Trichodagmia Enderlein (Diptera: Simuliidae: Simulium) in the New World

Total Page:16

File Type:pdf, Size:1020Kb

Trichodagmia Enderlein (Diptera: Simuliidae: Simulium) in the New World SYSTEMATICS OF THE BLACKFLY SUBGENUS TRICHODAGMIA ENDERLEIN (DIPTERA: SIMULIIDAE: SIMULIUM) IN THE NEW WORLD Luis M. Hernández Triana Thesis committee Thesis supervisors Prof. dr. M.S.M. Sosef Professor of Biosystematics Wageningen University Prof. dr. R.J. Post Research Entomologist The Natural History Museum, London, United Kingdom Other members Prof. dr. M. Dicke, Wageningen University Prof. dr. M. Schilthuizen, University of Groningen & NCB Naturalis Dr. H. de Jong, University of Amsterdam Prof. dr. R.A. Cheke, University of Greenwich, UK ii SYSTEMATICS OF THE BLACKFLY SUBGENUS TRICHODAGMIA ENDERLEIN (DIPTERA: SIMULIIDAE: SIMULIUM) IN THE NEW WORLD Luis M. Hernández Triana Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M. J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 29 March 2011 at 4 p.m. in the Aula. iii Luis M. Hernández Triana Systematics of the blackfly subgenus Trichodagmia ENDERLEIN (Diptera: Simuliidae: Simulium) in the New World, 546 pages Thesis, Wageningen University, Wageningen, NL (2011) With references, with summaries in Dutch and English ISBN 978-90-8585-865-2 iv The research described in this thesis was financially supported by The Natural History Museum, London. Financial support from Wageningen University is gratefully acknowledged. v To my wife Nathalie David-Hernández, to my children Mina, Lani, Kiran, Ariadna and Ian to my mother Francisca Triana, my late father Alberto Martin, to my sister Arais Martin, to all my family in Cuba vi CONTENTS 1. GENERAL INTRODUCTION ..................................................................................................................... 1 1.1. Background.............................................................................................................................................. 1 1.2. History of the Higher Classification of Simuliidae............................................................................ 2 1.3. A Phylogenetic Approach to Blackfly Systematics............................................................................ 5 1.3.1. Morphological Characters ..................................................................................................................... 5 1.3.2. Molecular (DNA) Characters................................................................................................................ 7 1.3.2.1. DNA Barcoding...................................................................................................................................... 8 1.3.3. Impact of other Biochemical Methods (Enzyme Electrophoresis and Cuticular Hydrocarbons) and Cytogenetics on Simuliidae Systematics....................................................................................... 9 1.4. Development of a Classification System for the Simuliidae in the Neotropical Region.............. 9 1.4.1 Classical approaches to Taxonomy, including Supraspecific Division in Neotropical Simuliidae. .................................................................................................................................................................. 9 1.4.2. Phylogenetic approaches to Neotropical Simuliidae taxonomy .................................................... 12 1.5. Current Classification of the Family Simuliidae in the Neotropical Region................................ 13 1.6 Perspectives and Future Developments............................................................................................ 13 1.7. Systematics of the Subgenus Trichodagmia ENDERLEIN in the New World.................................. 14 1.8. APPENDIX 1. TABLES. ........................................................................................................................... 15 2. MORPHOTAXONOMY OF THE SUBGENUS TRICHODAGMIA ENDERLEIN ........................................ 19 2.1. Summary ................................................................................................................................................ 19 2.2. Introduction .......................................................................................................................................... 19 2.3. Material and Methods .......................................................................................................................... 20 2.3.1. Collecting, Rearing and Preparation .................................................................................................. 20 2.3.2. Digital Imaging and Measurements ................................................................................................... 21 2.3.3. Preservation........................................................................................................................................... 22 2.3.4. Structures Used by other Authors in Taxonomic Studies on Neotropical Simuliidae............... 22 2.3.5. Methods Used in Taxonomic Research on Simuliidae in the Current Work .............................. 23 2.3.6. General Figures and Terminology Used in this Work .................................................................... 24 2.3.7. Acronyms Used for Depositaries of Simuliidae............................................................................... 28 2.4. Review of the Subgenus Trichodagmia ENDERLEIN, 1934 ............................................................... 28 2.4.1. Previous work ....................................................................................................................................... 