The Evolution of Hierarchical Triple Star-Systems

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Hierarchical Triple Star-Systems Toonen et al. Computational Astrophysics and Cosmology (2016)3:6 DOI 10.1186/s40668-016-0019-0 METHODOLOGY OpenAccess The evolution of hierarchical triple star-systems Silvia Toonen* , Adrian Hamers and Simon Portegies Zwart Abstract Field stars are frequently formed in pairs, and many of these binaries are part of triples or even higher-order systems. Even though, the principles of single stellar evolution and binary evolution, have been accepted for a long time, the long-term evolution of stellar triples is poorly understood. The presence of a third star in an orbit around a binary system can significantly alter the evolution of those stars and the binary system. The rich dynamical behaviour in three-body systems can give rise to Lidov-Kozai cycles, in which the eccentricity of the inner orbit and the inclination between the inner and outer orbit vary periodically. In turn, this can lead to an enhancement of tidal effects (tidal friction), gravitational-wave emission and stellar interactions such as mass transfer and collisions. The lack of a self-consistent treatment of triple evolution, including both three-body dynamics as well as stellar evolution, hinders the systematic study and general understanding of the long-term evolution of triple systems. In this paper, we aim to address some of these hiatus, by discussing the dominant physical processes of hierarchical triple evolution, and presenting heuristic recipes for these processes. To improve our understanding on hierarchical stellar triples, these descriptions are implemented in a public source code TrES, which combines three-body dynamics (based on the secular approach) with stellar evolution and their mutual influences. Note that modelling through a phase of stable mass transfer in an eccentric orbit is currently not implemented in TrES, but can be implemented with the appropriate methodology at a later stage. Keywords: binaries (including multiple): close; stars: evolution 1 Introduction in triples (Tokovinin; , b;Raghavanetal.; The majority of stars are members of multiple systems. Moe and Di Stefano ) a fraction that gradually in- These include binaries, triples, and higher order hierar- creases (Duchêne and Kraus )to∼% for spectral chies. The evolution of single stars and binaries have been type B stars (Remage Evans ;Sanaetal.;Moeand studied extensively and there is general consensus over Di Stefano ). the dominant physical processes (Postnov and Yungel- The theoretical studies of triples can classically be di- son ;Toonenetal.). Many exotic systems, how- vided into three-body dynamics and stellar evolution, ever, cannot easily be explained by binary evolution, and whichbothareoftendiscussedseparately.Three-bodydy- these have often been attributed to the evolution of triples, namics is generally governed by the gravitational orbital for examples low-mass X-ray binaries (Eggleton and Ver- evolution, whereas the stellar evolution is governed by the bunt ) and blue stragglers (Perets and Fabrycky ). internal nuclear burning processes in the individual stars Ourlackofaclearunderstandingoftripleevolutionhin- and their mutual influence. ders the systematic exploration of these curious objects. Typical examples of studies that focused on the three- At the same time triples are fairly common; Our nearest body dynamics include Ford et al. (), Fabrycky and neighbour α Cen is a triple star system (Tokovinin a), Tremaine (), Naoz et al. (), Naoz and Fabrycky but more importantly ∼% of the low-mass stars are (), Liu et al. (a), and stellar evolution studies in- clude Eggleton and Kiseleva (), Iben and Tutukov *Correspondence: [email protected] (), Kuranov et al. (). Interdisciplinary studies, in Leiden Observatory, Leiden University, PO Box 9513, Leiden, The Netherlands which the mutual interaction between the dynamics and © The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Toonen et al. Computational Astrophysics and Cosmology (2016)3:6 Page 2 of 36 stellar aspects are taken into account are rare (Kratter and .. Timescales Perets ;PeretsandKratter;Hamersetal.; Fundamental timescales of stellar evolution are the dy- Shappee and Thompson ;MichaelyandPerets; namical (τdyn), thermal (τth), and nuclear timescale (τnucl). Naoz et al. ), but demonstrate the richness of the in- The dynamical timescale is the characteristic time that it teracting regime. The lack of a self consistent treatment would take for a star to collapse under its own gravitational hinders a systematic study of triple systems. This makes it attraction without the presence of internal pressure: hard to judge the importance of this interacting regime, or how many curious evolutionary products can be attributed R τ = ,() to triple evolution. Here we discuss triple evolution in a dyn Gm