Full Text (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Full Text (PDF) Published OnlineFirst November 11, 2014; DOI: 10.1158/0008-5472.CAN-14-1041 Cancer Tumor and Stem Cell Biology Research Loss of Estrogen-Regulated microRNA Expression Increases HER2 Signaling and Is Prognostic of Poor Outcome in Luminal Breast Cancer Shannon T. Bailey1,2,3, Thomas Westerling1,2,3, and Myles Brown1,2,3 Abstract Among the genes regulated by estrogen receptor (ER) are Genome Atlas (TCGA). Among luminal tumors, these miRNAs miRNAs that play a role in breast cancer signaling pathways. To are expressed at higher levels in luminal A versus B tumors. determine whether miRNAs are involved in ER-positive breast Although their expression is uniformly low in luminal B tumors, cancer progression to hormone independence, we profiled the they are lost only in a subset of luminal A patients. Interestingly, expression of 800 miRNAs in the estrogen-dependent human this subset with low expression of these miRNAs had worse breast cancer cell line MCF7 and its estrogen-independent deriv- overall survival compared with luminal A patients with high ative MCF7:2A (MCF7:2A) using NanoString. We found 78 expression. We confirmed that miR125b directly targets HER2 miRNAs differentially expressed between the two cell lines, and that let-7c also regulates HER2 protein expression. In addi- including a cluster comprising let-7c, miR99a, and miR125b, tion, HER2 protein expression and activity are negatively corre- which is encoded in an intron of the long noncoding RNA lated with let-7c expression in TCGA. In summary, we identified LINC00478. These miRNAs are ER targets in MCF7 cells, and an ER-regulated miRNA cluster that regulates HER2, is lost with nearby ER binding and their expression are significantly progression to estrogen independence, and may serve as a bio- þ decreased in MCF7:2A cells. The expression of these miRNAs marker of poor outcome in ER luminal A breast cancer patients. was interrogated in patient samples profiled in The Cancer Cancer Res; 75(2); 436–45. Ó2014 AACR. Introduction been demonstrated to play important roles in normal develop- ment and physiology as well as regulating a number of disease The estrogen receptor (ER) is an estrogen-regulated transcrip- processes including breast cancer (7–9). miRNAs have been tion factor that controls the transcription of numerous coding and þ reported to be generally downregulated in cancers, and their loss noncoding RNAs and is a key target for therapy in ER breast leads to the increased expression of targeted genes, notably cancers (1, 2). In breast cancer, ER acts predominantly by binding including oncogenes that lead to cancer progression. In breast to distal enhancer sites to mediate transcription (3). Downstream cancer, a number of miRNAs have been reported to be abnormally effectors of ER activity in breast cancer include genes with pro- regulated (10–13). ER has also been reported to regulate the oncogenic functions including survival and growth. It has been expression of a number of miRNAs in response to its ligand known for more than 40 years that a primary determinant of the estradiol (E2; refs. 14–17). response of breast cancers to endocrine therapy is the expression þ Here, we report the identification of miRNAs directly regulated of ER, leading to the first stratification of breast cancer into ER þ À by ER and differentially expressed in the estrogen-dependent ER and ER subsets. More recently, refined subsets have been iden- breast cancer cell line MCF7 and its hormone-independent deriv- tified by gene expression profiles characteristic of clinical subtypes ative MCF7:2A. The let-7c/miR99a/miR125b cluster is expressed in which ER may play different roles (4–6). in MCF7 cells where it is directly targeted by ER and both miRNAs are small noncoding RNAs approximately 22 bp in expression and ER binding are lost in MC7:2A cells. Expression length that regulate the expression of genes by targeting the 30 of this miRNA cluster is uniformly low in luminal B breast cancers, untranslated regions (UTR) of mRNAs. These molecules have which have a worse outcome than luminal A. Within the luminal A subtype, low expression of the cluster predicts for poor patient 1Center for Functional Cancer Epigenetics, Dana-Farber Cancer Insti- outcome. We find that two members of the cluster, let-7c and tute, Boston, Massachusetts. 2Department of Medical Oncology, mirR-125b, inhibit HER2 protein expression and increased 3 Dana-Farber Cancer Institute, Boston, Massachusetts. Department expression of the HER2 protein in luminal A tumors lacking of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. expression of these miRNA may mediate their poor outcome. Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/). Materials and Methods Corresponding Author: Myles Brown, Harvard Medical School, Center for Cell culture and reagents Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline MCF7 cells were grown in high-glucose DMEM (Invitrogen) Avenue, D730, Boston, MA 02215. Phone: 617-632-3948; Fax: 617-582-8501; supplemented with 2 mmol/L L-glutamine, 10% (vol/vol) heat- E-mail: [email protected] inactivated FBS, 100 IU/mL penicillin, and 100 mg/mL strepto- doi: 10.1158/0008-5472.CAN-14-1041 mycin (Invitrogen) in a humidified incubator at 37C and 5% Ó 2014 American Association for Cancer Research. CO2. The MCF7:2A, MCF7:5C, and MCF7:LTLT cell lines were 436 Cancer Res; 75(2) January 15, 2015 Downloaded from cancerres.aacrjournals.org on September 29, 2021. © 2015 American Association for Cancer Research. Published OnlineFirst November 11, 2014; DOI: 10.1158/0008-5472.CAN-14-1041 ER-Regulated miRNA Expression and Breast Cancer Outcome grown in phenol red-free high-glucose DMEM (Invitrogen) gene as a reporter with Lipofectamine 2000 following the man- supplemented with 2 mmol/L L-glutamine, 5% (vol/vol) heat- ufacturer's instructions. After incubation for 48 hours, the cells inactivated FBS, 100 IU/mL penicillin, and 100 mg/mL strepto- were lysed in 1Â Passive Lysis Buffer and assayed with the Dual- mycin (Invitrogen). The MCF7:LTLT cells were also supplemented Luciferase Reporter Assay System (Promega) to measure the with 1 mmol/L letrazole. The MCF7:2A and MCF7:5C cell lines Renilla luciferase activity and that of firefly luciferase, which served were obtained from V. Craig Jordan (Department of Oncology, as a transfection control. Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC) and the MCF7:LTLT cell line was obtained Ago1 RNA immunoprecipitation from Angela Brodie (Department of Pharmacology and Experi- The Ago1 complex was immunoprecipitated as described in mental Therapeutics, University of Maryland School of Medicine, ref. 19. Briefly, A total of 2 Â 106 MCF7 and MCF7:2A cells in the Baltimore, MD). The Dharmacon anti-miRs and miRNA mimics growth phase were seeded in 10 cm plates. After 24 hours, the cells were obtained from ThermoFisher. were harvested in 400 mL lysis buffer (100 mmol/L KCl, 5 mmol/L MgCl2, 10 mmol/L HEPES, pH 7.0, 0.5% Nonidet P-40) supple- NanoString mented with 100 U/mL RNase Out (Invitrogen Cat# 10777-019) A total of 2 Â 106 MCF7 and MCF7:2A cells growing in the and Complete Protease Inhibitor Cocktail (Roche). The lysates exponential phase were seeded in 6-well plates and cultured for 2 were centrifuged, and 50 mL was set aside for input. days. The cells were then harvested for total RNA using the A total of 2 mg anti-Ago1 antibody (Abcam #ab5070) was miRNeasy Kit (Qiagen). A total of 100 ng of total RNA was prebound to protein A Dynabeads (Life Technologies). The anti- assayed using the Human nCounter miRNA Assay 2.0 Kit follow- body and lysate mixture was incubated overnight at 4C. The next ing the manufacturer's instructions (NanoString). Differences in morning, the beads were collected by magnetic separation, and miRNA expression were analyzed using the NanoSTRIDE software they were treated with DNaseI in NT2 buffer (50 mmol/L Tris, program (18) with default settings. Clustering of the differentially pH 7.4, 150 mmol/L NaCl, 1 mmol/L MgCl2, and 0.05% Nonidet expressed genes and heatmap generation was performed using the P-40) for 10 minutes at 37C. The beads were then washed twice GenePattern Server (genepattern.broadinstitute.org). The volcano with NT2 buffer, treated with proteinase K to digest protein, and plot displaying the significance of the miRNA differences was resuspended in 300 mL acid-phenol:chloroform (Ambion). The produced using R version 3.0.2. solution was centrifuged for 1 minute at 14,000 rpm at room temperature, the upper layer was collected, and the RNA was RT-PCR ethanol precipitated in the presence of GlycoBlue (Life Technol- For RT-PCR, total RNA was isolated using a combination of ogies, Inc.). The obtained RNA was resuspended in 30 mL water TRIzol (Sigma) and the RNeasy Mini Kit (Qiagen). First-strand and used to generate cDNA and subsequent RT-PCR analysis. cDNA, which was created using the Quantitect Reverse Transcription Kit (Qiagen) following the manufacturer's protocol, was assayed Transfection and immunoblotting using TaqMan miRNA assays (Life Technologies, Inc.), and the level MCF7 and MCF7:2A cells were transfected with 20 pmol of of U6 RNA was used as a control. The expression of LINC00478 was miRIDIAN miRNA anti-miRs or miRNA mimics as described measured using the Power SYBR Green PCR Master Mix (Life above. Cells were incubated for 5 days, and whole-cell extracts 0 Technologies, Inc.) with the following primers: 5 -GATCTGAGAA- were then harvested in RIPA buffer (TBS, 1% Nonidet P-40, 0.5% 0 0 CGCTGTCTGG-3 (forward) and 5 -AGAGTCTCCCTCCTGCTTCC- sodium deoxycholate, 0.1% SDS, 0.004% sodium azide).