29 2.4.2. Remarks.................................................................................................................................................. 36 2.4.3. Checklist of Trichodagmia species......................................................................................................... 38 2.4.4. Taxonomy of the subgenus Trichodagmia........................................................................................... 42 2.4.5. Identification keys to species groups of the subgenus Trichodagmia .............................................. 44 2.4.6. Identification keys to species of the New World CANADENSE species group....................... 47 2.4.7. Identification keys to species of the New World ORBITALE species group ............................ 51 2.4.8. Identification keys to species of the New World PICTIPES species group ............................... 55 2.4.9. Identification keys to species of the New World TARSATUM species group........................... 56 2.5. Morphological Description, Taxonomic Discussion, Distribution, and Biology and Medical Importance of species of the subgenus Trichodagmia in the New World..................................... 61 2.5.1. The CANADENSE species group.................................................................................................... 61 2.5.1.1. Simulium ayrozai...................................................................................................................................... 62 2.5.1.2. Simulium burchi........................................................................................................................................ 65 2.5.1.3. Simulium canadense .................................................................................................................................. 68 2.5.1.4. Simulium capricorne.................................................................................................................................. 72 2.5.1.5. Simulium carolinae.................................................................................................................................... 76 2.5.1.6. Simulium contrerense................................................................................................................................. 78 2.5.1.7. Simulium dalmati ..................................................................................................................................... 82 2.5.1.8. Simulium delatorrei................................................................................................................................... 84 2.5.1.9. Simulium estevezi...................................................................................................................................... 88 vii 2.5.1.10. Simulium ethelae....................................................................................................................................... 90 2.5.1.11. Simulium falculatum................................................................................................................................. 94 2.5.1.12. Simulium gorirossiae.................................................................................................................................. 96 2.5.1.13. Simulium johnsoni..................................................................................................................................... 99 2.5.1.14. Simulium juarezi..................................................................................................................................... 102 2.5.1.15. Simulium larvispinosum........................................................................................................................... 105 2.5.1.16. Simulium menchacai...............................................................................................................................
Recommended publications
  • Ib>Aze'icanjauseum
    Iox4tatcib>Aze'icanJAuseum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N. Y. I0024 NUMBER 2529 NOVEMBER 19, 1973 Notes on South American Black Flies of the Tribe Prosimuliini (Simuliinae, Simuliidae, Diptera) BY PEDRO WYGODZINSKY1 AND SIXTO COSCARON2 ABSTRACT The present paper contains the result of the study of some prosimuliine black flies collected by the authors in Chile. The pupa of Cnesiamima atroparva Edwards is described and illustrated for the first time. The pupa of Cnesiamima was found to share derived (synapomorphic) characters with the pupa of Paraustrosimulium; this, together with the existence of synapomorphic structures in the genitalia of the male of the two genera, suggests that both have a common Recent ancestor not shared by any other known black fly genus. New locality data and observations on the morphology of other genera and species are also given. The prosimuliine black flies of Mesoamerica and South America were reviewed recently by Wygodzinsky and Coscaron (1973). Nine genera were surveyed; for eight of these, the early instars as well as the imagos were described, but the monotypic Cnesiamima Wygodzinsky andCoscaron was known only from adults. We stated that we had failed to find the aquatic instars of this genus, but predicted that a successful search for them would be accomplished in early spring. This prediction has been fulfilled. In the company of Mr. Luis E. Peiia we visited, in the first days of October, an area of the Chilean province of 1 Curator, Department of Entomology, the American Museum of Natural History.
