<<

1st Symposium on Intermediate-Energy Heavy Ion Collisions Tsinghua University, April 7-11 2018

Recent Progress in the Studies of Neutron Merger & and their Impact on Nuclear Physics

Taka Kajino 梶野 敏貴 Beihang University 北京航空航天大学 International Reearchs Centr for Big-Bang Cosmology and Element Genesis National Astron. Observatory of Japan 国立天文台 The University of Tokyo 日本国東京大学 GW170817 From LIGO Home Page Abbott et al. (LIGO-Virgo), PRL 119, 16101 (2017)

- GW170817 (LIGO-Virgo) : 0.86

Red Tanaka et al. Chornock et al. 2017 Dynamical ejecta PASJ Low00, Ye1-7 (2017) Purpose

1. How to distinguish r-process in Mergers (NSMs) vs. Core-Collapse Supernovae (CCSNe) ? Time scale ?

 Fission + masses, β-decay, (n, γ)  GW170817 vs. SiC-X Grains, Sediments  Actinide Boost

CC-SNe = Magneto-Hydrodyn. Jet + ν-Heated Wind

2. How to find the roles of ν-interactions and oscillations ?

 ν-induced Nucleosynthesis CEX  ν-Oscillations, Hierarchy ⇔  Origin of Amino Acid Chirality Last Photon Scatt. 3.8x105 y Cosmic Evolution Accelerated Expansion Dark Age BBN

Inflation GW150914 1.3 Gly 13.8 Gy

GW170817 0.13 Gly

Quantum Fluct. of Space-Time Supernova formed in 0.1Gy First Stars in a few My 100 My < τ Galactic Chemo-Dynamical Evolution Solar System r-Process Abundance Shibagaki, Kajino, Chiba, Mathews, Nishimura & Lorusso (2016), ApJ 816, 79; ApJ (2018); Kajino & Mathews (2017), ROPP 80 , 084901.

● Solar System-r 133Cs 128Te 13.8 Gy TODAY ! (0.1 Gy = 100 My < τ)

~ -2 Mtot 10 M

ν-Driven MHD-Jet SN Wind SN

Asymmetric Fission & Recycling Observed event rates !

Ejected Mass [Msun] x Event Rate [/Galaxy/Century]

νSN (Weak r) = 7.4 x 10-4 x (1.9±1.1) a MHD Jet SNe = 0.6 x 10-2 x ((0.03±0.02) x (1.9±1.1)) b Binary NSMs = (2±1) x 10-2 x (1-28)x10-3 c Observations a 1.9±1.1 Diehl, et al., Nature 439, 45 (2006). b 0.03±0.02 Winteler, et al., ApJ 750, L22 (2012). Obs. Estimate c (1-28) x 10-3 Kalogera, et al., ApJ 614, L137 (2004).

GW170817 is a clear evidence indicating that the central engine of the SGRB is binary NSM !

Why faint ? GW170817

1047

1046 235U 208Pb

SN 56Fe

NS Merger SN

NS Merger SN

MS Merger Challenge of Nucear Physics ー Fission & Mass Formula Mass Formula: FRDM (Moeller & Kratz) Shibagaki, Kajino, Mathews (2018)

133 128 Cs Te ● Solar System-r

Neutron Star Merger

~ -2 Mtot 10 M

Symmetric Fission

80 100 120 140 160 180 200 Solar System r-Process Abundance Shibagaki, Kajino, Chiba, Mathews, Nishimura & Lorusso (2016), ApJ 816, 79; ApJ (2018); Kajino & Mathews (2017), ROPP 80 , 084901.

● Solar System-r 133Cs 128Te 13.8 Gy TODAY ! Neutron Star Merger (0.1 Gy = 100 My < τ)

~ -2 Mtot 10 M

ν-Driven MHD-Jet SN Wind SN

Asymmetric Fission & Recycling Important Nucl. Phys. in NS Mergers

◎(n, γ)reaction cross section ! 236U ◎ Fission fragment distribution !

M. Ohta et al., Proc. Int. Conf. on NDST, Nice, France, (2007) S. Chiba et al., AIP Conf. Proc. 1016, 162 (2008).

Fission Region

MHD-Jet SNe & Bimordial or Trimodal FFD: CC Supernovae

Neutron Star Mergers RIKEN β-Decay Experiment: Fission is sensitive to S. Nishimura et al., PRL 106, 052502 (2011). Nuclear Models Mass Number KTUY mass model KTUY Model One of the Best Models!

Mass: Fission Barrier, Qβ Koura, Tachibana, Uno, Yamada,

PTP 113, 305 (2005). R atio Reactions: αβ-decay, fission H. Koura, AIP Conf. Proc. 704, 60, (2004). M. Ohta et al., Proc. Int. Conf. on Nucl. Data for Science and Technology, FRDM mass model Nice, France, (2007).

FRDM Model Möller, P., Myers, W. D., Sagawa, H., et al., PRL 108, 052501 (2012). Möller, P., NIx, J. R., Myers, W. D., et al. ADNDT 59, 185 (1995). Fission Path of Mercury

Potential Depth of Fission Valley (near Scission Point) of Fm isotopes

Symmetric Valley around α=0, δ=0.05

Asymmetric Valley around α=0.15, δ=0.2 Symmetric fission makes sharp 2nd & 3rd peaks. Asymmetric fission & recycling wash out the 2nd peak, still keeping the REE hill and the 3rd peak. Shibagaki, Kajino, Mathews (2018) Symmetric – artificial Symmetricl Present - Asymmetric

Kodama & Takahashi - Asymmetric(fixed Z/N)

Asymmetric Fission & Recycling “r-process” Elements, found in SiC X-Grains ◎ Supernova Grains e.g. Murchison Meteorite Courtesy of S. Amari SiC X-grains

- Enhanced 12C (12C/13C > Solar), Enhanced 28Si - Deficient 14N (14N/15N < Solar) 26 5 44 - Decay of Al (t1/2=7x10 yr), Ti (t1/2=60yr) Pre-solar SiC X-grains condense & form from SN EJECTA. ■ SiC X-grain including r-elements NSM/SN event rates ! ■ Extended universality & actinide boost both NSM & SN !

HE 2252-4225 ◎ Direct Spect. Obs.: Actinide-boost stars SN, NSM Simultaneous direct detection of C, Si & r-elements is highly desirable ! Deep Sea Sediments & EMPS points DUALITY of SN & NSM

244Pu/60Fe in Earth’s Deep Sea Sediments NSM/MHDJ : SNe = 1 : 100! Over 25 My

NSM, MHDJ 244Pu(80.8 My): Wallner et al., Nature Comm. 6 (2015), 1-9; NPA8 (2017)

ν-DW 60Fe(2.62 My): Wallner et al. Nature 532 (2016), 69. Extended Ultra-Faint Dwarf Galaxy: Ret. Universality II Astron. Observation Ian U. Roederer et al., ApJ. 151 (2016), 82; P. Ji Alexander, Anna Frebel, Anirudh Chiti, Joshua D. Simon, Nature 531 (2016), 610. C Si NSM cannot produce Element (Z) A<80 enough ! -2 10 Goriely, et al., ApJ 738, L32 10-3 Wanajo et al., ApJ. 789 (2014), L39. (2011); Korobkin, et al., MNRAS 426, 1940 (2012); 10-4 Bauswein, et al., ApJ 773, 78 10-5 (2013); Rosswog, et al., MNRAS 430, 2585 (2013); 10-6 Goriely, et al., PRL 111, 242502 -7 10 Shibagaki et al., ApJ. 816 (2016), 79. (2013), (2015): Piran, et al., 10-8 MNRAS 430, 2121 (2013). 0 50 100 150 200 250 Mass Number A Solar System Abundance

H Big-Bang Nucleosynthesis: 3 min in early Universe He Stellar fusion: from birth until now O C Ne r-元素 Mg Si S Ar Fe Ca Ti Ni s-元素

Ge Zr 232Th Te Ba (14.05Gy) Li-Be-B Pt Pb 238U Cosmic-Ray Int. with ISM: (4.47 Gy) From early Galaxy until now Solar System r-Process Abundance Present time: t = 13.8Gy Shibagaki, Kajino, Chiba, Mathews, Nishimura & Lorusso (2016), ApJ 816, 79; ApJ (2017); New process, required ? Kajino & Mathews (2017), ROPP 80, 084901.

● Solar System r-Process Abundance 1st (As, Se, Br) s + r 2nd (Te, I, Cs) 3rd (Ir, Pt, Au) ν-Wind SN Neutron Star Mergers (0.1 Gy = 100 My < τ)

Strongly depend on ν ! τdyn >> τν MHD-Jet SN + - νe n → p + e Relatively free from + + ν ! νe p → n + e τdyn < τν n-/i-process ??? Nuclear Physics ?

Spherical Deformed

Shape Phase Transition

N=50 Proto Neutron Star Collective ν Oscillation ― Many-Body Effect

Duan, Fuller, Carlson & Qian, PRL 97 (2006), 241101. Fogli, Lisi, Marrone & Mirizzi, JCAP 12, (2007) 010. Balantekin, Pehlivan & Kajino, PR D84, (2011), 065008 PR D90, (2014), 065011.

Hν = Mixing and Int. with Background Electrons p ν p ν MSW (Matter) Effect 1 e 1 x

x Ne = electron density

ν ν ν Hνν = Self-Interactions β α β Collective Effect for νν-scatt. p q p

p q p ν ν α νβ α α, β = e, µ, τ

1049 ν’s with 3-flavors & multi-angles (3 x 3r x 3p /ν ) ! 3-Flavor & Multi-Angle Calculations in Mean Field Approx. Swapped ν Energy Spectra Sasaki et al. PR D96 (2017), 043013.

2 Both Normal & Inverted hierarchy, Observed θ13 & Δm

r = 10km (ν-sphere) r=250km Energy spectra 1 swap! Normal 0.8 ν (T=3.2 MeV) ν νµτ n/p ratio (Ye<0.5)e changes drastically! e .) ν + + - a.u 0.6 e n → p e + + + νe p → n e Flux( System0.4 becomes even proton-rich (0.5

0.0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 Eν MeV Eν MeV Ordinary νp-process C. Freohlich, et al., PRL 96 (2006), 142502.

92Mo 96Ru Isotopic ratio of νp-process (n, γ) p-nuclei ~ 0.1-1% 14.53% 5.54%

60Zn

1.062 m 56Ni 1.062 m WITHOUT

Z

96Ru 64Ge 92Mo

N Ordinary νp-process C. Freohlich, et al., PRL 96 (2006), 142502.