Recommended publications
  • Molecular Reprogramming in Tomato Pollen During Development And
    Molecular reprogramming in tomato pollen during development and heat stress Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich Biowissenschaften (FB15) der Goethe-Universität Frankfurt am Main von Mario Keller geboren in Frankfurt am Main (Hessen) Frankfurt am Main 2018 (D30) Vom Fachbereich Biowissenschaften (FB15) der Goethe-Universität als Dissertation angenommen. Dekan: Prof. Dr. Sven Klimpel Gutachter: Prof. Dr. Enrico Schleiff, Jun. Prof. Dr. Michaela Müller-McNicoll Datum der Disputation: 25.03.2019 Index of contents Index of contents Index of contents ....................................................................................................................................... i Index of figures ........................................................................................................................................ iii Index of tables ......................................................................................................................................... iv Index of supplemental material ................................................................................................................ v Index of supplemental figures ............................................................................................................... v Index of supplemental tables ................................................................................................................ v Abbreviations ..........................................................................................................................................
    [Show full text]
  • Timo Lassmann, Yoshiko Maida 2, Yasuhiro Tomaru, Mami Yasukawa
    Int. J. Mol. Sci. 2015, 16, 1192-1208; doi:10.3390/ijms16011192 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Telomerase Reverse Transcriptase Regulates microRNAs Timo Lassmann 1,†, Yoshiko Maida 2,†, Yasuhiro Tomaru 1, Mami Yasukawa 2, Yoshinari Ando 1, Miki Kojima 1, Vivi Kasim 2, Christophe Simon 1, Carsten O. Daub 1, Piero Carninci 1, Yoshihide Hayashizaki 1,* and Kenkichi Masutomi 2,3,* 1 RIKEN Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; E-Mails: [email protected] (T.L.); [email protected] (Y.T.); [email protected] (Y.A.); [email protected] (M.K.); [email protected] (C.S.); [email protected] (C.O.D.); [email protected] (P.C.) 2 Cancer Stem Cell Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; E-Mails: [email protected] (Y.M.); [email protected] (M.Y.); [email protected] (V.K.) 3 Precursory Research for Embryonic Science and Technology (PREST), Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan † These authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (Y.H.); [email protected] (K.M.); Tel.: +81-45-503-9248 (Y.H.); +81-3-3547-5173 (K.M.); Fax: +81-45-503-9216 (Y.H.); +81-3-3547-5123 (K.M.). Academic Editor: Martin Pichler Received: 22 November 2014 / Accepted: 26 December 2014 / Published: 6 January 2015 Abstract: MicroRNAs are small non-coding RNAs that inhibit the translation of target mRNAs.
    [Show full text]
  • Charakterisierung Interindividueller Strahlenempfindlichkeit in Zellen Aus Tumorpatienten
    Charakterisierung interindividueller Strahlenempfindlichkeit in Zellen aus Tumorpatienten Anne Maria Dietz Charakterisierung interindividueller Strahlenempfindlichkeit in Zellen aus Tumorpatienten Dissertation an der Fakultät für Biologie der Ludwig-Maximilians-Universität München zur Erlangung des Doktorgrades der Naturwissenschaften Angefertigt an der Klinik und Poliklinik für Strahlentherapie und Radioonkolgie in der Arbeitsgruppe Molekulare Strahlenbiologie unter der Leitung von PD. Dr. Anna Friedl Vorgelegt von Anne Maria Dietz München, den 03. Dezember 2014 Erstgutachter: PD Dr. Anna A. Friedl Zweitgutachter: Prof. Dr. Peter Becker Tag der mündlichen Prüfung: 05.05.2015 Meinem Vater Inhaltsverzeichnis Inhaltsverzeichnis 1 Zusammenfassung ........................................................................................................................... 5 2 Einleitung ......................................................................................................................................... 7 2.1 Individuelle Strahlenempfindlichkeit ...................................................................................... 7 2.2 Das Chromosomeninstabilitätssyndrom Ataxia Telangiectasia .............................................. 9 2.3 Biomarker-Entdeckung im Zeitalter der Omics-Technologien .............................................. 12 2.3.1 Charakterisierung eines validen Biomarkers ................................................................. 12 2.3.2 Biomarker für Strahlenempfindlichkeit ........................................................................