    [Show full text]
  • Diptera) in Malta
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OAR@UM BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2015) Vol. 7 : 109–111 DOI: 10.17387/BULLENTSOCMALTA.2015.08 The family Simuliidae (Diptera) in Malta Paul GATT1 ABSTRACT. An account is given of the 3 species in the family Simuliidae that occur in Malta, including 1 new record. KEY WORDS. Mediterranean, Simulium, faunistics, new record. INTRODUCTION The Simuliidae (commonly known as blackflies) is a large family of diptera of global distribution with 2120 extant species listed by ADLER & CROSSKEY (2015), of which 231 occur in Europe (CROSSKEY, 2013). The immature stages are fully aquatic, nearly always developing in running water. Females of most species require a blood meal in order to mature their eggs and some species are vectors of important diseases. The family is therefore of medical, veterinary and economic importance. All stages form important parts of food chains and some species are useful in the monitoring of freshwater quality. There are no records of Simuliidae from the central Mediterranean islands of Malta in the Catalogue of Palaearctic Diptera (RUBZOV & YANKOVSKY, 1988). The first mention of the family from the islands is that of SCHEMBRI & GAUCI (1984) who reported finding larvae in a streamlet in Migra l-Ferħa, Malta. CROSSKEY & HOWARD (1997) subsequently recorded Simulium (Eusimulium) velutinum (Santos Abreu, 1922) and Simulium (Nevermannia) ruficorne Macquart, 1838 from adult material collected by the author and Dr Martin J. Ebejer (Cowbridge, UK) and identified by Dr Roger Crosskey of the Natural History Museum, London.
    [Show full text]
  • The Black Flies of Maine
    THE BLACK FLIES OF MAINE L.S. Bauer and J. Granett Department of Entomology University of Maine at Orono, Orono, ME 04469 Maine Life Sciences and Agriculture Experiment Station Technical Bulletin 95 May 1979 LS-\ F.\PFRi\ii-Nr Si \IION TK HNK \I BUI I HIN 9? ACKNOWLEDGMENTS We wish to thank Dr. Ivan McDaniel for his involvement in the USDA-funding of this project. We thank him for his assistance at the beginning of this project in loaning us literature, equipment, and giving us pointers on taxonomy. He also aided the second author on a number of collection trips and identified a number of collection specimens. We thank Edward R. Bauer, Lt. Lewis R. Boobar, Mr. Thomas Haskins. Ms. Leslie Schimmel, Mr. James Eckler, and Mr. Jan Nyrop for assistance in field collections, sorting, and identifications. Mr. Ber- nie May made the electrophoretic identifications. This project was supported by grant funds from the United States Department of Agriculture under CSRS agreement No. 616-15-94 and Regional Project NE 118, Hatch funds, and the Maine Towns of Brad­ ford, Brownville. East Millinocket, Enfield, Lincoln, Millinocket. Milo, Old Town. Orono. and Maine counties of Penobscot and Piscataquis, and the State of Maine. The electrophoretic work was supported in part by a faculty research grant from the University of Maine at Orono. INTRODUCTION Black flies have been long-time residents of Maine and cause exten­ sive nuisance problems for people, domestic animals, and wildlife. The black fly problem has no simple solution because of the multitude of species present, the diverse and ecologically sensitive habitats in which they are found, and the problems inherent in measuring the extent of the damage they cause.
    [Show full text]
  • DNA Barcoding Distinguishes Pest Species of the Black Fly Genus <I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 11-2013 DNA Barcoding Distinguishes Pest Species of the Black Fly Genus Cnephia (Diptera: Simuliidae) I. M. Confitti University of Toronto K. P. Pruess University of Nebraska-Lincoln A. Cywinska Ingenomics, Inc. T. O. Powers University of Nebraska-Lincoln D. C. Currie University of Toronto and Royal Ontario Museum, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Confitti, I. M.; Pruess, K. P.; Cywinska, A.; Powers, T. O.; and Currie, D. C., "DNA Barcoding Distinguishes Pest Species of the Black Fly Genus Cnephia (Diptera: Simuliidae)" (2013). Faculty Publications: Department of Entomology. 616. http://digitalcommons.unl.edu/entomologyfacpub/616 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MOLECULAR BIOLOGY/GENOMICS DNA Barcoding Distinguishes Pest Species of the Black Fly Genus Cnephia (Diptera: Simuliidae) 1,2 3 4 5 1,2,6 I. M. CONFLITTI, K. P. PRUESS, A. CYWINSKA, T. O. POWERS, AND D. C. CURRIE J. Med. Entomol. 50(6): 1250Ð1260 (2013); DOI: http://dx.doi.org/10.1603/ME13063 ABSTRACT Accurate species identiÞcation is essential for cost-effective pest control strategies. We tested the utility of COI barcodes for identifying members of the black ßy genus Cnephia Enderlein (Diptera: Simuliidae). Our efforts focus on four Nearctic Cnephia speciesÑCnephia dacotensis (Dyar & Shannon), Cnephia eremities Shewell, Cnephia ornithophilia (Davies, Peterson & Wood), and Cnephia pecuarum (Riley)Ñthe latter two being current or potential targets of biological control programs.