broader context in order to address some of these hiatus. In this paper we discuss the principle complexities of where R and m are the radius and mass of the star. It is triple evolution in a broader context (Section ). We start a measure of the timescale on which a star would expand by presenting an overview of the evolution of single stars or contract if the hydrostatic equilibrium of the star is dis- and binaries, and how to extend these to triple evolu- turbed. This can happen for example because of sudden mass loss. tion. In the second part of this paper we present heuristic A related timescale is the time required for the Sun to recipes for simulating their evolution (Section ). These radiate all its thermal energy content at its current lumi- recipes combine three-body dynamics with stellar evolu- nosity: tion and their mutual influences, such as tidal interactions and mass transfer. These descriptions are summarized in a GmR public source code TrES with which triple evolution can τ = ,() th L be studied. where L is the luminosity of the star. In other words, when 2 Background the thermal equilibrium of a star is disturbed, the star We will give a brief overview of isolated binary evolution will move to a new equilibrium on a thermal (or Kelvin- (Section .) and isolated triple evolution (Section .). We Helmholtz) timescale. discuss in particular under what circumstances triple evo- Finally, the nuclear timescale represents the time re- lution differs from binary evolution and what the conse- quired for the star to exhaust its supply of nuclear fuel at quences are of these differences. We start with a brief sum- its current luminosity: mary of single star evolution with a focus on those aspects cm that are relevant for binary and triple evolution. τ = nucl ,() nucl L 2.1 Single stellar evolution where is the efficiency of nuclear energy production, Hydrostatic and thermal equilibrium in a star give rise to c is the speed of light, and mnucl is the amount of mass temperatures and pressures that allow for nuclear burn- available as fuel. For core hydrogen burning, =. ing, and consequently the emission of the starlight that we and Mnucl ≈ .M. Assuming a mass-luminosity relation observe. Cycles of nuclear burning and exhaustion of fuel of L ∝ Mα, with empirically α ≈ - (e.g. Salaris and Cas- regulate the evolution of a star, and sets the various phases sisi ;Ekeretal.), it follows that massive stars live during the stellar lifetime. shorter and evolve faster than low-mass stars. The evolution of a star is predominantly determined by For the Sun, τdyn ≈ min, τth ≈ Myr, and τnucl ≈ a single parameter, namely the stellar mass (Table ). It de- Gyr. Typically, τdyn < τth < τnucl, which allows us to quan- pends only slightly on the initial chemical composition or titatively predict the structure and evolution of stars in the amount of core overshooting.a broad terms. .. Hertzsprung-Russell diagram Table 1 Necessary parameters to describe a single star system, a binary and a triple The Hertzsprung-Russell (HR) diagram in Figure shows seven evolutionary tracks for stars of different Parameters Stellar Orbital masses. The longest phase of stellar evolution is known as Single star m - the main-sequence (MS), in which nuclear burning takes Binary m1, m2 a, e place of hydrogen in the stellar core. The MS occupies the Triple m1, m2, m3 imutual, ain, ein, gin, hin, aout, eout, gout, hout region in the HR-diagram between the stellar birth on the zero-age MS (ZAMS, blue circles in Figure ) and the end For stellar parameters, age and metallicity of each star can be added. The table shows that as the multiplicity of a stellar system increases from one to three, the of the MS-phase (terminal-age MS (TAMS), blue circles in problem becomes significantly more complicated. Figure ). Stars more massive than .M contract slightly Toonen et al. Computational Astrophysics and Cosmology (2016)3:6 Page 3 of 36 Figure 2 Evolution of stellar radius. Radius as a function of stellar Figure 1 Hertzsprung-Russell diagram. Evolutionary tracks for age for two stars with masses 4 and 6.5M at solar metallicity. Specific seven stars in the HR-diagram with masses 1, 1.5, 2.5, 4, 6.5, 10, and moments in the evolution of the stars are noted by blue circles as for 15M at solar metallicity. Specific moments in the evolution of the Figure 1. The radius evolution is calculated with SeBa (Portegies stars are noted by blue circles as explained in the text. The tracks are Zwart and Verbunt 1996; Toonen et al. 2012). The figure also shows SeBa calculated with (Portegies Zwart and Verbunt 1996, Toonen that high-mass stars evolve faster and live shorter than lower-mass et al. 2012). The dashed lines show lines of constant radii by means of stars. the Stefan-Boltzmann law. at the end of the MS when the stellar core runs out of hy- the core, the outer layers of the star expand again and the drogen.