    [Show full text]
  • Untersuchung Zur Rolle Des La-Verwandten Proteins LARP4B Im Mrna- Metabolismus
    Untersuchung zur Rolle des La-verwandten Proteins LARP4B im mRNA-Metabolismus Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Maritta Küspert aus Schwäbisch Hall Würzburg 2014 Eingereicht bei der Fakultät für Chemie und Pharmazie am: ....................................... Gutachter der schriftlichen Arbeit: 1. Gutachter: Prof. Dr. Utz Fischer 2. Gutachter: Prof. Dr. Alexander Buchberger Prüfer des öffentlichen Promotionskolloquiums: 1. Prüfer: Prof. Dr. Utz Fischer 2. Prüfer: Prof. Dr. Alexander Buchberger 3. Prüfer: Prof. Dr. Stefan Gaubatz Datum des öffentlichen Promotionskolloquiums: ......................................................... Doktorurkunde ausgehändigt am: ................................................................................ Zusammenfassung Eukaryotische messenger-RNAs (mRNAs) müssen diverse Prozessierungsreaktionen durchlaufen, bevor sie der Translationsmaschinerie als Template für die Proteinbiosynthese dienen können. Diese Reaktionen beginnen bereits kotranskriptionell und schließen das Capping, das Spleißen und die Polyadenylierung ein. Erst nach dem die Prozessierung abschlossen ist, kann die reife mRNA ins Zytoplasma transportiert und translatiert werden. mRNAs interagieren in jeder Phase ihres Metabolismus mit verschiedenen trans-agierenden Faktoren und bilden mRNA-Ribonukleoproteinkomplexe (mRNPs) aus. Dieser „mRNP-Code“ bestimmt das Schicksal jeder mRNA und reguliert dadurch die Genexpression auf posttranskriptioneller
    [Show full text]
  • Gynecologic and Obstetric Pathology
    ANNUAL MEETING ABSTRACTS 273A Design: From January 2011 to August 2013, 162 patients underwent robotic laparoscopic radical prostatectomy for clinically localized prostatic carcinoma at our institution. Gynecologic and Obstetric Pathology Periprostatic fat pads, yielded during defatting of the prostate, were dissected and sent to pathology for histopathologic examination in 133 cases. Clinical and pathological 1128 Recurrent Grade I, Stage Ia Endometrioid Carcinomas of the Uterus: staging was recorded according to the 2009 American Joint Committee on Cancer Analysis of Pathology and Correlation with Clinical Data (AJCC) criterion. SN Agoff. Virginia Mason Medical Center, Seattle, WA. Results: Of 133 patients whose periprostatic fat was examined, 32 (24%) patients had Background: Low-grade and low-stage endometrioid carcinoma of the uterus is thought lymph nodes in the periprostatic fat pads. Metastatic prostatic carcinoma to periprostatic to have an excellent prognosis in the vast majority of patients. However, despite the lack lymph nodes was detected in 5 individuals (3.8%). All 32 patients had bilateral pelvic of myometrial invasion or superfi cial invasion, some patients develop recurrent disease, lymphadenectomy. 3 of the 5 patients with positive periprostatic lymph nodes had no often in the vaginal apex. There is limited literature on these tumors, but recent analyses metastasis in pelvic lymph nodes, thereby upstaging 3 cases from T3N0 to T3N1. No have implicated the pattern of myoinvasion as a prognostic factor. The emphasis of relationship exists between the presences of periprostatic LNs and prostate weight, the current study is non-invasive or stage Ia, grade I endometrioid adenocarcinomas. patient age, pathological staging or Gleason score.