92Mo 96Ru Isotopic ratio of νp-process (n,(n, γ γ)) p-nuclei ~ 0.1-1% 14.53% 5.54% Neutrons are supplied continuously by collective ν−oscillations, followed by 60 Zn (n, γ) to produce 92,94Mo, 96,98Ru! 1.062 m Collective νpn-process 56Ni 1.062 m Sasaki et al. PR D96 (2017), 043013. WITHOUT WITH ν-Coll. Oscillation Z Z

96Ru 96Ru 64Ge 92Mo 64Ge 92Mo

N N Si-burn. P-Nuclei + Isotopic ratio (%) (0.89) (0.36) (0.56) 106

104 72Se 78Kr 84Sr 92,94Mo, 96,98Ru 102 (14.5, 9.15) (5.54, 1.87) 102Pd (1.02) 1 106,108Cd 113In (4.29) (1.25, 0.89) 10-2 νpn-process γ-process in SNe Ia & II in SN II 112,114,115Sn 124,126Xe -4 10 ν-driv. Wind(0.97, 0.66,Outer 0.34) -layer (0.095, 0.089)

10-6 130Ba 120Te (0.09) (0.106) 10-8 Sasaki et al. PR D96 (2017), 043013. ν-Mass, constrained from Cosmology & Nuclear Physics

● CMB Anisotropies + LSS: WMAP-7yr + Planck + BAO + HST + SZ (2015-2017) ∑ m < 0.14 – 0.17 eV (95%C.L.) ν Yamazaki, Kajino et al. Phys. Rep. 517 (2012),141; < 0.2 eV (2σ, Bλ<2nG) PR D81 (2010), 103519. ● 0νββ decay: COUORE, NEMO3, EXO, KamLAND Zen (2012-2017) + NνDEX 2 (ー2018) |∑U eβmβ | < 0.3 eV 2 × -5 2 2 × -3 2 Δm 12 = 7.9 10 eV |Δm 23| = 2.4 10 = (0.05 eV)

ν-Oscillation Physics Normal: Σ mν ~ 0.05 eV ! Inverted: Σ mν ~ 0.1 eV ! Normal Inverted

0.01 eV !

27 ν-Isotopes:180Ta, 138La, 92Nb, 98Tc … Hayakawa, Kajino, Mohr, Chiba & Mathews, PR C81 (2010), 052801®; PR C82 (2010), 058801; ApJL 779 (2013), L1.

SN ν-process in Einstein AB theory  Only 40% survives! D. Belic et al., PR C65 (2002), 035801. K=9 Only when Tνe = Tνe = 4 MeV !

180Tam

Isomer 9+ 180 ) 180Tam(τ > 1015y) Tag(τ1/2 = 8h 1/2 6,7Li-9Be-10,11B : Outer Layer in Supernova

2 2 -3 2 |Δm 13| = |Δm 23| = 2.4×10 eV , εν ~ 10 MeV

[ ]

MSW high-density resonance is located at O/C - He/C shell at ρ ~ 103 g/cm3.

A = 7 A = 11

νx→νe νx→νe New Method to constrain Mixing Angle & Mass Hierarchy θ13

1 Yoshida, Kajino et al. Normal Mass 2005, PRL94, 231101; 0.9 Hierarchy 2006, PRL 96, 091101; 2006, ApJ 649, 319; 2008, ApJ 686, 448. Allowed (2011-2017) 0.8 Mathews, Kajino, Aoki & Fujiya, PR D85, 0.7 105023 (2012). Kajino, Mathews &

Ratio 0.6 Hayakawa, J. Phys.G41 - (2014), 044007. B Inverted Mass 2 sin 2θ13 = 0.1 11 0.5 Hierarchy Long Baseline Exp.

Li/ from 2011-2018: 7 0.4 ・T2K (Kamioka) ・MINOS 0.3 Nuclear Reactor Exp. from2012-2018: 0.2 ・RENO (KOREA) ・ 0.1 Double CHOOZ ・Daya Bay 10-6 10-5 10-4 10-3 10-2 10-1 Theoretical Calculation for ν-A Cross Sections

New generation SM cal.: ν -12C, 4He QRPA cal.: ν -12C, 4He, Suzuki, Chiba, Yoshida, Kajino & Otsuka, PR C74 (2006), 034307; 40Ar, 42Ca, 98Tc, 92Nb, 138La, 180Ta … Suzuki & Kajino, J. Phys. G40 (2013), 083101; ++

12C: New Hamiltonian = Spin-isospin flip int. with Cheoun, et al., PRC81 (2010), 028501; tensor force to explain neutron-rich exotic nuclei. PRC82 (2010), 035504: J. Phys. G37 (2010), 055101; PRC 83 (2011), 028801; PRC 85 (2013), 065807; - µ-moments of p-shell nuclei PLB 723 (2013), 464; J. Phys. G42 (2015), 045102; 12 12 14 14 - GT strength for C N, C N, etc. (GT) ++ - DAR (ν,ν’), (ν,e-) cross sections

120 12 - 12 181Ta(ν, n ν’)180Ta C(νe,e ) N 1200 100 1000 2 80 800 ) cm 42 - 60 12 - 12 + 600 GT Spin-Mutipole C(νe,e ) N(gs,1 ) GT

(x10 40

ν 400 σ 20 Spin-Multipole 200 0 0 10 20 30 40 50 60 70 80 0 0 10 20 30 40 50 60 70 80 Ecm MeV Ecm MeV ★ ν-beam experiment is not available ! ★ EM-PROBE (Hadronic CEX, γµ-ind. reactions) ! Similarity of Electro-Magnetic & Weak Interactions EM-current = V, Weak-current = V - A 58 3 58 Ni( He, t) Cu r IV igrr r r Vg≈σ ×+ qV ( pp + ') E = 140 MeV/u V 22mm r r Y. Fujita et al., EPJ A 13 (’02) 411. Ag≈ Aσ Y. Fujita et al., PRC 75 (’07) Weak operator in non-relativistic limit 58Ni(p, n)58Cu r Ep = 160 MeV Gamow-Tellar operator = στ ± r J. Rapaport et al., NPA (‘83) σ × J τ Spin-Multipole operator = [ Y(L)] ± Counts

0 2 4 6 8 10 12 14 Excitation Energy (MeV) Origin of Life ? ー Key ー All Amino-Acids, Optically Left-Handed ! Why ?

Born in the Universe, Structure of DNA then brought into Earth ? Cytosine Born on the Earth, then evolved ? Adenine

Mann and Primakoff (Origins of Life, 11 (1981), 255) suggested β-decay of 14C. Chimine It is too SLOW!

Guanine ν-Interaction under Strong B-Field

Connection is occupied by 14N(1+) Origin of L-Chirality of Amino Acids Boyd, Kajino, Onaka & Famiano, et al. Astrobio. 10(2010),561; Int. J. Mol. Sci. 12 (2011), 3432; Symmetry 6 (2014), 909; Astrophys. J (2018), in press. ★ are all left-handed! 14N lives ! ★ , broken in strongly magnetized NS or BH. ★ SN ejecta including 14N form simple amino-acids and interact with neutrinos for ~ 1010y. ★ -14N coupling is asymmetric & chiral selective. 14N survives in north, but dies in south. 5.14 14 N dies ! 2m c2 0.06% e 3.95 14O 99.3% 14 - 14 νe + N → e + O 2.31 0.61%

14 + 14 νe + N → e + C 100% 0.16 0.00 14 C (5730y) 14N (1+) Quest for Nuclear Physics in

Cosmic & Galactic Evolution Developed HI & RIB Technique + Intense RI-Beam @ RIFBF Chirality of Amino Acid + High Precision Spectroscopy + … Ex

ν-oscillations (ν,ν’ ( Probe E* on wide N-Z ) (ν,e) n, γ

Hadronic Charge-Exc. React. ), fission

Supernova ν-process β -

Understanding of EW Response GDR & decay → GT + Forbidden Tr. - SN explosion mechanism Electro-Weak React. r-process - R-process, Th-U synthesis & cosmochronology GTGR, PDR → Neutral & Charged currents - LiBeB synthesis & ν-oscillation Reaction Theory β - Fe-Mn synthesis in 1st generations of star Masses, EC, -decays - La, Ta, Nb … synthesis & cosmic clock EOS of Neutron Stars → EC/beta-decays Proton-rich Z = N Neutron-rich - SN II, SN Ia, X-ray bursts Structure Theory of Exotic Nuclei, Fission

Sasano @ Uesaka Spin-Isospin Labo., RIKEN Summary

◆ Neutron Star Merger R-process, confronts Time Scale Problem: in the early Galaxy :- CCSNe (both MHDJ- & ν-Wind) in the Solar-System :- Neutron Star Mergers contrinute + CCSNe  Fission Recycling & Fragment Mass Distr. + masses, β-decay, (n, γ) ◆ Supernova(ν-Wind)proves: :- Origin of Abundant p-Nuclei (92,94Mo, 96,98Ru …)  Mechanism of ν-Self Interacting Collective Oscillations :- ν-Mass Hierarchy  Nuclear Weak Structure of 180Ta, 138La, 92Nb, 98Tc, 7Li, 11B … ◆ Origin of Amino-Acid Chirality:

14 +  Broken-Symmery of νe & νe+ N(1 ) Interaction under Strong B-Fields

Neutron Star Meregrs, Supernovae  GWs, Lights, Elements & νs ー DAWN of multi-messenger astronomy & nuclear astrophysics ー SYNERGY among astronomy, astro-, particle- & nuclear physics Purpose

1. How to distinguish r-process in Neutron Star Mergers (NSMs) vs. Core-Collapse Supernovae (CCSNe) ? Time scale ?

 Fission + masses, β-decay, (n, γ)  GW170817 vs. SiC-X Grains, Sediments  Actinide Boost Stars …

CC-SNe = Magneto-Hydrodyn. Jet + ν-Heated Wind

2. How to find the roles of ν-interactions and oscillations ?

 ν-induced Nucleosynthesis  ν-Oscillations, Hierarchy  Origin of Amino Acid Chirality

Binary merger process, too Time Scale Problem slow Argast, et al., A&A 416 (2004), 997, for GW ; 100My<τC Wehmeyer et al., MNRAS, 452 (2015), 1970. τc Merger R-Process (Theory) x

τc = 100 My Lorimer, Living Rev. Rel. 11(2008), 8.