Recommended publications
  • Stsci Newsletter: 1997 Volume 014 Issue 01
    January 1997 • Volume 14, Number 1 SPACE TELESCOPE SCIENCE INSTITUTE Highlights of this issue: • AURA science and functional awards to Leitherer and Hanisch — pages 1 and 23 • Cycle 7 to be extended — page 5 • Cycle 7 approved Newsletter program listing — pages 7-13 Astronomy with HST Climbing the Starburst Distance Ladder C. Leitherer Massive stars are an important and powerful star formation events in sometimes dominant energy source for galaxies. Even the most luminous star- a galaxy. Their high luminosity, both in forming regions in our Galaxy are tiny light and mechanical energy, makes on a cosmic scale. They are not them detectable up to cosmological dominated by the properties of an distances. Stars ~100 times more entire population but by individual massive than the Sun are one million stars. Therefore stochastic effects times more luminous. Except for stars prevail. Extinction represents a severe of transient brightness, like novae and problem when a reliable census of the supernovae, hot, massive stars are Galactic high-mass star-formation the most luminous stellar objects in history is atempted, especially since the universe. massive stars belong to the extreme Massive stars are, however, Population I, with correspondingly extremely rare: The number of stars small vertical scale heights. Moreover, formed per unit mass interval is the proximity of Galactic regions — roughly proportional to the -2.35 although advantageous for detailed power of mass. We expect to find very studies of individual stars — makes it few massive stars compared to, say, difficult to obtain integrated properties, solar-type stars. This is consistent with such as total emission-line fluxes of observations in our solar neighbor- the ionized gas.
    [Show full text]
  • GU Monocerotis: a High-Mass Eclipsing Overcontact Binary in the Young Open Cluster Dolidze 25? J
    A&A 590, A45 (2016) Astronomy DOI: 10.1051/0004-6361/201628224 & c ESO 2016 Astrophysics GU Monocerotis: A high-mass eclipsing overcontact binary in the young open cluster Dolidze 25? J. Lorenzo1, I. Negueruela1, F. Vilardell2, S. Simón-Díaz3; 4, P. Pastor5, and M. Méndez Majuelos6 1 Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Escuela Politécnica Superior, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain e-mail: [email protected] 2 Institut d’Estudis Espacials de Catalunya, Edifici Nexus, c/ Capitá, 2−4, desp. 201, 08034 Barcelona, Spain 3 Instituto de Astrofísica de Canarias, Vía Láctea s/n, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, Facultad de Física y Matemáticas, Avda. Astrofísico Francisco Sánchez s/n, 38205 La Laguna, Tenerife, Spain 5 Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain 6 Departamento de Ciencias, IES Arroyo Hondo, c/ Maestro Manuel Casal 2, 11520 Rota, Cádiz, Spain Received 30 January 2016 / Accepted 3 March 2016 ABSTRACT Context. The eclipsing binary GU Mon is located in the star-forming cluster Dolidze 25, which has the lowest metallicity measured in a Milky Way young cluster. Aims. GU Mon has been identified as a short-period eclipsing binary with two early B-type components. We set out to derive its orbital and stellar parameters. Methods. We present a comprehensive analysis, including B and V light curves and 11 high-resolution spectra, to verify the orbital period and determine parameters.
