-rescuer. The trophy originally consisted only of the slab and the first tier with the engraving. The bottom three tiers were added. 1950 – Pamour Porcupine Gold Mines 1987 – Denison Mines Ltd. 1951 – Hallnor Mines Ltd. 1988 – Denison Mines Ltd. 1952 – Hollinger Consolidated Gold Mines Ltd. 1989 – American Barrick Resources 1953 – Falconbridge Nickel Mines Ltd. - Holt McDermott Mine 1954 – MacLeod Cockshutt Gold Mines Ltd. 1990 – Sifto Canada, Goderich Mine 1955 – Kerr Addison Gold Mines Ltd. 1991 – Placer Dome Inc., Campbell Mine 1956 – Falconbridge Nickel Mines Ltd. 1992 – Placer Dome Inc., Dome Mine - East Mine 1993 – Inco Ltd., Frood Stobie Complex 1957 – Steep Rock Iron Mines Ltd. 1994 – Inco Ltd., Levack Complex 1958 – Steep Rock Iron Mines Ltd. 1995 – Inco Ltd., Frood Stobie Complex 1959 – Algom Uranium Mines Ltd. 1996 – Falconbridge, Onaping Craig Mine - Quirke Mine 1997 – Falconbridge 1960 – Falconbridge Nickel Mines Ltd.
    [Show full text]
  • Solid-Ground-2-2016.Pdf
    #2 2016 SOLIDGROUND A MAGAZINE FROM Canada: SANDVIK MINING AND ROCK TECHNOLOGY Profound productivity Sandvik DR481i: Bigger is better Intelligence: TRUST THE Higher BUCKET: learning an integrated solution Battery-driven equipment heralds the future of emissions-free underground mining. CHARGED UP WELCOME SANDVIK NEWS Riding high in Finland ................................ 5 Dear reader, PROFILE Salt of the earth ......................................... 6 THE MAIN HEADLINE on the front cover, “Charged up” (referring to our battery-trammed equipment and exhaust-free TRADE NEWS mining), can also mean “to be excited and full of energy” – and The search for Pharaohs’ gold ............... 8 that’s very much how Sandvik Mining and Rock Technology is feeling about the future of our industry, with the innovative KGHM RUDNA COPPER MINE products and services that we are bringing to the market. A total-bucket approach....................... 10 Today’s challenging market calls for ever-greater productivity BATTERY-DRIVEN EQUIPMENT and efficiency, and our focus is on supporting our customers in this drive. Just one example is the total bucket concept delivered The mission to eliminate emissions...16 to Europe’s largest copper mine, enabling a significant reduction GLENCORE KIDD BASE-METAL MINE in loader maintenance costs, optimized productivity and reduced downtime. Automation to the core ........................ 20 SANDVIK DR481i ENVIRONMENT, HEALTH AND SAFETY will always be a top Productivity through power ................ 26 priority for us, and we know that it will only continue to grow in importance across our industry. That’s why we are launching SUSTAINING SAFETY the aforementioned battery-driven mining equipment to Rod rack redesign ................................... 30 address the potential health impacts of diesel particulate matter and other underground engine INTELLIGENCE emissions – thereby also potentially helping to Education roundtable ..........................
    [Show full text]
  • Tracing Ancient Hydrogeological Fracture Network Age and Compartmentalisation Using Noble Gases
    Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 222 (2018) 340–362 www.elsevier.com/locate/gca Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases Oliver Warr a,b,⇑, Barbara Sherwood Lollar b, Jonathan Fellowes c, Chelsea N. Sutcliffe b, Jill M. McDermott b, Greg Holland c, Jennifer C. Mabry a, Christopher J. Ballentine a a Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom b Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada c School of Earth, Atmospheric and Environmental Sciences, Williamson Building, University of Manchester, Manchester M13 9PL, United Kingdom Received 3 March 2017; accepted in revised form 16 October 2017; available online 25 October 2017 Abstract We show that fluid volumes residing within the Precambrian crystalline basement account for ca 30% of the total ground- water inventory of the Earth (> 30 million km3). The residence times and scientific importance of this groundwater are only now receiving attention with ancient fracture fluids identified in Canada and South Africa showing: (1) microbial life which has existed in isolation for millions of years; (2) significant hydrogen and hydrocarbon production via water–rock reactions; and (3) preserving noble gas components from the early atmosphere. Noble gas (He, Ne, Ar, Kr, Xe) abundance and isotopic compositions provide the primary evidence for fluid mean residence time (MRT). Here we extend the noble gas data from the Kidd Creek Mine in Timmins Ontario Canada, a volcanogenic massive sulfide (VMS) deposit formed at 2.7 Ga, in which fracture fluids with MRTs of 1.1–1.7 Ga were identified at 2.4 km depth (Holland et al., 2013); to fracture fluids at 2.9 km depth.
    [Show full text]
  • Managing Thiosalts at Xstrata Copper Canada
    “Managing Thiosalts at Xstrata Copper - Kidd Operations” by: David Yaschyshyn 17th Annual BC MEND ML/ARD Workshop December 1, 2010 Xstrata Copper – diverse copper assets and projects 2 Kidd Operations • Located in Timmins, Ontario • Kidd Mine and Kidd Concentrator • Copper/zinc mined since 1966 • Production reached 9,200 feet (2,800m) in 2009, making the operation the deepest base metal mine in the world • Projected mine life to 2017 • Ore processed at Kidd Concentrator using conventional flotation techniques • Copper and zinc concentrates dewatered and shipped for further refinement in Canada 3 Kidd Concentrator, Tailings Management Area • Conventional slurry tailings discharge started Porcupine River in 1966 Downstream • Thickened tailings No. 2 Tailings discharge since 1973 Thickener • Lime Treatment at Pond A and C Tailings • Settling Pond D, water Management recycled for milling C Area • Polishing Pond E Final Effluent • Treated Final Effluent Porcupine River discharged to Porcupine E D A at Hoyle River Porcupine River Concentrator Site Upstream 4 Where/When Thiosalts Occur? • Typically during grinding or flotation of sulphide ores O containing pyrite and pyrrhotite in alkaline conditions: O O S 2+ - 0 S FeS2 + 2O2 + H2O Fe + 2OH + 2S 2- Thiosulphate (S2O3 ) 0 - 2- 2- O 4S + 6OH 2S + S2O3 + 3H2O O O 3S O 2- + 2O + H O 2S O 2- + 2OH- 2 3 2 2 3 6 O S 2- 2- - O 4S2O3 + O2 + 2H2O 2S4O6 + 4OH S S O 2- • Thiosalts are a series of partially Trithionate ion (S 3O6 ) 2- oxidixed sulphur oxyanions (SxOy ) O O • Thiosalts generation tends S S O to be site-specific O S S O O Tetrathionate ion (S O 2-) 4 6 5 Thiosalts Speciation (2009-2010) 6 Why Thiosalts May Require Management? 2- • They typically oxidize until end product sulphate (SO4 ) is reached • During oxidation reactions, proton (H+) is produced.
    [Show full text]