0.8

/Fe] 0.6 Ba_r [ 0.4 EMP Stars Sun (obs.) 0.2

0.0 Orbital eccentricity

-4 -3 -2 -1 0 1 10 100 1000 SN τlife (10-30M ) [Fe/H] Orbital period (hours) ・・・ 1My 10My 100My 10Gy 100My 10Gy 10Ty Observed Galactic event rates ! Ejected Mass [Msun] x Event Rate [/Galaxy/Century]

νSN (Weak r) = 7.4 x 10-4 x (1.9±1.1) a MHD Jet SNe = 0.6 x 10-2 x ((0.03±0.02) x (1.9±1.1)) b Binary NSMs = (2±1) x 10-2 x (1-28)x10-3 c GW170817Observations confirmeda 1.9short±1.1-GRB Diehl,= NSM et !al., Nature 439, 45 (2006). b 0.03±0.02 Winteler, et al., ApJ 750, L22 (2012). Obs. Estimate c (1-28) x 10-3 Kalogera, et al., ApJ 614, L137 (2004).

Event rates including Binary Evolution SNe Kajino & Mathews, Rep. Prog. solar system Phys. 80 (2017) 08490; Mathews & Kajino, (2018). No contribution Time Scale Problem in in the early Galaxy ! NSMs Neutron Star Mergers GW170817 KTUY Model : Fission Fragment Mass Distribution M. Ohta et al., Proc. Int. Conf. on NDST, Nice, France, (2007) S. Chiba et al., AIP Conf. Proc. 1016, 162 (2008). Liquid Drop Model in Two Center Shell Model distance z Parameter mass asymmetry α deformation δ Fission Fragment Distribution Potential Energy Surface 2 2 2 2 ω 2 2 1 −( AH − A) / 2σ −( AL − A) / 2σ 2 s −(( AH + AL )/ 2− A) / 2σ f (A) = (1−ωs )(e + e ) + e 2πσ 2πσ Analysis of Potential Energy near the Scission Point ・Location of the depth of the asymmetric valley at δ=0.2, 0.3 → mass asymmetry of fission fragment distribution(AH,AL) ・Depth of the asymmetric valley & Depth at α=0 and δ~0 → ratio of the symmetric component and asymmetric component(ωs) ・σ=7.0 Calculated ν Flavor Oscillation Energy spectra swap!

5 MeV νe νe Pure νe

30 MeV νe

νe

Synchronized oscillation

Bipolar oscillation νµτ 15 MeV νµτ Pure νe or νµτ ν-Isotopes:180Ta, 138La, 92Nb, 98Tc … Hayakawa, Kajino, Mohr, Chiba & Mathews, PR C81 (2010), 052801®; PR C82 (2010), 058801; ApJL 779 (2013), L1.

SN ν-process in Einstein AB theory  Only 40% survives! D. Belic et al., PR C65 (2002), 035801. K=9 Only when Tνe = Tνe = 4 MeV !

180Tam

Isomer 9+ 180 ) 180Tam(τ > 1015y) Tag(τ1/2 = 8h 1/2 The last nearby Supernova When exploded & formed pre-solar grain?

Primordial Sun formed.

The Sun isolated 4.56 Gy ago !

Present Sun

92 7 From predicted initial abundance of Nb(τ1/2=3.47x10 y) in GCE + Late Input(SN)model, we conclude; ΔT = 1~30 My! Hayakawa, Nakamura, Kajino, Chiba,Iwamoto, Cheoun, Mathews, ApJL 779 (2013), 1.

This is consistent with Standard Solar-System Formation Scenario which requires ΔT = 1~10 My (H. Yurimoto, 2016). Theoretical Calculation for ν-Nucleus Cross Section

New generation SM cal. with NEW Hamiltonian: ν -12C, 4He Suzuki, Chiba, Yoshida, Kajino & Otsuka, PR C74 (2006), 034307; Suzuki & Kajino, J. Phys. G40 (2013), 083101; + 12C: New Hamiltonian = Spin-isospin flip int. with tensor force to explain neutron-rich exotic nuclei. - µ-moments of p-shell nuclei - GT strength for 12C12N, 14C14N, etc. (GT) - DAR (ν,ν’), (ν,e-) cross sections QRPA cal.: ν -4He, 12C, 40Ar, 42Ca, 98Tc, 92Nb, 138La, 180Ta … Cheoun, et al., PRC81 (2010), 028501; PRC82 (2010), 035504: J. Phys. G37 (2010), 055101; PRC 83 (2011), 028801; PRC 85 (2013), 065807; PLB 723 (2013), 464; J. Phys. G42 (2015), 045102; +

120 1200 181 180 12 - 12 Ta(ν, n ν’) Ta 100 C(νe,e ) N 1000 2 80 800 ) cm 42 - 60 600 GT Spin-Mutipole 12 ν - 12 + (x10 40 C( e,e ) N(gs,1 ) GT

ν 400 σ 20 Spin-Multipole 200 0 0 10 20 30 40 50 60 70 80 0 0 10 20 30 40 50 60 70 80 Ecm MeV Ecm MeV Connection among ν Mass-Double β decay-Astronomy-Cosmology K. Yako et al., PRL 103 (2009) 012503. Experiment (RCNP, Osaka) Shell model (theory) UNIVERSAL Origin of L-handed Chirality of Amino Acids Boyd, Kajino, Onaka & Famiano,

Astrobio14 . 10(2010),561; Int. J. Mol. Sci. 12 (2011), 3432; Symmetry 6 (2014), 909. N lives ! ★ Neutrinos are all left-handed! (Symmetry is broken.) ★ SNe with strongly magnetized NS or BH emit intensive flux of neutrinos 108 times over 1010 yrs. ★ SN ejecta including 14N form simple amino-acids and interact with neutralized e-type neutrino bursts. ★ Neutrino-14N coupling is asymmetric & chiral selective. 14N survives in north, but dies in south. 5.14

2 14 0.06% 2mec N dies ! 3.95 14O 99.3% 14 - 14 νe + N → e + O 2.31 0.61% Mann and Primakoff 14 + 14 νe + N → e + C (Origins of Life, 11 (1981), 100% 255) suggested β-decay 0.16 0.00 14 of 14C, but it’s too SLOW! C (5730y) 14N (1+) 235U 208Pb

SN 56Fe

NS Merger Important Reaction Flows, affecting R-Process Factor x2 change could lead to 101-2 difference in r-elements ! Kim et al., (2017), on-going project at RAON/RISP/IBS.

Utsunomiya et al. PR C92 (2015), 064323 30-50% (2σ), uncertain

Das et al., PR C95 (2017), 055805. 100-300% (2σ), uncertain

Kontos et al., PR C87 (2013), 065804. 20-30% (2σ), uncertain Discrepancy 8 7Li(n,γ) Li(α,n)11B Inclusive > Exclusive Sum ? Boyd et al. Phys. Rev. Lett. 68 (1992), 1283. △ LaCognata et al., Phys. Lett. B664 (2008), 157. 100-300% (2σ), uncertain ! □ Gu et al., Phys. Lett. B343 (1995), 31. * Ishiyama et al., Phys. Lett. B640 (2006), 82. Hashimoto et al., Phys. Lett. B674 (2009), 276. • ● Das, et al., Phys. Rev. C95 (2017), 055805.

8Li+α

Inclusive 11B*

Exclusive Sum 11 Bgr+ n 4He(3H,γ)7Li Mirror 4He(3He,γ)7Be Adelberger, RMP 83 (2011),195. 5% (1σ), uncertain ! 50% (2σ) Kajino et al., PRL 52 (1984), 739; NP A413 (1094), 323; NP A460 (1986), 559; ApJ 319 (1987), 531 20% (2σ), uncertain !

Kajino

7Li(e,e’) Kajino Charge FF Astro - S(E) FF Charge

Gamow window 9Be(γ,n)2α 8Be, 5He ?

Utsunomiya et al., PRC92 (2015), 064323.

30-50% (2σ), uncertain !

Gamow window

1/2+ resonance is not expected from nucl. structure theory !

Eth(n+2α)=1.573MeV 8 Eth(n+ Be)=1.665MeV Solar System r-Process Abundance Shibagaki, Kajino, Chiba, Mathews, Nishimura & Lorusso (2016), ApJ 816, 79; ApJ (2018); Kajino & Mathews (2017), ROPP 80 , 084901.

● Solar System-r 133Cs 128Te 13.8 Gy TODAY ! Neutron Star Merger (0.1 Gy = 100 My < τ)

~ -2 Mtot 10 M

ν-Driven MHD-Jet SN Wind SN

Asymmetric Fission & Recycling Lorusso, Nishimura, Kajino et al. (2015), PRL 114, 192501. 128,130Te(r) Sn(50) Nd(60)

Many contributors

134 In Less abundant Abundant Astron. Obs. cannot 46 We don’t care 128Pd in Elemental ! separate ISOTOPES in

RIKEN-RIBF : Decay Spectroscopy around A = 100-145 G. Lorusso et al., PRL 114 (2015), 192501.

A.Jungclaus, PRL99, (2007) H. Watanabe et al., PRL111 (2013) No clear evidence for No clear evidence shell quenching on N=82! for shell quenching on N=82 ! 130Cd 130Cd 128Pd 128Pd is the progenitor parent of the 2nd r-peak element 128Te

126Pd 128Pd

82

126Pd (N=80) 128Pd (N=82)82 T. Hayakawa, P. Mohr, T. Kajino, S. Chiba, and Result from our G.J. Mathews, Phys. Rev. C81 (2010), 052801®; ν-Nucleosynthesis Phys. Rev. C82 (2010), 058801.

77 138La 39% of 180Tam survives 66 138La Heger et al. PLB606, 258 (2005) 180Ta in the dynamics of c.c. 180Ta (Overproduction) 55 180Ta isomer supernova explosion. 180Ta (Our new result) 44

33

22 Tνe = Tνe = 4 MeV. 11

00 solar solarsolar gamma nc cc cc cc system only 6MeV 4MeV 6MeV 8MeV Consistent with r-process in ν-DW SN ! Dynamical Cal. of r-Process in Neutron Star Merger Korobkin et al., MNRAS 426 (2012), 1940; Rosswog et al., MNRAS 430 (2013), 2585. Shibagaki, Kajino, et al. (2016), ApJ 816, 79; Kajino & Mathews (2017), ROPP 80 , 084901. Hundreds of radioactive nuclei contribute!

Fission Region Mass fraction Mass Solar System r-Process Abundance Present time: t = 13.8Gy Shibagaki, Kajino, Chiba, Mathews, Nishimura & Lorusso (2016), ApJ 816, 79; ApJ (2018); Kajino & Mathews (2017), ROPP 80, 084901.

