Module M2.4 Introducing Scalars and Vectors

Total Page:16

File Type:pdf, Size:1020Kb

Module M2.4 Introducing Scalars and Vectors FLEXIBLE LEARNING APPROACH TO PHYSICS Module M2.4 Introducing scalars and vectors 1 Opening items 3 Introducing vector algebra 1.1 Module introduction 3.1 Scaling vectors 1.2 Fast track questions 3.2 Adding and subtracting vectors 1.3 Ready to study? 3.3 Resolving vectors 2 Scalars and vectors 4 Working with vectors 2.1 Scalars and scalar quantities 5 Closing items 2.2 Vectors and vector quantities 5.1 Module summary 2.3 Representing scalars and vectors 5.2 Achievements 5.3 Exit test Exit module FLAP M2.4 Introducing scalars and vectors COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1 1 Opening items 1.1 Module introduction Many of the quantities that physicists use are easy to specify; measurements of mass, length, time, area, volume and temperature can all be expressed as simple numbers together with appropriate units of measurement. Such quantities are known as scalar quantities or scalars. However, some quantities are more tricky to deal with. For instance, if you want to travel from one place to another you will not only want to know how far apart the two places are, you will also need to know the direction that leads from one to the other. The physical quantity that combines distance and direction is called displacement and is clearly more complicated than distance alone. Displacement is a simple example of a large class of physical quantities known collectively as vector quantities or vectors. A detailed understanding of vectors and how to use them is crucial to many parts of physics, particularly mechanics and electromagnetism. FLAP M2.4 Introducing scalars and vectors COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1 This module provides an introduction to the mathematical treatment of vectors. Section 2 gives a definition of vector quantities that separates them from simpler scalar quantities1—1such as mass and distance1—1that are also defined. This section also describes the graphical representation of vectors and the notation used to distinguish vectors from scalars, both in print and in handwritten work. Section 3 introduces some of the basic operations of vector algebra such as scaling (multiplication by a scalar), vector addition and vector subtraction. It aims to make clear the meaning of vector equations such as 3a2−22b2=20. The section ends with a discussion of the way in which a given vector may be split-up (resolved1) into component vectors1—1a process that is of importance in many practical problems. Throughout the module the emphasis is on basic ideas and geometric (graphical) methods. The algebraic methods that are more frequently used by those already familiar with vectors are mentioned briefly in a short conclusion (Section 4) but their full development is left to other modules. Since it is those methods that are best suited to tackling three-dimensional problems, most of the questions in this module are restricted to two- dimensional situations on idealized planes or flat surfaces. However, even though the discussion is mainly restricted to two dimensions, the significance of vectors is amply demonstrated as is the importance of always using vector notation clearly and correctly. Study comment Having read the introduction you may feel that you are already familiar with the material covered by this module and that you do not need to study it. If so, try the Fast track questions given in Subsection 1.2. If not, proceed directly to Ready to study? in Subsection 1.3. FLAP M2.4 Introducing scalars and vectors COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1 1.2 Fast track questions Study comment Can you answer the following Fast track questions? If you answer the questions successfully you need only glance through the module before looking at the Module summary (Subsection 5.1) and the Achievements listed in Subsection 5.2. If you are sure that you can meet each of these achievements, try the Exit test in Subsection 5.3. If you have difficulty with only one or two of the questions you should follow the guidance given in the answers and read the relevant parts of the module. However, if you have difficulty with more than two of the Exit questions you are strongly advised to study the whole module. Question F1 In terms of a strict interpretation of vector and scalar quantities, what is wrong with each of the following statements? (a) The velocity of light travelling through a vacuum (usually denoted by c) is approximately 32×21081m1s1−11. (b) The acceleration due to gravity (usually denoted by g) near the surface of the Earth is approximately 101m1s1−12. (c) The mass of your head pushes down on your neck. FLAP M2.4 Introducing scalars and vectors COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1 Question F2 a is a displacement of 4.321km due north, and b is a displacement of 2.401km due east. (a) What is the magnitude and the direction of the displacement 3a2−25b? (b) Given a specified line, any vector may be expressed as the sum of two (orthogonal) component vectors, one parallel to the given line and the other at right angles to that line. What is the magnitude of the (orthogonal) component vector of 3a2−25b that points in the direction 20° west of north? Study comment Having seen the Fast track questions you may feel that it would be wiser to follow the normal route through the module and to proceed directly to Ready to study? in Subsection 1.3. Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the Closing items. FLAP M2.4 Introducing scalars and vectors COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1 1.3 Ready to study? Study comment Relatively little background knowledge is required to study this module. Terms such as mass, electric charge and temperature are used and it is assumed that you know something about measuring such quantities using SI units, but you do not need to know precise definitions or exact meanings. It is also assumed that you have met Newton’s laws of motion before, but again you do not need to know those laws in detail in order to study the module. (Indeed, this module would be good preparation for a thorough study of Newton’s laws.) There are some mathematical topics, however, with which you will need to be familiar before starting to study; they are the subject of the following questions. Consult the Glossary for references to any terms that are unfamiliar. FLAP M2.4 Introducing scalars and vectors COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1 Question R1 Draw a set of two-dimensional Cartesian axes. Label the horizontal axis x and the vertical axis y. Using the axes you have drawn, plot the three points A, B and C the coordinates of which are given in Table 1. Draw the right- angled triangle that has the points A, B and C at its corners. Write down the lengths of sides AB and BC of that triangle, and use Pythagoras’s theorem to work out the length of the side CA. Table 1 See Question R1. point x-coordinate y-coordinate A1 1 B−31 C−34 FLAP M2.4 Introducing scalars and vectors COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1 Question R2 Using the triangle given in the answer to Question R1 (Figure 15), and indicating the length of side CA by c and the angle CABÃ by θ, write down expressions for the lengths of sides AB and BC in terms of the length c, the angle θ, and the basic trigonometric ratios. What is the value (in degrees) of the angle θ1? Question R3 The modulus of a quantity x is written |1x1| and represents the absolute value of x. Evaluate the following expressions and complete the equations. (a)3|131| =33(b)3|1−131| =33(c)3|1(−12)(3.1)1| =33(d)31|1(−12.4)1/1(2)1| = FLAP M2.4 Introducing scalars and vectors COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1 2 Scalars and vectors 2.1 Scalars and scalar quantities Many important physical quantities, such as length, mass and temperature, can be completely specified by a single number together with an appropriate unit of measurement. For instance, it makes perfectly good sense to say that the length of an object is 1.421m or that the mass of an object is 12.21kg. Quantities that can be specified in this simple and straightforward way are called scalar quantities. Thus: Scalar quantities are physical quantities that can be completely specified by a single number together with an appropriate unit of measurement. FLAP M2.4 Introducing scalars and vectors COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1 Different values of a given scalar quantity may be easily added, subtracted, multiplied or divided. In fact, all the elementary operations of arithmetic apply to values of a scalar quantity just as they do to ordinary numbers. So, if a, b and c are three values of a given scalar quantity (three masses, say) then we know that a + b = b + a (1) ab = ba (2) a + 0 = a (3) a × 1= a (4) (a + b) + c = a + (b + c) (5) ☞ a(bc)=(ab)c (6) a(b + c)=ab + ac (7) Scalar quantities are often referred to simply as scalars. There is nothing very surprising about the behaviour of scalars; their properties seem obvious and, indeed, they are obvious. What is much more interesting is that there are many physical quantities that are not scalars. FLAP M2.4 Introducing scalars and vectors COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1 2.2 Vectors and vector quantities Edinburgh Figure 1 shows the relative locations of Belfast, Edinburgh and Exeter, three of the major cities in the UK.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • 1 Euclidean Vector Space and Euclidean Affi Ne Space
    Profesora: Eugenia Rosado. E.T.S. Arquitectura. Euclidean Geometry1 1 Euclidean vector space and euclidean a¢ ne space 1.1 Scalar product. Euclidean vector space. Let V be a real vector space. De…nition. A scalar product is a map (denoted by a dot ) V V R ! (~u;~v) ~u ~v 7! satisfying the following axioms: 1. commutativity ~u ~v = ~v ~u 2. distributive ~u (~v + ~w) = ~u ~v + ~u ~w 3. ( ~u) ~v = (~u ~v) 4. ~u ~u 0, for every ~u V 2 5. ~u ~u = 0 if and only if ~u = 0 De…nition. Let V be a real vector space and let be a scalar product. The pair (V; ) is said to be an euclidean vector space. Example. The map de…ned as follows V V R ! (~u;~v) ~u ~v = x1x2 + y1y2 + z1z2 7! where ~u = (x1; y1; z1), ~v = (x2; y2; z2) is a scalar product as it satis…es the …ve properties of a scalar product. This scalar product is called standard (or canonical) scalar product. The pair (V; ) where is the standard scalar product is called the standard euclidean space. 1.1.1 Norm associated to a scalar product. Let (V; ) be a real euclidean vector space. De…nition. A norm associated to the scalar product is a map de…ned as follows V kk R ! ~u ~u = p~u ~u: 7! k k Profesora: Eugenia Rosado, E.T.S. Arquitectura. Euclidean Geometry.2 1.1.2 Unitary and orthogonal vectors. Orthonormal basis. Let (V; ) be a real euclidean vector space. De…nition.