    [Show full text]
  • The Discovery Potential of RNA Processing Profiles
    bioRxiv preprint doi: https://doi.org/10.1101/049809; this version posted April 22, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The discovery potential of RNA processing profiles Amadís Pagès1,2, Ivan Dotu1,3, Roderic Guigó1,2 and Eduardo Eyras1,4,* 1Universitat Pompeu Fabra (UPF), E08003 Barcelona, Spain. 2Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, E08003 Barcelona, Spain. 3IMIM - Hospital del Mar Medical Research Institute. E08003 Barcelona, Spain. 4Catalan Institution for Research and Advanced Studies, E08010 Barcelona, Spain *correspondence to: [email protected] Abstract Small non-coding RNAs are highly abundant molecules that regulate essential cellular processes and are classified according to sequence and structure. Here we argue that read profiles from size-selected RNA sequencing, by capturing the post-transcriptional processing specific to each RNA family, provide functional information independently of sequence and structure. SeRPeNT is a computational method that exploits reproducibility across replicates and uses dynamic time-warping and density-based clustering algorithms to identify, characterize and compare small non-coding RNAs, by harnessing the power of read profiles. SeRPeNT is applied to: a) generate an extended human annotation with 671 new RNAs from known classes and 131 from new potential classes, b) show pervasive differential processing between cell compartments and c) predict new molecules with miRNA-like behaviour from snoRNA, tRNA and long non-coding RNA precursors, dependent on the miRNA biogenesis pathway.
    [Show full text]
  • Human Cytomegalovirus Reprograms the Expression of Host Micro-Rnas Whose Target Networks Are Required for Viral Replication: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2013-08-26 Human Cytomegalovirus Reprograms the Expression of Host Micro-RNAs whose Target Networks are Required for Viral Replication: A Dissertation Alexander N. Lagadinos University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Immunology and Infectious Disease Commons, Molecular Genetics Commons, and the Virology Commons Repository Citation Lagadinos AN. (2013). Human Cytomegalovirus Reprograms the Expression of Host Micro-RNAs whose Target Networks are Required for Viral Replication: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/M2R88R. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/683 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. HUMAN CYTOMEGALOVIRUS REPROGRAMS THE EXPRESSION OF HOST MICRO-RNAS WHOSE TARGET NETWORKS ARE REQUIRED FOR VIRAL REPLICATION A Dissertation Presented By Alexander Nicholas Lagadinos Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 26th, 2013 Program in Immunology and Virology
    [Show full text]
  • An Epigenetic Switch Regulates the Ontogeny of AXL-Positive/EGFR-Tki
    RESEARCH ARTICLE An epigenetic switch regulates the ontogeny of AXL-positive/EGFR-TKi- resistant cells by modulating miR-335 expression Polona Safaric Tepes1,2†, Debjani Pal1,3†, Trine Lindsted1, Ingrid Ibarra1, Amaia Lujambio4, Vilma Jimenez Sabinina1, Serif Senturk1, Madison Miller1, Navya Korimerla1,5, Jiahao Huang1, Lawrence Glassman6, Paul Lee6, David Zeltsman6, Kevin Hyman6, Michael Esposito6, Gregory J Hannon1,7, Raffaella Sordella1,8* 1Cold Spring Harbor Laboratory, Cold Spring Harbor, United States; 2Faculty of Pharmacy University of Ljubljana, Ljubljana, Slovenia; 3Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, United States; 4Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, United States; 5Graduate Program in Biomedical Engineering, Stony Brook University, New York, United States; 6Northwell Health Long Island, Jewish Medical Center, New York, United States; 7Cancer Research UK – Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; 8Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States *For correspondence: [email protected] Abstract Despite current advancements in research and therapeutics, lung cancer remains the †These authors contributed leading cause of cancer-related mortality worldwide. This is mainly due to the resistance that equally to this work patients develop against chemotherapeutic agents over the course of treatment. In the context of Competing interests: The non-small cell lung cancers (NSCLC) harboring EGFR-oncogenic mutations, augmented levels of authors declare that no AXL and GAS6 have been found to drive resistance to EGFR tyrosine kinase inhibitors such as competing interests exist. Erlotinib and Osimertinib in certain tumors with mesenchymal-like features.