● Solar System-r 133Cs 128Te Neutron Star Mergers (0.1 Gy = 100 My < τ)

~ -2 Mtot 10 M

NSM-fission recycling ν-Driven MHD-JetboostsSN Actinide Wind SN production. By D.Page Relativistic Mean Field Theory Asymmetric ν-scattering + Numerical Simulation of SNe and absorption. T. Maruyama, T. Takiwaki, et al.; Phys. Rev. ® D83 (2011), 081303 Effects of Extremely StrongPhys. Rev. Magnetic D86 (2012), 123003 Field onPhys. Rev. C89 (2014), 035801 Hadronic Structure Phys.of Compact Rev. D90 (2014), S 067302tars

Neutrino scattering and absorption process To understand fundamental Interactionsinside a Strongly Magnetized Neutron Star 15 among Hadrons (p, n, Λ, Σ …) andwith B = 10 G is asymmetric. Lepton (e,ν…) at High-ρ and High-T from Relativistic Field Theory and QCD 2.2 % asymmetric ν-emission ⇒ Asymmetry for -Kick ! ⇒ V(th) = 300 – 600 km/s c.f. V(obs) = 400-1600 km/s 強い場の存在下での爆発天体現象が明らかにする 重元素合成, ニュートリノ振動, アミノ酸キラリティーの起源

◎ 強い重力場  重力崩壊型新星と中性子星連星系合体で共通。

◎ 強いニュートリノ場  両者で起源は異なる。

・重力崩壊型超新星 : neutralized νe-burst  ν-sphere  thermalized νe, νµ, ντ

・中性子星連星系合体 : No neutralized νe-burst  No neutrino sphere  disk (heated) νe, νµ, ντ ◎ 強い電磁場  超新星(重力崩壊型)爆発機構で異なる。 ・磁気回転駆動型(MHD Jet SN) ・ニュートリノ加熱型(ν-Wind SN)

 重元素合成, ニュートリノ振動の解明 ■ 爆発的元素合成 : r プロセス、ニュートリノ・プロセス ■ ニュートリノ振動 : 物質(MSW), 自己相互作用(Collective) GW170817 Abbott et al. (LIGO-Virgo), PRL 119, 16101 (2017)

- GW170817 (LIGO-Virgo) : 0.86

- X-rays & Radio waves : Remnant NS or BH, not identified. GW170817 SSS17a - Optical and Near-infrared : SSS17a (over 70 Telescopes) ◆ Energy, consistent with r-process! ◆ No r-element, identified.

? Line of sight  different Ye & r-process. ? Ejecta velocities  Blue shifted spectrum. ? Incomplete Opacity + α, β, γ, fission dep. v = 0.2 c Ye = 0.30

Ye = 0.25

Ye = 0.10-0.40

v = 0.13 c Dynamical ejecta

Smartt et al. Nature, 551, 75 (2017). Chornock et al. 2017 ◆ Total energy, consistent with radioactive decays of lanth ◆ No r-process element, identified. Incomplete OPACITY !

Chornock et al. 2017 Binary Black Holes Binary Neutron Stars

GW170817 Abbott et al. (LIGO-Virgo Coll.) GW150914 @ 1.3 Gly GW170817PRL 119, 16101 @ (2017) 0.13 Gly ) 21 - Strain (x10 Strain GW170817 Abbott et al. (LIGO-Virgo), PRL 119, 16101 (2017)

- GW170817 (LIGO-Virgo) : 0.86

- X-rays & Radio waves : GW170817 Remnant NS or BH, not identified. SSS17a - Optical and Near-infrared : SSS17a (by more than 70 Telescopes) Consistent with r-process! But no element, identified. ◆?  Blue Line of sight different Ye & r-process ?

Line of sight @ 0.13 Gly

Ye = p/(p+n)

Ye = 0.30 Ye = 0.25 Ye = 0.10-0.40

Tanaka et al. Red PASJ 00, 1-7 Dynamical (2017) ejecta Low Ye Complicated Geometry & Hydro-Dynamics  Difficult Element Identification !

◆?? Ejecta velocities  Blue shifted spectrum ? 0.13 Gly

Why only Cs and Te ? GW170817 SSS17a ◆ Incomplete & Limited Opacity  Large α, β, γ, fission dependence !

◆? Line of sight  different Ye & r-process ?

v = 0.2 c Line of sight @ 0.13 Gly

v = 0.13 c

Dynamical ejecta Low Ye Smartt et al. Nature, 551, 75 (2017). SUPERCOMPUTING of Galactic Chemo-Dynamical Evolution of Dwarf  Milky Way (Large Galaxy) ? -3 SNeMetals; NSM(τc=100My)r-process elements. Highest resol. nH>100 cm → 10- 100pc Argast, Samland, Thielemann, Hirai, Ishimaru, Saitoh, Fujii, Hidaka and Kajino, Qian, A&A 416 (2004), 997. ApJ 814 (2015), 41; MNRAS 466 (2017), 2474. With Dynamics & GAS Without Dynamics & GAS MIXING MIXING

SNe SNe SN-II + SN-Ia for Fe

Sun Sun Merger Merger NSMs have arrived 100 My delay still too late ! Summary & Outlook GW170817 Abbott et al. (LIGO-Virgo), PRL 119, 16101 (2017) 0.13 Gly ◇ GW !  EOS ! (Cold NS vs. hot SN core) ◇ Neutron star merger  a Central Engine of Short- GRB ! ◇ Light emissions, not by 56Ni or 44Ti decays like SNe  consistent with radioactive decays of r-process elements ! ◆ No specific element, identified :  Needs another event (once in every 104-105 yrs in Milky Way) !  Needs nuclear mass, α, β, γ, fission studies !  Needs complete opacity table for lanthanoids and actinoids !  Needs 3D hydrodynamic model & radiative transfer ◆ No neutrino signal  Micro-physics, yet to be calculation ! studied ! Dawn of Nuclear-Particle Astrophysics and Multi-Messenger Astronomy ! Purpose  Difference between Merger and SN r- process !  Roles of Neutrinos ! Purpose and Content

Origin of r-Process: NSMs vs. SNe ? 1. Neutron Star Mergers vs. Supernovae Nucleosynthesis Roles of Nuclear Physics --- FISSION ! Universality ! How to distinguish NSM from SN r-process !

Neutrino Oscillations in SNe ? 2. ν-Oscillations (MSW & Collective) on Nucleosynthesis Collective (Quantum) Oscillation in νν Scattering ? Proton Number Z MHD - Jet Supernova 56 Fe Early Galaxy ! 20 28 20 50 82 208 Pb 235 126 U Neutron Number ν ν e e + + τ dyn 184 n p → < → τ p + e p + n + e n + ν N - + ν-Oscillation and  ν p1 e p2 νe Nucleosynthesis ν ν ν ν  e e e e 0.25 MSW Matter Effect: ν ν ν ν νe T( e) < T( e) < T( x= x) Through high-density resonance x p ν p ν 0.2 3 3 2 x 1 x at ρ ~ 10 g/cm3.2 4.0 electrons6.0 ν -Collective Oscillation 0.15 MeV ν Vacuum Oscillation νµτ e νe νµτ νe Si ν-process:0.1 ν-process: ν =µ,τ ,ν -=Detectionµ,τ Layer 92Nb, 98Tc, 180Ta, 138La … 6,7Li, 9Be,x 10,11B…νx NS 0.05

R-process: 0 Heavy Nuclei 0 10 20 30 40 50 60 εν (MeV) νp-process: 92 96 Mo, Ru ? + - νx=µ,τ νe n → p + e proton-rich! Explo. Si-burn.: Fe-Co-Ni, + + νx=µ,τ νe p → n + e 60Co, 55Mn, 51V … Theoretical Method 3 x 3 density matrices for ν, for ν.

G. Sigl and G. Rafflet,Nucl. Phys. B 406, 423, 1993

Diagonal components ραα represents the probability of finding να. Solving dynamical eqs.

……Vacuum Hamiltonian

…… Potential in flavor space Mean field ν-ν coherent scattering term EVOLUTION of the r-Process Abundance Kajino & Mathews (2017), ROPP 80 , 084901.

Only SNe contribure to the EARLY GALAXY ! ν-Driven TODA Y ! Wind SN

Magneto-Hydrodynam. Jet Supernovae

ISOTOPIC (A) ! t Fe/H Sneden, Cowan, Gallino, ARAA 46 (2008) 241. ≒10 [Fe/H] HST-obs., Roederer et al., ApJ 747 (2012) L8. 1010y Log Fe/H=

[Fe/H] -3.1 Te -3.0

-2.1

-2.9 Relative abundance -2.2 Solar system UNIVERSALITY ! -3.0 Sr-Y-Zr Ba Eu Au Pb Th U EMP Stars Ratio

(Z) ELEMENTAL Abundance Early UNIVERSALITY ! Galaxy ! Shibagaki et al., ApJ. 816 (2016),79; Kajino & Mathews, ROPP 80 (2017) 08490.

Te(52)

Sn(50) Nd(60)Without NSM

UNIVERSALITY is explained by ONLY MHDJ+ν-SNe !

Atomic Number Astron. Obs. cannot separate ISOTOPES ! ELEMENTAL Z (Z) Lorusso, Nishimura, Kajino et al. (2015), PRL 114, 192501. 128,130Te(r) Sn(50) Nd(60)

Many contributors

134 In Less abundant Abundant Astron. Obs. cannot 46 We don’t care 128Pd in Elemental ! separate ISOTOPES in

Element Genesis from Nuclear Processes in Cosmos

Burbidge2, Fowler & Hoyle, Rev. Mod. Phys. 29 (1957), 547-650. Alpher, Bethe & Gamow, Phys. Rev. 73 (1958), 803.

U

Z (Proton Number) + - νe n → p + e 238U (τ = 4.47 Gy) ν + + 1/2 e p → n + e 232 Th (τ1/2 = 14.05 Gy)

Fe

H GCR X(Big-Bang) PP-Chain & N (Neutron Number) Early Universe CNO-Cycle SUN Element Genesis from Nuclear Processes in Cosmos

Burbidge2, Fowler & Hoyle, Rev. Mod. Phys. 29 (1957), 547-650. Alpher, Bethe & Gamow, Phys. Rev. 73 (1958), 803.