    [Show full text]
  • Uvsat: a Concept of an Ultraviolet/Optical Photometric Satellite
    UVSat: a concept of an ultraviolet/optical photometric satellite A. Pigulski1, A. Baran2, M. Bzowski3, H. Cugier1, B. Czerny4, J. Daszy´nska-Daszkiewicz1, W. Dziembowski5·6, G. Handler5, Z. Ko laczkowski1, M. Kr´olikowska3, J. Krzesi´nski2, G. Maciejewski7, G. Michalska1, J. Molenda-Zakowicz_ 1, P. Moskalik5, A. Niedzielski7, E. Niemczura1, J. Ostrowski1, A. Pamyatnykh5, M. Ratajczak1, S. Rucinski8, M. Siwak2, R. Smolec5, S. Szutowicz3, T. Tomov7,L. Wyrzykowski6, S. Zo la9 and M. Sarna5 1. Instytut Astronomiczny, Uniwersytet Wroc lawski, Kopernika 11, 51-622 Wroc law, Poland 2. Instytut Fizyki Uniwersytetu Pedagogicznego, Podchora_zych, 2, 30-084 Krak´ow, Poland 3. Centrum Bada´nKosmicznych PAN, Bartycka 18a, 00-716 Warszawa, Poland 4. Centrum Fizyki Teoretycznej PAN, Al. Lotnik´ow 32/46, 02-668 Warszawa, Poland 5. Centrum Astronomiczne im. M. Kopernika PAN, Bartycka 18, 00-716 Warszawa, Poland 6. Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Al. Ujazdowskie 4, 00-478 Warszawa, Poland 7. Centrum Astronomii, Wydzia lFizyki, Astronomii i Informatyki Stosowanej, Uniwersytet Miko laja Kopernika, Grudziadzka, 5, 87-100 Toru´n, Poland 8. Department of Astronomy & Astrophysics, University of Toronto, 50 St. George Street, Toronto, Canada 9. Obserwatorium Astronomiczne Uniwersytetu Jagiello´nskiego, Orla 171, 30-244 Krak´ow, Poland Time-series photometry from space in the ultraviolet can be presently done with only a few platforms, none of which is able to provide wide-field long-term high- cadence photometry. We present a concept of UVSat, a twin space telescope which will be capable to perform this kind of photometry, filling an observational niche. The satellite will host two telescopes, one for observations in the ultravi- olet, the other for observations in the optical band.
    [Show full text]
  • A New Universe to Discover: a Guide to Careers in Astronomy
    A New Universe to Discover A Guide to Careers in Astronomy Published by The American Astronomical Society What are Astronomy and Astrophysics? Ever since Galileo first turned his new-fangled one-inch “spyglass” on the moon in 1609, the popular image of the astronomer has been someone who peers through a telescope at the night sky. But astronomers virtually never put eye to lens these days. The main source of astronomical data is still photons (particles of light) from space, but the tools used to gather and analyze them are now so sophisticated that it’s no longer necessary (or even possible, in most cases) for a human eye to look through them. But for all the high-tech gadgetry, the 21st-Century astronomer is still trying to answer the same fundamental questions that puzzled Galileo: How does the universe work, and where did it come from? Webster’s dictionary defines “astronomy” as “the science that deals with the material universe beyond the earth’s atmosphere.” This definition is broad enough to include great theoretical physicists like Isaac Newton, Albert Einstein, and Stephen Hawking as well as astronomers like Copernicus, Johanes Kepler, Fred Hoyle, Edwin Hubble, Carl Sagan, Vera Rubin, and Margaret Burbidge. In fact, the words “astronomy” and “astrophysics” are pretty much interchangeable these days. Whatever you call them, astronomers seek the answers to many fascinating and fundamental questions. Among them: *Is there life beyond earth? *How did the sun and the planets form? *How old are the stars? *What exactly are dark matter and dark energy? *How did the Universe begin, and how will it end? Astronomy is a physical (non-biological) science, like physics and chemistry.
    [Show full text]
  • Arxiv:0908.2624V1 [Astro-Ph.SR] 18 Aug 2009
    Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Accurate masses and radii of normal stars: Modern results and applications G. Torres · J. Andersen · A. Gim´enez Received: date / Accepted: date Abstract This paper presents and discusses a critical compilation of accurate, fun- damental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and α Centauri) that satisfy our criterion that the mass and radius of both stars be known to ±3% or better. All are non-interacting systems, so the stars should have evolved as if they were single. This sample more than doubles that of the earlier similar review by Andersen (1991), extends the mass range at both ends and, for the first time, includes an extragalactic binary. In every case, we have examined the original data and recomputed the stellar parameters with a consistent set of assumptions and physical constants. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. These accurate physical parameters reveal the effects of stellar evolution with un- precedented clarity, and we discuss the use of the data in observational tests of stellar evolution models in some detail. Earlier findings of significant structural differences between moderately fast-rotating, mildly active stars and single stars, ascribed to the presence of strong magnetic and spot activity, are confirmed beyond doubt. We also show how the best data can be used to test prescriptions for the subtle interplay be- tween convection, diffusion, and other non-classical effects in stellar models.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • Arxiv:1411.0399V2 [Astro-Ph.HE] 16 Mar 2016 to the X-Ray Luminosity Indicate That PSR J1745-2900 Is Not a Rotation-Powered Pulsar but a Magnetar
    Draft version March 17, 2016 Preprint typeset using LATEX style emulateapj v. 5/2/11 THE PROPER MOTION OF THE GALACTIC CENTER PULSAR RELATIVE TO SAGITTARIUS A* Geoffrey C. Bower1, Adam Deller2, Paul Demorest3, Andreas Brunthaler4, Heino Falcke5,2,4, Monika Moscibrodzka5, Ryan M. O'Leary6, Ralph P. Eatough4, Michael Kramer4,7, K.J. Lee4, Laura Spitler4, Gregory Desvignes4, Anthony P. Rushton8,9, Sheperd Doeleman10,11, Mark J. Reid11 Draft version March 17, 2016 ABSTRACT We measure the proper motion of the pulsar PSR J1745-2900 relative to the Galactic Center massive black hole, Sgr A*, using the Very Long Baseline Array (VLBA). The pulsar has a transverse velocity of 236 ± 11 km s−1 at position angle 22 ± 2 deg East of North at a projected separation of 0.097 pc from Sgr A*. Given the unknown radial velocity, this transverse velocity measurement does not conclusively prove that the pulsar is bound to Sgr A*; however, the probability of chance alignment is very small. We do show that the velocity and position is consistent with a bound orbit originating in < −1 the clockwise disk of massive stars orbiting Sgr A* and a natal velocity kick of ∼ 500 km s . An origin among the isotropic stellar cluster is possible but less probable. If the pulsar remains radio-bright, multi-year astrometry of PSR J1745-2900 can detect its acceleration and determine the full three- dimensional orbit. We also demonstrate that PSR J1745-2900 exhibits the same angular broadening as Sgr A* over a wavelength range of 3.6 cm to 0.7 cm, further confirming that the two sources share the same interstellar scattering properties.
    [Show full text]
  • GEORGE HERBIG and Early Stellar Evolution
    GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study.
    [Show full text]
  • The Exotic Eclipsing Nucleus of the Ring Planetary Nebula Suwt2
    The Exotic Eclipsing Nucleus of the Ring Planetary Nebula SuWt 21 K. Exter,2 Howard E. Bond,3,4 K. G. Stassun5,6 B. Smalley,7 P. F. L. Maxted,7 and D. L. Pollacco8 Received ; accepted 1Based in part on observations obtained with the SMARTS Consortium 1.3- and 1.5- m telescopes located at Cerro Tololo Inter-American Observatory, Chile, and with ESO Telescopes at the La Silla Observatory 2Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA. Current address: Institute voor Sterrenkunde, Katholieke Universiteit Leuven, Leuven, Bel- gium; [email protected] 3Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA; [email protected] 4Visiting astronomer, Cerro Tololo Inter-American Observatory, National Optical As- tronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, under contract with the National Science Foundation. Guest Observer with the arXiv:1009.1919v1 [astro-ph.SR] 10 Sep 2010 International Ultraviolet Explorer, operated by the Goddard Space Flight Center, National Aeronautics and Space Administration. 5Dept. of Physics and Astronomy, Vanderbilt University, Nashville, TN 32735, USA 6Department of Physics, Fisk University, 1000 17th Ave. N, Nashville, TN 37208, USA 7Astrophysics Group, Chemistry & Physics, Keele University, Staffordshire, ST5 5BG, UK 8Queen’s University Belfast, Belfast, UK –2– ABSTRACT SuWt 2 is a planetary nebula (PN) consisting of a bright ionized thin ring seen nearly edge-on, with much fainter bipolar lobes extending perpendicularly to the ring. It has a bright (12th-mag) central star, too cool to ionize the PN, which we discovered in the early 1990’s to be an eclipsing binary.