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Scalar-Tensor Theories of Gravity: Some Personal History
    history-st-cuba-slides 8:31 May 27, 2008 1 SCALAR-TENSOR THEORIES OF GRAVITY: SOME PERSONAL HISTORY Cuba meeting in Mexico 2008 Remembering Johnny Wheeler (JAW), 1911-2008 and Bob Dicke, 1916-1997 We all recall Johnny as one of the most prominent and productive leaders of relativ- ity research in the United States starting from the late 1950’s. I recall him as the man in relativity when I entered Princeton as a graduate student in 1957. One of his most recent students on the staff there at that time was Charlie Misner, who taught a really new, interesting, and, to me, exciting type of relativity class based on then “modern mathematical techniques involving topology, bundle theory, differential forms, etc. Cer- tainly Misner had been influenced by Wheeler to pursue these then cutting-edge topics and begin the re-write of relativity texts that ultimately led to the massive Gravitation or simply “Misner, Thorne, and Wheeler. As I recall (from long! ago) Wheeler was the type to encourage and mentor young people to investigate new ideas, especially mathe- matical, to develop and probe new insights into the physical universe. Wheeler himself remained, I believe, more of a “generalist, relying on experts to provide details and rigorous arguments. Certainly some of the world’s leading mathematical work was being done only a brief hallway walk away from Palmer Physical Laboratory to Fine Hall. Perhaps many are unaware that Bob Dicke had been an undergraduate student of Wheeler’s a few years earlier. It was Wheeler himself who apparently got Bob thinking about the foundations of Einstein’s gravitational theory, in particular, the ever present mysteries of inertia.
    [Show full text]
  • Integrating Electrical Machines and Antennas Via Scalar and Vector Magnetic Potentials; an Approach for Enhancing Undergraduate EM Education
    Integrating Electrical Machines and Antennas via Scalar and Vector Magnetic Potentials; an Approach for Enhancing Undergraduate EM Education Seemein Shayesteh Maryam Rahmani Lauren Christopher Maher Rizkalla Department of Electrical and Department of Electrical and Department of Electrical and Department of Electrical and Computer Engineering Computer Engineering Computer Engineering Computer Engineering Indiana University Purdue Indiana University Purdue Indiana University Purdue Indiana University Purdue University Indianapolis University Indianapolis University Indianapolis University Indianapolis Indianapolis, IN Indianapolis, IN Indianapolis, IN Indianapolis, IN [email protected] [email protected] [email protected] [email protected] Abstract—This Innovative Practice Work In Progress paper undergraduate course. In one offering the course was attached presents an approach for enhancing undergraduate with a project using COMSOL software that assisted students Electromagnetic education. with better understanding of the differential EM equations within the course. Keywords— Electromagnetic, antennas, electrical machines, undergraduate, potentials, projects, ECE II. COURSE OUTLINE I. INTRODUCTION A. Typical EM Course within an ECE Curriculum Often times, the subject of using two potential functions in A typical EM undergraduate course requires Physics magnetism, the scalar magnetic potential function, ܸ௠, and the (electricity and magnetism) and Differential equations as pre- vector magnetic potential function, ܣ (with zero current requisite
    [Show full text]
  • Basic Four-Momentum Kinematics As
    L4:1 Basic four-momentum kinematics Rindler: Ch5: sec. 25-30, 32 Last time we intruduced the contravariant 4-vector HUB, (II.6-)II.7, p142-146 +part of I.9-1.10, 154-162 vector The world is inconsistent! and the covariant 4-vector component as implicit sum over We also introduced the scalar product For a 4-vector square we have thus spacelike timelike lightlike Today we will introduce some useful 4-vectors, but rst we introduce the proper time, which is simply the time percieved in an intertial frame (i.e. time by a clock moving with observer) If the observer is at rest, then only the time component changes but all observers agree on ✁S, therefore we have for an observer at constant speed L4:2 For a general world line, corresponding to an accelerating observer, we have Using this it makes sense to de ne the 4-velocity As transforms as a contravariant 4-vector and as a scalar indeed transforms as a contravariant 4-vector, so the notation makes sense! We also introduce the 4-acceleration Let's calculate the 4-velocity: and the 4-velocity square Multiplying the 4-velocity with the mass we get the 4-momentum Note: In Rindler m is called m and Rindler's I will always mean with . which transforms as, i.e. is, a contravariant 4-vector. Remark: in some (old) literature the factor is referred to as the relativistic mass or relativistic inertial mass. L4:3 The spatial components of the 4-momentum is the relativistic 3-momentum or simply relativistic momentum and the 0-component turns out to give the energy: Remark: Taylor expanding for small v we get: rest energy nonrelativistic kinetic energy for v=0 nonrelativistic momentum For the 4-momentum square we have: As you may expect we have conservation of 4-momentum, i.e.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Quantum Theory of Scalar Field in De Sitter Space-Time