U

Z (Proton Number) + - νe n → p + e 238U (τ = 4.47 Gy) ν + + 1/2 e p → n + e 232 Th (τ1/2 = 14.05 Gy)

Fe

H GCR X(Big-Bang) PP-Chain & N (Neutron Number) Early Universe CNO-Cycle SUN ARIS2014 Hierarchical Galaxy Formation Scenario SUPERCOMPUTING of Galactic Chemo-Dynamical Evolution N-Body/SPH Simulation DM + GAS + Komiya & Shigeyama, ApJ 830, 10 (2016). Star Particles with GAS-MIXING in the star Mixing of r-elements between neighboring forming region. Dwarf Hirai et al., ApJ 814 (2015), 41; MNRAS Galaxies is small 0.001-0.1% for[Fe/H]<-3.5. 466 (2017) 2474. Mathews et al., MPL A29 (2014), 1430012-118. 8 5 Mtot = 7x10 Msun, Ni = 5x10 particles, Dwarf Galaxies are M★ = 100Msun the building Blocks of MW. ] kpc y [ y

x [kpc] Fluid-Dynamical Model for Neutron Star Merger

Binary Neutron Star Merger ~ more than 100 flows Korobkin et al., MNRAS 426 (2012), 1940; Rosswog et al., MNRAS 430 (2013), 2585. SPH Simulation: (Adiabatic Expansion) Newtonian gravity, Neutrino Leakage scheme Entropy, Ye, T, ρ Evolution: (Fission is a strong heat-source: S ~ q/T) We solved thermodynamic evolution of each trajectory from the initial conditions.

Shibagaki, Kajino, Chiba, Mathews, Nishimura & Lorusso (2016), ApJ 816, 79; ApJ (2017); Kajino & Mathews (2017), ROPP 80 , 084901.

Fission 34 flows: Region extremely n-rich! Mass fraction Mass

Ye Abundance Evolution of Fission Recycling Binary Neutron Star Merger Model : SPH simulation - Newtonian gravity, Neutrino Leakage scheme Korobkin et al., MNRAS 426 (2012), 1940.

Later time Earlier time Fission Parent Fission Region Daughter A=310

A parent=310 A parent>290

A parent<290 Abundance

Yield Fragment Fission of Yield Mass number Mass number A CCSN: Magneto-Hydrodynamic Jets S. Nishimura, et al., ApJ , 642, 410 (2006) ; T. Takiwaki, K.Kotake and K. Sato, ApJ 691, 1360 (2009); C. Winteler, et al., ApJ 750, L22 (2012).

FRDM modelFRDM(finite-range drop- ETFSI model (Extended Thomas- let model; Moeller et al. 1995) Fermi + Strutinsky; Goriely 2003)

Overproduced !

Mass A Nucl. Phys. - Shell quenching? Underproduction Possible Solutions PROBLEM ! CCSN: Magneto-Hydrodynamic Jets S. Nishimura, et al., ApJ , 642, 410 (2006) ; T. Takiwaki, K.Kotake and K. Sato, ApJ 691, 1360 (2009); C. Winteler, et al., ApJ 750, L22 (2012).

FRDM modelFRDM(finite-range drop- ETFSI model (Extended Thomas- let model; Moeller et al. 1995) Fermi + Strutinsky; Goriely 2003)

Overproduced ! ? Mass A Nucl. Phys. - Shell quenching? Underproduction Possible Solutions PROBLEM ! Another Astro. Site – NSM RIKEN-RIBF New Ring Cyclotron (since 2007) Many nuclei on the r-process flow path !

2010, October 2015 April (G. Lorusso et al. PRL 114, 192501) •

128Pd N=82 Progenitor parent of r-element 128Te RIKEN-RIBF : Decay Spectroscopy around A = 100-145 G. Lorusso et al., PRL 114 (2015), 192501.

A.Jungclaus, PRL99, (2007) H. Watanabe et al., PRL111 (2013) No clear evidence for No clear evidence shell quenching on N=82! for shell quenching on N=82 ! 130Cd 130Cd 128Pd 128Pd is the progenitor parent of the 2nd r-peak element 128Te

126Pd 128Pd

82

126Pd (N=80) 128Pd (N=82)82 Binary Black Hole Merger (simulation) from Black Hole Merger GW150914 was detected !

Abbott et al. (LIGO-Virgo Coll.) PRL 116, 061102 (2016) A. Einstein predicted in 1915: GW150914 @ 1.3 Gly Distortion of space-time due to asymmetric, catastrophic phenomena could propagate as a gravitational wave. ) 21 - Strain (x10 Strain Optical & Near-Infrared Emission Total emission, consistent with decay of r-process elements. No specific element, identified. Complicated Config. & Geometry and Hydro-Dynamics  Element identification, generically difficult !

◆ Line of sight  different Ye, different r-process ! ◆ Ejecta velocity  Blue shifted spectrum ? ◆ Incomplete & Limited Opacity  Large α, β, γ, fission dependence !

Line of sight @ 0.13 Gly

Dynamical ejecta Low Ye Impact of CEX Reaction on ν-Process

Byelikov + Fujita et al., PRL (2007), A. Heger, Phys. Lett. B 606, 258 (2005) RCNP measurement of GT strength.

7

6 ■ 138La138La ■ 180Ta 5 180Ta

4 Normalized to s.s. 3

2

1

0 solarsolar gamma nc 6MeV cc 4MeV cc 6MeV cc 8MeV system only Tνe

(1) Forbidden transitions + as well as GT contribute! Eν = 0 ~ 80 MeV (2) Overproduction of 180Ta relative to 138La! (1) Neutrino-138La, 180Ta cross section calculations in Quasi-particle Random Phase Approximation Cheoun, et al., PRC81 (2010), 028501; PRC82 (2010), 035504: J. Phys. G37 (2010), 055101; PRC 83 (2011), 028801: Suzuki, et al., PR C74 (2006), 034307; PR C67, 044302 (2003). GT and Forbidden Transitions, equally importa

181Ta + ν → 180Ta + n + ν’ (NC) 180Hf + ν → 180Ta + e- (CC)

12 - 12 Calibrated by unique data on C(νe,e ) N.

12 - 12 C(νe,e ) N Total sum Total sum

12 - 12 + Spin-Mutipole GT C(νe,e ) N(gs,1 ) GT GT Spin-Mutipole Spin-Multipole (2) OVEREPRODUCTION of Isomer state 180Ta

180 m 15 How robust is Ta (T1/2 > 10 y) in SN explosion dynamics at very high temperature?

★ 180 180 m Tag and Ta can couple with each other through intermediate linking transitions in hot SN explosions.

Photons Plan IntermediateIntermediate States states Distribution Intermediate states

Excitatoin Energy K=9- K =9 9 75.3 15 T1/2 > 10 y Isomer K=1K 1=+ 1 0 Isomer T =8.15 h 180 m Photon Flux 180180 1/2 Ta TaTag Measurement of Gamma-Decay Widths of Excited States Saitoh et al. (NBI group), NPA 1999 + Dracoulis et al. (ANU group), PRC 1998 + Very small total decay width Linking transitions between K = 1 and 9 bands are extremely weak. D. Belic et al., PR C65 (2002), 035801. Γ / 0 Γ / i Γ 0 /g i g

180 m Excitation Energy [MeV] - Ta 180 + 9 Ta g 1 ν-Isotopes:180Ta, 138La, 92Nb, 98Tc … Hayakawa, Kajino, Mohr, Chiba & Mathews, PR C81 (2010), 052801®; PR C82 (2010), 058801; ApJL 779 (2013), L1.

SN ν-process in Einstein AB theory  Only 40% survives! D. Belic et al., PR C65 (2002), 035801. K=9 Only when Tνe = Tνe = 4 MeV !

180Tam

Isomer 9+ 180 ) 180Tam(τ > 1015y) Tag(τ1/2 = 8h 1/2 The last nearby Supernova When exploded & formed pre-solar grain?

Primordial Sun formed.

The Sun isolated 4.56 Gy ago !

Present Sun

92 7 From predicted initial abundance of Nb(τ1/2=3.47x10 y) in GCE + Late Input(SN)model, we conclude; ΔT = 1~30 My! Hayakawa, Nakamura, Kajino, Chiba,Iwamoto, Cheoun, Mathews, ApJL 779 (2013), 1.

This is consistent with Standard Solar-System Formation Scenario which requires ΔT = 1~10 My (H. Yurimoto, 2016). 6,7Li-9Be-10,11B : Outer Layer in Supernova

2 2 -3 2 |Δm 13| = |Δm 23| = 2.4×10 eV , εν ~ 10 MeV

[ ]

MSW high-density resonance is located at O/C - He/C shell at ρ ~ 103 g/cm3.

A = 7 A = 11

νx→νe νx→νe New Method to constrain Mixing Angle & Mass Hierarchy θ13

1 Yoshida, Kajino et al. Normal Mass 2005, PRL94, 231101; 0.9 Hierarchy 2006, PRL 96, 091101; 2006, ApJ 649, 319; 2008, ApJ 686, 448. Allowed (2011-2017) 0.8 Mathews, Kajino, Aoki & Fujiya, PR D85, 0.7 105023 (2012). Kajino, Mathews &

Ratio 0.6 Hayakawa, J. Phys.G41 - (2014), 044007. B Inverted Mass 2 sin 2θ13 = 0.1 11 0.5 Hierarchy FirstLong DetectionBaselineExp of.

Li/ from7Li/11 2011B in -SN: -grains 7 “Inverted Mass Hierarchy” 0.4 ・ is very weakly preferred. T2K (Kamioka) ー ・MINOS 0.3 76% Inverted 24% ー Normal Reactor Exp. from2012-: Theoretical uncertainties offset in isotopic ratio, ・RENO (KOREA) 0.2 however, large errors come from Cosmic Rays. Fujiya, Hoppe, & Ott, ApJ 730,・Double L7 (2011).CHOOZ 0.1 Kajino・Daya, MathewsBay & Hayakawa, J. Phys. G41, 044007 (2014). 10-6 10-5 10-4 10-3 10-2 10-1 Theoretical Calculation for ν-Nucleus Cross Section

New generation SM cal. with NEW Hamiltonian: ν -12C, 4He Suzuki, Chiba, Yoshida, Kajino & Otsuka, PR C74 (2006), 034307; Suzuki & Kajino, J. Phys. G40 (2013), 083101; + 12C: New Hamiltonian = Spin-isospin flip int. with tensor force to explain neutron-rich exotic nuclei. - µ-moments of p-shell nuclei - GT strength for 12C12N, 14C14N, etc. (GT) - DAR (ν,ν’), (ν,e-) cross sections QRPA cal.: ν -4He, 12C, 40Ar, 42Ca, 98Tc, 92Nb, 138La, 180Ta … Cheoun, et al., PRC81 (2010), 028501; PRC82 (2010), 035504: J. Phys. G37 (2010), 055101; PRC 83 (2011), 028801; PRC 85 (2013), 065807; PLB 723 (2013), 464; J. Phys. G42 (2015), 045102; +

120 1200 181 180 12 - 12 Ta(ν, n ν’) Ta 100 C(νe,e ) N 1000 2 80 800 ) cm 42 - 60 600 GT Spin-Mutipole 12 ν - 12 + (x10 40 C( e,e ) N(gs,1 ) GT

ν 400 σ 20 Spin-Multipole 200 0 0 10 20 30 40 50 60 70 80 0 0 10 20 30 40 50 60 70 80 Ecm MeV Ecm MeV ν-BEAM spectro. Exp., still difficult at E<100 MeV. Hadronic CEX, charg. lepton (e µ), photon (γ) !