    [Show full text]
  • High Neutron Star Birth Velocities and Gravitational Radiation During Supernova Explosions
    A&A manuscript no. (will be inserted by hand later) ASTRONOMY AND Your thesaurus codes are: ASTROPHYSICS 01 (02.07.2; 08.14.1; 08.19.4) 19.5.2018 High Neutron Star Birth Velocities and Gravitational Radiation during Supernova Explosions S.N.Nazin1 and K.A. Postnov1,2 1 Sternberg Astronomical Institute, Moscow University, 119899 Moscow, Russia 2 Faculty of Physics, Moscow University, 117234 Moscow, Russia Received ... 1996, accepted ..., 1996 Abstract. Assuming the observed pulsar velocities to precessing binary pulsar orbit in PSR J0045-7319 in the originate during asymmetric collapse of stellar cores, we SMC (Kaspi et al. 1996). The collapse asymmetry result- compute the amplitude of gravitational waves emitted ing in the kick velocity of a neutron star at birth may during type II and Ib supernova explosions and their de- be due to different reasons. For example, recent calcula- tection rate from within a distance of 30 Mpc. At the tions of Burrows & Hayes (1996) has shown the ability rms-level of advanced laser interferometers h 10−22 at of neutrino anisotropic emission to produce kick velocities frequencies 300 1000 Hz the expected rate is about≈ 1 per of 400-500 km/s, as observed (see also Imshennik 1992; year. − Bisnovatyi-Kogan 1993). One of the consequences of Lyne and Lorimer’s result Key words: Gravitational waves — Stars: neutron — was a recognition that the kick velocity imparted to a neu- Supernovae: general tron star at birth has a power-law asymptotic form at high velocities (Lipunov, Postnov & Prokhorov 1996a,b). Using direct Monte-Carlo calculations of binary star evolution (the so-called “Scenario Machine”), they found that the Supernova explosions are among the most violent Lyne-Lorimer pulsar transverse velocities are best repro- events known in nature.
    [Show full text]
  • Pulsar Kicks and Γ-Ray Burst
    A&A 472, 1–3 (2007) Astronomy DOI: 10.1051/0004-6361:20077200 & c ESO 2007 Astrophysics Pulsar kicks and γ-ray burst X. H. Cui1,H.G.Wang2,R.X.Xu1, and G. J. Qiao1 1 Astronomy Department, School of Physics, Peking University, Beijing 100871, PR China e-mail: [xhcui,rxxu,gjq]@bac.pku.edu.cn 2 Center for Astrophysics, Guangzhou University, Guangzhou 510400, PR China e-mail: [email protected] Received 31 January 2007 / Accepted 5 June 2007 ABSTRACT Aims. We use the supernova-GRB (γ-ray burst) association and assume that the GRB asymmetric explosions produce pulsars in order to test the consistency of distributions of modeled and observed pulsar-kick velocities. Methods. The deduced distribution of kick velocity from the model of GRB and the observed kick distribution of radio pulsars are checked by a K-S test. Results. These two distributions are found to come from the same parent population. Conclusions. This result may indicate that GRBs could really be related to supernova and that the asymmetry of GRB associated with supernova would cause the pulsar kick. Key words. stars: pulsars: general – gamma rays: bursts – stars: neutron – dense matter 1. Introduction naturally result in kicks on quark stars. But how can we test this idea? These issues are focus here. The difficulty of reproducing two kinds of astronomical bursts are challenging today’s astrophysicists to find realistic explo- Quark stars could reproduce the observational features of sive mechanisms. On one hand, γ-ray bursts (GRBs) are puz- pulsar-like stars well (Xu 2006). Radio pulsars have long been zling phenomena, the center engine of which is still an outstand- recognized of having high space velocities (e.g.
    [Show full text]
  • Pulsar Kicks from Neutrino Oscillations
    CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server UCLA/98/TEP/30 Pulsar kicks from neutrino oscillations Alexander Kusenko Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 Gino Segr`e Department of Physics, University of Pennsylvania, Philadelphia, PA 19104 (November, 1998) Neutrino oscillations can explain the observed motion of pulsars. We show that two different models of neutrino emission from a cooling neutron star are in good quantitative agreement and predict the same order of magnitude for the pulsar kick velocity, consistent with the data. PACS numbers: 97.60.Gb, 14.60.Pq I. INTRODUCTION trino oscillations1. The result obtained in Ref. [6] was in- + correct because the neutrino absorption νen e−p was neglected and also because the different neutrino→ opaci- ties were assumed to be equal to each other. We empha- We recently suggested [1,2] that the observed proper size that in the absence of charged-current interactions motions of pulsars [3] may be the result of neutrino os- the kick from the active neutrino oscillations [1] should cillations in the hot neutron star born in a supernova ex- vanish. plosion. Neutrinos are the only significant cooling agents We will show that, after the charged-current interac- during the first 10 seconds after the onset of the super- tions are included, the two models are, in fact, in good nova, and they carry away most of the energy liberated agreement, as they should be. in the gravitational collapse, 1053erg. A 1% asymme- try in the distribution of neutrinos∼ can account for the measured pulsar velocities 500 km/s.
    [Show full text]