    ANNALES DE L’I. H. P., SECTION A N. A. CHERNIKOV E. A. TAGIROV Quantum theory of scalar field in de Sitter space-time Annales de l’I. H. P., section A, tome 9, no 2 (1968), p. 109-141 <http://www.numdam.org/item?id=AIHPA_1968__9_2_109_0> © Gauthier-Villars, 1968, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincaré, Section A : Vol. IX, n° 2, 1968, 109 Physique théorique. Quantum theory of scalar field in de Sitter space-time N. A. CHERNIKOV E. A. TAGIROV Joint Institute for Nuclear Research, Dubna, USSR. ABSTRACT. - The quantum theory of scalar field is constructed in the de Sitter spherical world. The field equation in a Riemannian space- time is chosen in the = 0 owing to its confor- . mal invariance for m = 0. In the de Sitter world the conserved quantities are obtained which correspond to isometric and conformal transformations. The Fock representations with the cyclic vector which is invariant under isometries are shown to form an one-parametric family. They are inequi- valent for different values of the parameter. However, its single value is picked out by the requirement for motion to be quasiclassis for large values of square of space momentum.
    [Show full text]
  • Scalar Wave Transponder
    Konstantin Meyl Scalar wave transponder Field-physical basis for electrically coupled bi- directional far range transponder With the current RFID -Technology the transfer of energy takes place on a chip card by means of longitudinal wave components in close range of the transmitting antenna. Those are scalar waves, which spread towards the electrical or the magnetic field pointer. In the wave equation with reference to the Maxwell field equations, these wave components are set to zero, why only postulated model computations exist, after which the range is limited to the sixth part of the wavelength. A goal of this paper is to create, by consideration of the scalar wave components in the wave equation, the physical conditions for the development of scalar wave transponders which are operable beyond the close range. The energy is transferred with the same carrier wave as the information and not over two separated ways as with RFID systems. Besides the bi-directional signal transmission, the energy transfer in both directions is additionally possible because of the resonant coupling between transmitter and receiver. First far range transponders developed on the basis of the extended field equations are already functional as prototypes. Scalar wave transponder 3 Preface Before the introduction into the topic, the title of the book should be first explained more in detail. A "scalar wave" spreads like every wave directed, but it consists of physical particles or formations, which represent for their part scalar sizes. Therefore the name, which is avoided by some critics or is even disparaged, because of the apparent contradiction in the designation, which makes believe the wave is not directional, which does not apply however.
    [Show full text]
  • The Velocity and Momentum Four-Vectors
    Physics 171 Fall 2015 The velocity and momentum four-vectors 1. The four-velocity vector The velocity four-vector of a particle is defined by: dxµ U µ = =(γc ; γ~v ) , (1) dτ where xµ = (ct ; ~x) is the four-position vector and dτ is the differential proper time. To derive eq. (1), we must express dτ in terms of dt, where t is the time coordinate. Consider the infinitesimal invariant spacetime separation, 2 2 2 µ ν ds = −c dτ = ηµν dx dx , (2) in a convention where ηµν = diag(−1 , 1 , 1 , 1) . In eq. (2), there is an implicit sum over the repeated indices as dictated by the Einstein summation convention. Dividing by −c2 yields 3 1 c2 − v2 v2 dτ 2 = c2dt2 − dxidxi = dt2 = 1 − dt2 = γ−2dt2 , c2 c2 c2 i=1 ! X i i 2 i i where we have employed the three-velocity v = dx /dt and v ≡ i v v . In the last step we have introduced γ ≡ (1 − v2/c2)−1/2. It follows that P dτ = γ−1 dt . (3) Using eq. (3) and the definition of the three-velocity, ~v = d~x/dt, we easily obtain eq. (1). Note that the squared magnitude of the four-velocity vector, 2 µ ν 2 U ≡ ηµνU U = −c (4) is a Lorentz invariant, which is most easily evaluated in the rest frame of the particle where ~v = 0, in which case U µ = c (1 ; ~0). 2. The relativistic law of addition of velocities Let us now consider the following question.