Similarity between Electro-Magnetic & Weak Interactions

EM-current = V, Weak-current = V - A 58Ni(3He, t)58Cu r igrr r r Vg≈IV σ ×+ qV ( pp + ') E = 140 MeV/u V 22mm r Y. Fujita et al., EPJ A 13 (’02) 411. r Ag≈ Aσ Y. Fujita et al., PRC 75 (’07) Weak operator in non-relativistic limit 58Ni(p, n)58Cu r Ep = 160 MeV Gamow-Teller operator = στ ±

J. Rapaport et al., NPA (‘83) r (L) J Spin-Multipole operator = [σ ×Y ] τ±

Counts Cosmology – ν mass – 0νββ – ν mass hierarchy – Astro Connection

0 2 4 6 8 10 12 14 c.f. Ymazaki, Kajino, Mathews & Ichiki, Phys. Rep. 517 (2012), 141; Excitation Energy (MeV) PR D81 (2010), 103519 Missing Origin of 180Ta p process

138La = spherical 180Ta = deformed γ K.Yokoi, Nature (1983) proposal of s-process origin.

Belic et al., Phys. Rev. Lett. (1999) 1.82y 179Ta Wisshak, Phys. Rev. Lett. (2001) Neutral current

S-process can NOT produce both 138La & 180Ta consystently with s.s. abundance. r process B2FH, RMP. 29 (1957), 547-650. Supernova neutrino-process: “Element Genesis in Stars” W. Fowler Nucleosynthesis Theory Woosley, Hartmann, Hoffman, & Haxton, ApJ 356 (1990), 272. Heger et al., Phys. Lett. B 606, 258 (2005) F. Hoyle M. Burbidge Nucleo-Cosmochronology: J. Burbidge Hayakawa, Shimizu, Kajino, Ogawa, & Nakada, PRC 77 (2008), 065802; 79 (2009) 059802. Tantalum 180Ta

Explosive★ Origin ofSN 180 nucleosynthesisTa has long been unknowncoupled sincewith quantumB2FH (1957). transitions can reproduce both 180Ta and 138La simultaneously. ★ S-process makes 180Ta but not 138La. Hayakawa et al. (2010) PRC81, 052801®; (2010) PR C82, 058801. ★ -process overproduces 180Ta relative to 138La. Overproductionν problem, solved! 180 138 180 138 180 138 ( Ta/ La)theory=3-4 Onlyc.f. (whenTa/ TνLa)=obs. 3.2MeV,=1 Tν = 4-5MeV ! ( Ta/ La)theory =1 e e

p process Complicated Nuclear Structure

Neutral current W. Fowler SN ν-process(νe) F. Hoyle Woosley et al (1991) M. Burbidge J. Burbidge r process SN ν–Process : Origin of 92Nb ! Hayakawa, Nakamura, Kajino, Chiba, Iwamoto, Cheoun, Mathews, Astrophys. J. Lett. 779 (2013), L1.

92 7 ★ Nb(τ1/2=3.47x10 y) existed at the s.s. formation (4.56 Gy ago)! Tνe = 3.2 MeV, Tνe = 4.0 MeV, ★ Isotopic anomaly in meteoritic, found; Tνx = 6.0 MeV 92Zr/93Nb ~ 10-3

When did the last nearby SN 92Zr exploded before the solar sytem formation ? 96Mo

93Nb

92Nb Origin of 180Ta p process

138La = spherical 180Ta = deformed γ

K.Yokoi, Nature (1983) 179 proposal of s-process origin. 1.82y Ta Neutral current Belic et al., Phys. Rev. Lett. (1999) Wisshak, Phys. Rev. Lett. (2001) S-process cannot produce 138 180 both La & Ta. r process Supernova neutrino-process: Nuclear Experiment & Theory Nucleosynthesis Theory Goko, Phys. Rev. Lett. (2007) Woosley, Hartmann, Hoffman, & Haxton, Byelilov , Phys. Rev. Lett. (2007) ApJ 356 (1990), 272. Cheoun et al., (2010), in preparation. Heger et al., Phys. Lett. B 606, 258 (2005) Nucleo-Cosmochronology: Hayakawa, Shimizu, Kajino, Ogawa, & Nakada, PRC 77 (2008), 065802; 79 (2009) 059802. Origin of HEAVY Atomic Nuclei (r-elements)? CC-Supernovae? Binary Neutron-Star Mergers?

ν-DW ? Woosley, et al., ApJ 433, 229 (1994). + Goriely, et al., ApJ 738, L32 (2011). Nishimura, et al., ApJ 642, 410 (2006). Korobkin, et al., MNRAS 426, 1940 (2012). MHD-Jet Fujimoto, et al., ApJ 680, 1350 (2008). Rosswog, et al., MNRAS 430, 2585 (2013). Winteler, et al., ApJ 750, L22 (2012). Goriely, et al., PRL 111, 242502 (2013), (2015). Nishimura et al., ApJ, 810, 109 (2015) Piran, et al., MNRAS 430, 2121 (2013). Long-GRB Nakamura, et al, A&Ap 582 A34 (2015) Wanajo, et al., ApJ 789, L39 (2014). τ =1My 100My ≤ τ ≤ 10Ty Explosion Condition(Ω, B) ! Merging time, too long ! 1st, 2nd, 3rd peaks ? ν Time Scale Problem ? MHD Jet SN ν ν ν ν

Takiwaki et al. (2016) Credit-NASA Strong Universality in Ultra-Faint Dwarf Ret. II Ian U. Roederer et al., ApJ. 151 (2016), 82. Alexander P. Ji, Anna Frebel, Anirudh Chiti, Joshua D. Simon, Nature 531 (2016), 610 UFDG Ret II WhichStrong is likely Universality r-process site, MHD-Jet SN or Binary NSM? Product. Yield ~ 10-2 M /event

1. Rare Event Rate ? (2.6 +/- 0.2)x103M Ret. II baryon mass ~10 SNe IMF ~(0.01-0.3)x10 NSM/SN (0.1%) /Fe] MHDJ/SN (1-3%) SN !? NSM !? [ Eu 2. Very old ? SN ! NSM ! 3. Extended Universality ? Dust forms ? SN ! NSM ? 4. Ejecta escape from shallow pot. ? SN ! NSM ? [Fe/H] Search for 511 keV emission from e+e- annihilation Exposure map in nearby dSph galaxies (INTEGRAL) - Dark Matter or Stellar e+ ? - No significant detection except for Reticulum II Stellar e+ Courtesy from Roland⇒ Diehl: Siergert et al., A&A(2016), My Score Sheet (cont’) submitted. 5. Stellar e+ 511 keV ? SN ! NSM ?

Micro-quasar ? 10-2 Almost No Production of -3 10 Light Elements A < 50! 10-4 NSM R-Process cal. 10-5 S. Wanajo et al., ApJ. 789 (2014), L39. 10-6 S. Shibagaki et al., ApJ. 816 (2016), 79. 10-7 10-8 0 50 100 150 200 250 Ian Roederer Mass Number A My Score Sheet (cont’) 6. Metals: Extended Universality ? SN ! NSM ?

Ian U. Roederer et al., ApJ. 151 (2016), 82.

Extended Universality, found in C Mg Si ---Fe Ni Zn --- R-elements

Element (Z) Evidence for r-Process in Neutron Star Mergers? Macronova () My Score Sheet (cont’) Tanvir, Levan, Fruchter, et al., Nature 500, 547 (2013) 7. Kilonova ? Dust is hard to form for deficient SN ? NSM !? Carbon and other lighter elements. Takami, Nozawa & Ioka, ApJ 786, L5 (2014).

Dust formation becomes even more difficult when one includes more complete opacity table for heavy actinide elements. SUPERCOMPUTING of Galactic Chemo-Dynamical Evolution of Dwarf Galaxies

SNe = Metals ; NSM(τc=100My)= r-process elements. -3 Star forming condition, nH >100 cm → ~10-100pc) Argast, Samland, Thielemann, Hirai, Ishimaru, Saitoh, Fujii, Hidaka and Kajino, Qian, A&A 416 (2004), 997. ApJ 814 (2015), 41; MNRAS 466 (2017), 2474. With Dynamics & GAS Without Dynamics & GAS MIXING MIXING τ τc = 100My c = 100My

SN-II + SN-Ia for Fe

Sun Sun SNe (obs.) SNe (obs.)

NSMs have arrived still too late ! Decay Spectroscopy around A = 100- 145

T.Sumikama, PRL106

Urban, ToEPJ Abe 20, confirmed 381 (2004) by γ−γ coin.

116Ru (Z=44,N=72) 118Ru (Z=44,N=74)

116Tc 118Tc P.-A. Söderström, et al. Phys. Rev. C 88, 024301 Progenitor parents along (2013) the r-process flow path 人類は、宇宙(超新星爆発)で ウラニウム235 (235U) 作られたウランを利用している。 → 地熱 → 地震 → 津波 → 生命 陽子数(原子番号)

鉄・ニッケルが 自然界で最も 安定

セシウム137 (137Cs) 半減期=約30年

ヨウ素131 (131I) 半減期=約8日 クリプトン85 (85Kr) 半減期=約11年

中性子数 MHD-Jet SNe vs. Binary Neutron Star Mergers

236U & others ◎ Fission Recycling could operate! Theory vs. Exp. Fission Fragment Mass Distribution

M. Ohta et al., Proc. Int. Conf. on NDST, Nice, France, (2007) S. Chiba et al., AIP Conf. Proc. 1016, 162 (2008).

Fission Region

Fission fragment mass A MHD-Jet SNe & Bimordial or Trimodal FFD: CC Supernovae

Neutron Star Mergers

◎ Neutron capture (n,γ) plays impotant roles ! Skymap of γ-ray line Satellites (COMPTEL & INTEGRAL) R. Diehl et al., Nature 439 (2006), 45. Galactic Rotation 26Al (5+,0.72MeV; 7.4x105 y)  26Mg (2+)  26Mg(0+) + 1.809MeV Red shift

7.4x105 y 26 m 26Al g Al

Blue shift

26Mg g Blue shift 1808.8 +/- 0.4 keV

Red shift

Eγ (MeV) Astrophysical Implication

The total “OBSERVED” 26Al gamma-ray flux in model 3D spatial distribution turns out to be 3.3(±0.4) × 10-4 ph cm–2s–1. Equilibrium 26Al mass = 2.8 ±0.8 Msun

“THEORETICAL” nucleosynthesis yields in core-collapse supernovae and the preceding Wolf-Rayet phase stars: Rauscher, T., Heger, A., Hoffman, R.D., Woosley S.E., ApJ, 576, 323 (2002) Limongi, M., & Chieffi, A., Nucl.Phys.A, 758, 11c (2005) Palacios, A., Meynet, G., Vuissoz, C., et al., A&A., 429, 613 (2005) Woosley, S. E., Heger, A., Hoffman, R. D., ApJ. (2005) Average ejected 26Al/massive star = 1.4 × 10-4 Msun “SN Event Rate”: Stellar yields + IMF -> independent estimate of the Galactic SFR. IMF; Scalo IMF ( ξ ~ m−2.7, m=10-120Msun ) Galactic CCSN Rate 1.9 ± 1.1 /century/Milky 理論コロキウム 年 月 日 • Way2010 7 7 Swapped ν Energy Spectra Sasaki et al. PR D96 (2017), 043013.