    [Show full text]
  • Review and Phylogeny of Lutzsimulium (Diptera: Simuliidae)
    ZOOLOGIA 27 (5): 761–788, October, 2010 doi: 10.1590/S1984-46702010000500014 Review and phylogeny of Lutzsimulium (Diptera: Simuliidae) Leonardo H. Gil-Azevedo Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Simulídeos e Oncocercose. Avenida Brasil 4365, Manguinhos, Caixa Postal 926, 21045-900 Rio de Janeiro, RJ, Brazil. E-mail: [email protected] ABSTRACT. Lutzsimulium d’Andretta Jr & Vulcano, 1947 is an enigmatic South American genus with four species: L. flavopubescens Lutz, 1910, L. hirticosta Lutz, 1909, L. pernigrum Lutz, 1910 and L. simplicicolor Lutz, 1910. It can be diagnosed by median arms of furcasternum with projections; subbasal tooth of the claw reduced; wing basal cell absent; spermatheca with net-like structure; apex of trichomes coiled (pupa); gill with two main trunks (pupa); antennomere 3 equal to or longer than 1+2 (larva); hypostomal teeth reduced (larva); postgenal cleft deep (larva). A morphological cladistic analysis under equal weights, with the four Lutzsimulium species and six outgroups, resulted in two most parsimonious trees, with 81 steps, CI = 0.61 and RI = 0.68. The monophyly of the genus is corroborated, supported by 15 synapomorphies, therefore it is proposed that Kempfsimulium Py-Daniel & Nunes de Mello, 1982 is synonymous of Lutzsimulium. Also the status of Araucnephia Wygodzinsky & Coscarón, 1973 and Araucnephioides Wygodzinsky & Coscarón, 1973 are revalidated, because they do not form a monophyletic group with Lutzsimulium. All the species of Lutzsimulium are revised, with redescriptions, illustrations and identification keys for adults, pupa and larva. The male and larva of L. flavopubescens are described for the first time. KEY WORDS. Argentina; black-fly; Brazil; cladistics; Culicomorpha; Insecta; Neotropical Region; taxonomy.
    [Show full text]
  • Austroconops Wirth and Lee, a Lower Cretaceous Genus of Biting Midges
    PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3449, 67 pp., 26 ®gures, 6 tables August 23, 2004 Austroconops Wirth and Lee, a Lower Cretaceous Genus of Biting Midges Yet Living in Western Australia: a New Species, First Description of the Immatures and Discussion of Their Biology and Phylogeny (Diptera: Ceratopogonidae) ART BORKENT1 AND DOUGLAS A. CRAIG2 ABSTRACT The eggs and all four larval instars of Austroconops mcmillani Wirth and Lee and A. annettae Borkent, new species, are described. The pupa of A. mcmillani is also described. Life cycles and details of behavior of each life stage are reported, including feeding by the aquatic larvae on microscopic organisms in very wet soil/detritus, larval locomotion, female adult biting habits on humans and kangaroos, and male adult swarming. Austroconops an- nettae Borkent, new species, is attributed to the ®rst author. Cladistic analysis shows that the two extant Austroconops Wirth and Lee species are sister species. Increasingly older fossil species of Austroconops represent increasingly earlier line- ages. Among extant lineages, Austroconops is the sister group of Leptoconops Skuse, and together they form the sister group of all other Ceratopogonidae. Dasyhelea Kieffer is the sister group of Forcipomyia Meigen 1 Atrichopogon Kieffer, and together they form the sister group of the Ceratopogoninae. Forcipomyia has no synapomorphies and may be paraphyletic in relation to Atrichopogon. Austroconops is morphologically conservative (possesses many plesiomorphic features) in each life stage and this allows for interpretation of a number of features within Ceratopogonidae and other Culicomorpha. A new interpretation of Cretaceous fossil lineages shows that Austroconops, Leptoconops, Minyohelea Borkent, Jordanoconops 1 Royal British Columbia Museum, American Museum of Natural History, and Instituto Nacional de Biodiversidad.