    [Show full text]
  • Angular Momentum and Magnetic Moment
    Angular momentum and magnetic moment Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 | January 12, 2011 NUCS 342 (Lecture 1) January 12, 2011 1 / 27 2 Conservation laws 3 Scalar and vector product 4 Rotational motion 5 Magnetic moment 6 Angular momentum in quantum mechanics 7 Spin Outline 1 Scalars and vectors NUCS 342 (Lecture 1) January 12, 2011 2 / 27 3 Scalar and vector product 4 Rotational motion 5 Magnetic moment 6 Angular momentum in quantum mechanics 7 Spin Outline 1 Scalars and vectors 2 Conservation laws NUCS 342 (Lecture 1) January 12, 2011 2 / 27 4 Rotational motion 5 Magnetic moment 6 Angular momentum in quantum mechanics 7 Spin Outline 1 Scalars and vectors 2 Conservation laws 3 Scalar and vector product NUCS 342 (Lecture 1) January 12, 2011 2 / 27 5 Magnetic moment 6 Angular momentum in quantum mechanics 7 Spin Outline 1 Scalars and vectors 2 Conservation laws 3 Scalar and vector product 4 Rotational motion NUCS 342 (Lecture 1) January 12, 2011 2 / 27 6 Angular momentum in quantum mechanics 7 Spin Outline 1 Scalars and vectors 2 Conservation laws 3 Scalar and vector product 4 Rotational motion 5 Magnetic moment NUCS 342 (Lecture 1) January 12, 2011 2 / 27 7 Spin Outline 1 Scalars and vectors 2 Conservation laws 3 Scalar and vector product 4 Rotational motion 5 Magnetic moment 6 Angular momentum in quantum mechanics NUCS 342 (Lecture 1) January 12, 2011 2 / 27 Outline 1 Scalars and vectors 2 Conservation laws 3 Scalar and vector product 4 Rotational motion 5 Magnetic moment 6 Angular momentum in quantum mechanics 7 Spin NUCS 342 (Lecture 1) January 12, 2011 2 / 27 Scalars and vectors Scalars Scalars are used to describe objects which are fully characterized by their magnitude (a number and a unit).
    [Show full text]
  • Quantum Fields in Curved Spacetime
    Quantum fields in curved spacetime June 11, 2014 Abstract We review the theory of quantum fields propagating in an arbitrary, clas- sical, globally hyperbolic spacetime. Our review emphasizes the conceptual issues arising in the formulation of the theory and presents known results in a mathematically precise way. Particular attention is paid to the distribu- tional nature of quantum fields, to their local and covariant character, and to microlocal spectrum conditions satisfied by physically reasonable states. We review the Unruh and Hawking effects for free fields, as well as the be- havior of free fields in deSitter spacetime and FLRW spacetimes with an exponential phase of expansion. We review how nonlinear observables of a free field, such as the stress-energy tensor, are defined, as well as time- ordered-products. The “renormalization ambiguities” involved in the defini- tion of time-ordered products are fully characterized. Interacting fields are then perturbatively constructed. Our main focus is on the theory of a scalar field, but a brief discussion of gauge fields is included. We conclude with a brief discussion of a possible approach towards a nonperturbative formula- tion of quantum field theory in curved spacetime and some remarks on the formulation of quantum gravity. arXiv:1401.2026v2 [gr-qc] 10 Jun 2014 1Universitat¨ Leipzig, Institut fur¨ Theoretische Physik, Bruderstrasse¨ 16, D-04103 Leipzig, FRG 2Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA 1 1 The nature of Quantum Field Theory in Curved Spacetime Quantum field theory in curved spacetime (QFTCS) is the theory of quantum fields propagating in a background, classical, curved spacetime (M ;g).
    [Show full text]