2 Inverted hierarchy(m1>m3), Observed θ13 & Δm

r = 10km (ν-sphere) r=250km

1

0.8 ν ν νe (T=3.2 MeV) e µτ .)

a.u 0.6 Flux( 0.4 ν (T= 6.0 MeV) µτ νµτ ν 0.2 e

0.0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 Eν MeV Eν MeV

Hierarchical Galaxy Formation Scenario

Arrival of r-process material in Milky Way halo requires Chemo-Dynamical Evolution

X. Zhao & G. Mathews (2014) Deep Sea Sediments & EMPS points DUALITY of SN & NSM

244Pu/60Fe in Earth’s Deep Sea Sediments NSM/MHDJ : SNe = 1 : 100 NSM, MHDJ 244Pu(80.8 My): Wallner et al., Nature Comm. 6 (2015), 1-9; NPA8 (2017) ν-DW 60Fe(2.62 My): Wallner et al. Nature 532 (2016), 69.

Over 25 My

Actinide Boost EMP Stars needs “Fission-Recycling R-process in NSMs”.

HE 2252-4225 HE 2252-4225 Extended Universality Ultra-Faint warf Galaxy: Ret. II Astron. Observation Ian U. Roederer et al., ApJ. 151 (2016), 82; P. Ji Alexander, Anna Frebel, Anirudh Chiti, Carbon Joshua D. Simon, Nature 531 (2016), 610.

Wanajo et al., ApJ. 789 (2014), L39. Element (Z) Shibagaki et al., ApJ. 816 (2016), 79; (2017) 10-2 Theor. Calculation Goriely, et al., ApJ 738, L32 10-3 (2011); Korobkin, et al., MNRAS 426, 1940 (2012); -4 Bauswein, et al., ApJ 773, 78 10 (2013); Rosswog, et al., -5 MNRAS 430, 2585 (2013); 10 Goriely, et al., PRL 111, 242502 (2013), (2015): Piran, et al., -6 10 MNRAS 430, 2121 (2013). NSM cannot produce A<80 -7 10 enough ! 10-8 0 50 100 150 200 250 Mass Number A GW170817 Abbott et al. (LIGO-Virgo), PRL 119, 16101 (2017)

- GW170817 (LIGO-Virgo) : 0.86

SNe = Metals ; NSM(τc=100My)= r-process elements. -3 Star forming condition, nH >100 cm → ~10-100pc) Argast, Samland, Thielemann, Hirai, Ishimaru, Saitoh, Fujii, Hidaka and Kajino, Qian, A&A 416 (2004), 997. ApJ 814 (2015), 41; MNRAS 466 (2017), 2474. With Dynamics & GAS Without Dynamics & GAS MIXING MIXING τ τc = 100My c = 100My

SN-II + SN-Ia for Fe

Sun Sun SNe (obs.) SNe (obs.)

NSMs have arrived still too late ! Colloquium at T. D. Lee Institute, SJTU, Dec. 12, 2017

Impact of Neutron Star Merger vs. Supernova Nucleosynthesis and Neutrino Physics

GW170817 : 1st cosmic event observed in both GW and light ! Taka KAJINO 梶野敏 貴

北京航空航天大学 大爆炸宇宙学与元素起源国际交叉研究中心 東京大学大学院天文学専攻 From LIGO Home Page 日本国立天文台 My Spirits Legacy Spirits from William A. Fowler (1983, Nobel Laureate) Seek for truth, Work hard, play hard, and help people ! 宇宙の始まりと宇宙背景放射 1914年 一般相対性理論、宇宙方程式 の提唱 1917年 定常宇宙実現のため宇宙項を導入 1929年 互いに遠ざかる銀河を発見

宇宙項を撤回:生涯最大の過ち!(A. アインシュタイン) A. アインシュタイン E. ハッブル 1948年 火の玉宇宙の名残・宇宙背景放射、 17年前 ビッグバン元素合成の予言 1965年 火の玉宇宙の名残・宇宙背景放射を発見 1992年 宇宙背景放射の温度揺らぎを発見 G. ガモフ A. ペンジャス 1998年 加速膨張する宇宙を発見 B. R. ウィルソン

G. スムート J. マザー S. パールマター B. シュミット A. リース 2015年 ブラックホール合体からの 重力波を検出

1915年の理論予言!(A. アインシュタイン) R. ワイス B. C. バリッシュ K. S. ソーン

Challenge of Nucear Physics ー Fission & Mass Formula Mass Formula: FRDM (Moeller & Kratz) Shibagaki, Kajino, Mathews (2017)

Smartt et al. (2017)

133 128 Cs Te ● Solar System-r

Symmetric Fission

80 100 120 140 160 180 200 Solar System r-Process Abundance Present time: t = 13.8Gy Shibagaki, Kajino, Chiba, Mathews, Nishimura & Lorusso (2016), ApJ 816, 79; ApJ (2017); Kajino & Mathews (2017), ROPP 80 , 084901. Smartt et al. (2017)

● Solar System-r 133Cs 128Te Neutron Star Mergers (0.1 Gy = 100 My < τ)

ν-Driven Magneto-Hydrodynam. Wind SN Jet Supernovae

Asymmetric Fission & Recycling 1.3 Gly 0.13 Gly

GW170817 GW150914 Abbott et al. (LIGO-Virgo Coll.) Abbott et al. (LIGO-Virgo Coll.) PRL 119, 16101 (2017) PRL 116, 061102 (2016) ) 21 - Strain (x10 Strain A. Einstein predicted in 1915: Distortion of space-time due to asymmetric, catastrophic phenomena could propagate as a gravitational wave.

Abbott et al. (LIGO-Virgo Collaboration) Phys. Rev. Lett. 116 (2016), 061102. Black Hole Merger GW150914 @1.3 Gly 1.3 Gly 0.13 Gly

GW170817 GW150914 Abbott et al. (LIGO-Virgo Coll.) Abbott et al. (LIGO-Virgo Coll.) PRL 119, 16101 (2017) PRL 116, 061102 (2016) ) 21 - Strain (x10 Strain Line of sight Analysis, based on Too Complicated Geometry, Hydro-Dynamics & Configurations  Results are quite Uncertain.

◆ Line of sight  Ye, r-process ? ◆ Ejecta velocity  Blue shifted spectrum ? ◆ Incomplete & Limited Opacity  α, β, γ, fission ?  Element Identification, extremely Difficult.

v = 0.2 c

Smartt et al. Nature, 551, 75 (2017)

SSS17a v = 0.13 c

Tanaka et al. PASJ 00, 1-7 (2017) Last Photon Scatt. 3.8x105 y Cosmic Evolution Origin & Evolution of Accelerated Expansion ElementsDark Age! BBNElements, imprint the effect of ν- oscillation ! Inflation GW150914 1.3 Gly 13.8 Gy

GW170817 0.13 Gly

Quantum Fluct. of Space-Time Supernova Galaxy formed in 0.1Gy First Stars in a few My 100 My < τ Galactic Chemo-Dynamical Evolution Arlandini1999 Arlandini1999

Pure r-process Pure s-process Pure r-process Pure s-process 137/135 138/135 Solar system Solar system

136/135 136/135 Meteorite (Terada et al. 2017) 136Ba=s-only: In the limit of 136Ba→0, pure r-component is extracted.

Wanajo et al Giuseppe Shibagaki Isotopic ratios et al. (2014) et al. (2015) et al. (2016) NSM ν−DW NSM MHD-jet 137/135=1.07 ± 0.05 0.218 2.23 1.0 0.2 138/135=4.33 ± 0.52 0.294 3.46 1.1 0.18 Proton Number Z ν - Wind Supernova 56 Fe 20 28 20 50 82 208 Pb τ ν < 235 126 U τ dyn Neutron Number ν ν e e + + 184 p n → → n + e n + e p + N + -

ν-Mass, constrained from Nuclear Physics and Cosmology

● 0νββ in COUORE, NEMO3, EXO, KamLAND Zen 2 |∑U eβmβ | < 0.3 eV: COUORE, NEMO3, EXO, KamLAND Zen (2012) 0.05~0.1 eV in the future ● CMB Anisotropies + LSS Neutrinoless ββ

∑ mν < 0.14 – 0.17 eV (95%C.L.): WMAP-7yr + Planck + BAO + HST + SZ (2015-16)

< 0.2 eV (2σ, Bλ<2nG): + Magnetic Field Ymazaki, Kajino, Mathews & Ichiki, Phys. Rep. 517 (2012), 141; PR D81 (2010), 103519.

Planck 2013 Normal Inverted ν-Oscillation Physics

2 × -5 2 Δm 12 = 7.9 10 eV 2 × -3 2 2 |Δm 23| = 2.4 10 eV = (0.05 eV)

Normal: Σ mν ~ 0.05 eV !