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Simuliidae (Diptera)
    Bioges@aaphied History of the Neotropied adNeantmctic Simuliidae (Diptera) 'Institute Argontino de Investigaciones de las Zonas Aridas (MIZA),Casilla Cai-reo 507,5500 Mendoza, Ar- gentina. zDepartamento Cientifico de Entomologia, Musea de La Plats, Paseo del Bosquc sin, 1900 1,a Plata, Buenos Aires, Argentina Ahtrack Using the lineages of taxa and their distribution on different areas of endcmism, and hy cladistic methodology appiiod to biogeography, we try to define the biutic history of the areas of endemism based on Neotropical and Neantarctic Simuliidae. Using tho information of the eladograms of nine Central and South American monophyletic supraspecific taxa of Simuliini and 16 areas of endeminm, we perform a Component Analysis with wmponent 1.5, using the assumption 2. A sccond analysis was mark using Biogeographic Parsi- mony Analysis; the data matrix was ilnalyzed with the prowam NONA. The ciadograms obtained show the pos- sible sequence of historic separation of areas of endemism, evidencing the presence of two large biota: tho aus- tral (Noantaretic) and the tropical (Neotropical),that were maintained in partial isolation. The areas of ende- inism of the austral biota are: Subantarctic. Central Chile. Pataeonian. Puna. Monte and Pamosm: those of the vicariant events that affocted the Simuiiiciae are sea inbvessions,iheemergence of the ~ndesand elimati~han&s. Key words: Neotropical Region, Neant,arctic Rcgion, blackflies, cladistic biogeography, areas of endernism, biogeographic history The similitude between hiotas from different This contribution uses the information avail- areas has called the attention of naturalists, who able on Simuliidae (Diptera). The Simuliidae is a have tried to explain their prohahie relations with well represented group in the Central and South a numher of hypotheses.
    [Show full text]
  • Courtney CV 2020
    Gregory W. Courtney Professor Department of Entomology Iowa State University Ames, IA 50011 EDUCATION Ph.D. Entomology University of Alberta 1989 B.S. Zoology Oregon State University 1982 B.S. Entomology Oregon State University 1982 MAJOR RESEARCH INTERESTS Insect systematics and aquatic entomology, with emphasis on aquatic flies (Diptera); Diptera phylogeny; systematics and ecology of aquatic insects, especially aquatic midges and crane flies; stream ecology. EMPLOYMENT HISTORY Professor, 2007-present Dept of Entomology, Iowa State University Associate Professor, 2001-2007 Department of Entomology, Iowa State University Assistant Professor, 1997-2001 Dept of Entomology, Iowa State University Assistant Professor, 1995-1997 Dept of Biology, Grand Valley State University Postdoctoral Fellow (2 fellowships), 1990-1994 Dept of Entomology, Smithsonian Institution Postdoctoral Fellow, 1989 Dept of Entomology, University of Missouri – Columbia OTHER PROFESSIONAL APPOINTMENTS Adjunct Professor, 2006-present Dept of Ecology, Evolution, and Organismal Biology, ISU Research Associate, 2005-present Entomology Division, Natural History Museum of Los Angeles County Research Associate, 1994-present Departmentt of Entomology, Smithsonian Institution Chair, 2006-2009 Ecology & Evolutionary Biology Graduate Program, ISU Adjunct Professor, 2001-2006 Department of Biology, Chiang Mai University (Thailand) Adjunct Professor, 2001-2006 Department of Entomology, Kasetsart University (Thailand) RECENT AWARDS: Regent’s Award for Faculty Excellence; Iowa State University, 2015 Courtney 2 CURRENT DUTIES Primary responsibilities are in insect systematics, aquatic entomology, and insect biodiversity. Research interests include the systematics and phylogeny of Diptera and the morphology, phylogeny, biogeography, and ecology of aquatic insects. Major teaching responsibilities include field-based courses in Systematic Entomology and Aquatic Insects, and various offerings in Entomology and the Ecology and Evolutionary Biology interdepartmental program (EEB).