Inverted: Σ mν ~ 0.1 eV ! 136 The “KNOWN” in Neutrino Oscillations KAMIOKANDE, SK, KamLand (reactor ν), SNO determined 2 ⊿m12 and θ12 uniquely: SK (atmospheric ν) determined - ⊿ 2 23 mixing m23 and θ23 uniquely. 2 sin 2θ23 = 1.0 2 × -3 2 |Δm 23| = 2.4 10 eV

12-mixing Cabibbo angle 2 sin 2θ12 = 0.816 (θ12+θC=π/2) 2 × -5 2 Δm 12 = 7.9 10 eV

“3 UNKNOWN” 1 2 3 4

13-mixing, hierarchy, δCP, mass ● 2 ± sin 2θ13 = 0.1 0.02 T2K, MINOS, RENO, Daya Bay, Double Chooz ● 2 ± -3 2 ⊿m13 = 2.4x10 eV ● δ=CP violation phase ● Absolute Mass 0νββ, cosmology

E(νµ)=E(ντ): Yokomakura et al., PLB544, 286. Reactor ν-Oscillation Experiments Daya Bay, RENO, Double Chooz(2012-2017)

Measuring with Small-amplitude θ13 oscillation due to θ Large-amplitude Reactor Anti-neutrinos 13 integrated over E oscillation due to θ12 2 sin 2θ13 = 0.103+-0.013(st) +-0.011(sys) θ → θ13 = 8.88 deg 13

Reactor neutrino energies are ∆m2 ≈∆m2 too low to produce muons. 13 23 Hence this is an antineutrino disappearance experiment ~1-1.8(also km no matter effects). detector 1 detector 2 Mass> 0.1 hierarchykm is still unknown ! Important Nucl. Phys. in NS Mergers

◎(n, γ)reaction cross section ! 236U ◎ Fission fragment distribution !

M. Ohta et al., Proc. Int. Conf. on NDST, Nice, France, (2007) S. Chiba et al., AIP Conf. Proc. 1016, 162 (2008).

Fission Region

MHD-Jet SNe & Bimordial or Trimodal FFD: CC Supernovae

Neutron Star Mergers SUPERCOMPUTING of Galactic Chemo-Dynamical Evolution of Dwarf Milky Galaxies Way (Large Galaxy) ? SNe = Metals ; NSM(τc=100My)= r-process elements. -3 Star forming condition, nH >100 cm → ~10-100pc) Argast, Samland, Thielemann, Hirai, Ishimaru, Saitoh, Fujii, Hidaka and Kajino, Qian, A&A 416 (2004), 997. ApJ 814 (2015), 41; MNRAS 466 (2017), 2474. With Dynamics & GAS Without Dynamics & GAS MIXING MIXING τ τc = 100My c = 100My

SNe SNe Argast, Samland, Thielemann, Qian, A&A 416 (2004), 997. Without Dynamics & GAS MIXING

τc = 100My

Sun SNe Merger SUPERCOMPUTING of Galactic Chemo-Dynamical Evolution of Dwarf Milky Galaxies Way (Large Galaxy) ? -3 SNeMetals; NSM(τc=100My)r-process elements. Star form. Cond. nH>100 cm → 10- 100pc) Argast, Samland, Thielemann, Hirai, Ishimaru, Saitoh, Fujii, Hidaka and Kajino, Qian, A&A 416 (2004), 997. ApJ 814 (2015), 41; MNRAS 466 (2017), 2474. With Dynamics & GAS Without Dynamics & GAS MIXING MIXING τ τc = 100My c = 100My

SN-II + SN-Ia for Fe

Sun Sun SNe Merger SNe Merger NSMs have arrived still too late ! Why are all amino acids on the Earth left-handed?

★ ν’s (anti-ν’s) are all left (right)-handed! ★ Supernovae with strongly magnetized neutron star or BH emit intensive flux of neutrinos over 1010 yrs! ★ SN ejecta including 14N interact with neutrino under strong ! ★ Neutrino-14N coupling is asymmetric & chiral selective!

Boyd, Famiano, Kajino, & Onaka, et al.; Astrobiology 10 (2010), 561-568; Int. J. Mol. Sci. 12 (2011), 3432-3444; Symmetry 6 (2014), 909-925; Astrobiology (2017), Astrophys. J. (2018). 14 Magnetized supernova N lives ! 5.14 2 0.06% 2mec 3.95 14O 99.3% 14 - 14 νe + N → e + O 2.31 0.61%

ν + 14N → e+ + 14C 14N dies ! e 100% Mann and Primakoff (Origins of Life, 11 (1981), 255) 0.16 0.00 14 suggested β-decay of 14C, but it’s too SLOW! C (5730y) 14N (1+)

Solar System Abundance Big-Bang Nucleosynthesis: 3 min in early Universe

Stellar fusion: from birth until now

Supernovae(r-process elements) Iron peak AGB stars(s-process elements): First stars until now s-元素 r-元素

νp-元素 Li-Be-B 232Th (14.05Gy) p-元素 238U Cosmic-Ray Int. with ISM: (4.47 Gy) From early Galaxt until now Solar System Abundance

232Th (14.05Gy) 238U (4.47 Gy) EVOLUTION of the r-Process Abundance Kajino & Mathews (2017), ROPP 80 , 084901.

● Solar System-r EARLY GALAXY !

ν-Driven MHD-Jet SN Wind SN Summary & Outlook: GW170817

0.13 Gly ◇ GW !  EOS ! (Cold NS vs. hot SN core) ◇ Neutron star merger  a Central Engine of Short- GRB ! ◇ Light emissions, not by 56Ni or 44Ti decays like SNe  consistent with radioactive decays of r-process elements ! ◆ No specific element, identified :  Needs another event (once in every 104-105 yrs in Milky Way) !  Needs nuclear mass, α, β, γ, fission studies !  Needs complete opacity table for lanthanoids and actinoids !  Needs 3D hydrodynamic model & radiative transfer ◆ No neutrino signal  Micro-physics, yet to be calculation ! studied ! Dawn of Nuclear-Particle Astrophysics and Multi-Messenger Astronomy ! Purpose  Difference between Merger and SN r- process !  Roles of Neutrinos ! AGB stars(s-process elements): First stars until now Higgs(standard model) produces 1% Standard Model breaks down ! of Quark Masses.

Neutrino Masses 1 = Why 10-10 ? Quark & Lepton Masses 10,000,000,000

E = mc2

This could be a signature of new physics at 1010 times higher energy scale than the ordinary scale. 10-10 + - νi + νi e + e 2γ (Τ)

Key Physics suggested by FINITE ν-mass: ■ Unification of elementary forces ? ντ ■ CP violation for Lepto- & Baryo-genesis ? ν µ ■ What are dark matter or dark energy ? ? ■ Why left-handed neutrinos ? ν-Masses require a theory beyond the standard model ! ■ Majorana or Dirac ? ■ Explosion Mechanism of Supernovae ? Generation ■ Explosive SN nucleosynthesis ? ν-Oscillation and  ν p1 e p2 νe Nucleosynthesis ν ν ν ν  e e e e

MSW Matter Effect:

Through high-density resonance x p ν p ν 3 3 2 x 1 x at ρ ~ 10 g/cm electrons ν-Collective Oscillation νµτ νe Vacuum Oscillation νµτ νe Si ν-process: ν-process: Layer 92 98 180 138 6,7 9 10,11ν-Detection NS Nb, Tc, Ta, La … Li, Be, B…

R-process: Heavy Nuclei

νp-process: 92Mo, 96Ru ?

Explo. Si-burn.: Fe-Co-Ni, 60Co, 55Mn, 51V … Continuous Collective ν-Oscillation Effect at 200 km < r

10 )

1 νp-process goes on! Charged current reaction -

(s (T〜2-3×109 K)

λ 1

We solved coupled evolution 0.1 eqs. of collective ν-oscillation, Ye, and nucleosynthesis. Reaction rate rate Reaction 0.01 … neutron abundance

Neutral current reaction … proton abundance … helium4 abundance 0.001 … gas velocity 40 100 200 300 400 500 600 700 800 900 r (km) ν-Isotopes:180Ta, 138La, 92Nb, 98Tc … Hayakawa, Kajino, Mohr, Chiba & Mathews, PR C81 (2010), 052801®; PR C82 (2010), 058801; ApJL 779 (2013), L1.

Only when Tνe = Tνe = 4 MeV !

180Tam

Isomer 9+ 180 ) 180Tam(τ > 1015y) Tag(τ1/2 = 8h 1/2 Formula to calculate time-dept linking transitions Hayakawa, Kajino, Mohr, Chiba & Mathews, PR C81 (2010), 052801®; PR C82 (2010), 058801

★ General formula (Einstein AB theory) for kT << ΔEij:

P p q q

p p

★ In the SPECIFIC case of 180Ta:

Transition prob. ΣpAip = Γi / h Exp. 1+ 9- Calculated Result Hayakawa, Mohr, Kajino, Chiba & Mathews, PR C81 (2010), 052801®; C82 (2010), 058801.

0.5

Dynamical Calculation We carried out time- 0.4 39 % dependent dynamical calculations: Sudden Freeze Out Critical 190 - 190 Ta(all) 0.3 Temperature Ta(9 )/ Ta(all) 180 Mohr, 2007 ~ 0.39 - )/ survives!

Ta(9 0.2 Isomer Ratio

180 Thermal Equilibrium This result is almost independent of SN Thermal 0.1 model parameters, i.e. Freeze-Out Transitional Equilibrium Region Region Region - total explosion E, - progenitor mass, 0.0 - ν-luminosity, and 0.2 0.3 0.4 0.5 0.6 0.7 0.8 - decay time scale. Temperature (109 K) GW170817 Abbott et al. (LIGO-Virgo), PRL 119, 16101 (2017)

- GW170817 (LIGO-Virgo) : 0.86

? Line of sight  Different Ye  Complicated hydrodyn. ? Ejecta  Different velocities, blue shifts  Hundreds of r-elements ? Incomplete Opacity + too many r-elements + α, β, γ, fission dep.

Chornock et al. 2017 Dynamical ejecta GW170817 Abbott et al. (LIGO-Virgo), PRL 119, 16101 (2017)

- GW170817 (LIGO-Virgo) : 0.86

- X-rays & Radio waves : GW170817 Remnant NS or BH, not identified. SSS17a - Optical and Near-infrared : SSS17a (by more than 70 Telescopes) Consistent with r-process! But no element, identified. ◆?  Blue Line of sight different Ye & r-process ?

Line of sight @ 0.13 Gly

Ye = p/(p+n)

Ye = 0.30 Ye = 0.25 Ye = 0.10-0.40

Tanaka et al. Red PASJ 00, 1-7 Dynamical (2017) ejecta Low Ye Murchison Meteorite exhibits EXCESS of L-handed Amino Acids! NASA (2009, March 16) http://tokyo.secret.jp/80s/come/amino-acid.html

Structure of DNA Cytosine

Adenine

Chimine

Guanine

Connection is occupied by 14N(1+)