    [Show full text]
  • Diptera) of Finland 91 Doi: 10.3897/Zookeys.441.7600 CHECKLIST Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 441: 91–95 (2014) Checklist of the family Simuliidae (Diptera) of Finland 91 doi: 10.3897/zookeys.441.7600 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Simuliidae (Diptera) of Finland Jari Ilmonen1 1 Metsähallitus Natural Heritage Services, Vantaa, Finland Corresponding author: Jari Ilmonen ([email protected]) Academic editor: J. Kahanpää | Received 27 March 2014 | Accepted 19 June 2014 | Published 19 September 2014 http://zoobank.org/A50A1040-C3AB-4B83-BB4A-9A5166B183B9 Citation: Ilmonen J (2014) Checklist of the family Simuliidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 91–95. doi: 10.3897/zookeys.441.7600 Abstract A checklist of the family Simuliidae (Diptera) is provided for Finland and recognizes 56 species. One new record has been added (Simulium latipes) and one name sunken in synonymy (Simulium carpathicum). Furthermore, Simulium tsheburovae is treated as a doubtful record. Keywords Checklist, Finland, Diptera, Simuliidae Introduction Simuliidae is a relatively small family of nematoceran flies, comprised of 2,163 species (2,151 living and 12 fossil) world-wide (Adler and Crosskey 2014). Numerous taxo- nomical confusions and different views on nomenclature between eastern and western scientists have created confusion in blackfly studies for many decades. Some taxonomi- cal issues concerning species occurring in North Europe have been resolved by recent synonymisations (Raastad et al. 2010, Adler and Crosskey 2014). Systematics and nomenclature of the enumeration follow that of Adler and Crosskey (2014), and only the most relevant synonyms used in previous checklists for Finland are listed.
    [Show full text]
  • Black Fly Ectemnia Invenusta
    Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Black Fly Ectemnia invenusta Contributor (2005): Peter H. Adler (Clemson University) Reviewed and Edited (2012): Peter H. Adler (Clemson University) DESCRIPTION Taxonomy and Basic Description From Adler et al. 2004 Ectemnia invenusta was described by Francis Walker in 1848 from adults collected in Canada. The species was originally described in the genus Simulium and later transferred to the genus Cnephia before it was finally established as a member of the genus Ectemnia. The larvae and pupae were not discovered until the late 1940s. Black flies are members of the family Simuliidae, in the order Diptera, suborder Nematocera. Adult black flies are stout-bodied insects, somewhat resembling a buffalo, with a wingspan of about 3 to 9 mm (0.12 to 0.35 in.). They are typically dark colored, but also can be gray, orange, yellow or iridescent. They are well-known pests of humans and their animals, their economic importance stemming from the female’s requirement for a meal of bird or mammal blood to mature the eggs. However, only about 16% of the 255 species in North America are pests. The majority of species take blood inconspicuously from wildlife while about 10% of the North American species do not feed on blood. Females lay their eggs in streams and rivers where the larvae and pupae develop exclusively in flowing water. Larvae are beneficial elements of the food web of running waters, serving as prey for many aquatic organisms.They filter their food from the water current, using a specialized pair of head fans.
    [Show full text]