    [Show full text]
  • Lupus Nephritis Supp Table 5
    Supplementary Table 5 : Transcripts and DAVID pathways correlating with the expression of CD4 in lupus kidney biopsies Positive correlation Negative correlation Transcripts Pathways Transcripts Pathways Identifier Gene Symbol Correlation coefficient with CD4 Annotation Cluster 1 Enrichment Score: 26.47 Count P_Value Benjamini Identifier Gene Symbol Correlation coefficient with CD4 Annotation Cluster 1 Enrichment Score: 3.16 Count P_Value Benjamini ILMN_1727284 CD4 1 GOTERM_BP_FAT translational elongation 74 2.50E-42 1.00E-38 ILMN_1681389 C2H2 zinc finger protein-0.40001984 INTERPRO Ubiquitin-conjugating enzyme/RWD-like 17 2.00E-05 4.20E-02 ILMN_1772218 HLA-DPA1 0.934229063 SP_PIR_KEYWORDS ribosome 60 2.00E-41 4.60E-39 ILMN_1768954 RIBC1 -0.400186083 SMART UBCc 14 1.00E-04 3.50E-02 ILMN_1778977 TYROBP 0.933302249 KEGG_PATHWAY Ribosome 65 3.80E-35 6.60E-33 ILMN_1699190 SORCS1 -0.400223681 SP_PIR_KEYWORDS ubl conjugation pathway 81 1.30E-04 2.30E-02 ILMN_1689655 HLA-DRA 0.915891173 SP_PIR_KEYWORDS protein biosynthesis 91 4.10E-34 7.20E-32 ILMN_3249088 LOC93432 -0.400285215 GOTERM_MF_FAT small conjugating protein ligase activity 35 1.40E-04 4.40E-02 ILMN_3228688 HLA-DRB1 0.906190291 SP_PIR_KEYWORDS ribonucleoprotein 114 4.80E-34 6.70E-32 ILMN_1680436 CSH2 -0.400299744 SP_PIR_KEYWORDS ligase 54 1.50E-04 2.00E-02 ILMN_2157441 HLA-DRA 0.902996561 GOTERM_CC_FAT cytosolic ribosome 59 3.20E-33 2.30E-30 ILMN_1722755 KRTAP6-2 -0.400334007 GOTERM_MF_FAT acid-amino acid ligase activity 40 1.60E-04 4.00E-02 ILMN_2066066 HLA-DRB6 0.901531942 SP_PIR_KEYWORDS
    [Show full text]
  • The Discovery Potential of RNA Processing Profiles
    bioRxiv preprint doi: https://doi.org/10.1101/049809; this version posted July 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The discovery potential of RNA processing profiles Amadís Pagès1,2, Ivan Dotu1,3, Joan Pallarès-Albanell1,2, Eulàlia Martí1,2, Roderic Guigó1,2, Eduardo Eyras1,4,* 1Pompeu Fabra University (UPF), E08003 Barcelona, Spain. 2Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, E08003 Barcelona, Spain. 3IMIM - Hospital del Mar Medical Research Institute. E08003 Barcelona, Spain. 4Catalan Institution for Research and Advanced Studies (ICREA). E08010 Barcelona, Spain *correspondence to: [email protected] Abstract Small non-coding RNAs are highly abundant molecules that regulate essential cellular processes and are classified according to sequence and structure. Here we argue that read profiles from size-selected RNA sequencing capture the post-transcriptional processing specific to each RNA family, thereby providing functional information independently of sequence and structure. We developed SeRPeNT, the first unsupervised computational method that exploits reproducibility across replicates and uses dynamic time-warping and density-based clustering algorithms to identify, characterize and compare small non-coding RNAs (sncRNAs) by harnessing the power of read profiles. We applied SeRPeNT to: a) generate an extended human annotation with 671 new sncRNAs from known classes and 131 from new potential classes, b) show pervasive differential processing between cell compartments and c) predict new molecules with miRNA-like behaviour from snoRNA, tRNA and long non-coding RNA precursors, potentially dependent on the miRNA biogenesis pathway.
    [Show full text]
  • André Guollo
    AVALIAÇÃO DO PERFIL DE EXPRESSÃO GÊNICA GLOBAL NA PROGRESSÃO DE LEUCOPLASIA VERRUCOSA PROLIFERATIVA ORAL ANDRÉ GUOLLO Dissertação apresentada à Fundação Antônio Prudente para a obtenção do título de Mestre em Ciências Área de Concentração: Oncologia Orientador: Prof. Dr. Fábio de Abreu Alves Co-Orientadora: Prof.ª Dra. Silvia Regina Rogatto São Paulo 2016 FICHA CATALOGRÁFICA Preparada pela Biblioteca da Fundação Antônio Prudente Guollo, André Avaliação do perfil de expressão gênica global na progressão de leucoplasia verrucosa proliferativa oral / André Guollo – São Paulo, 2016. 103p. Dissertação (Mestrado)-Fundação Antônio Prudente. Curso de Pós-Graduação em Ciências - Área de concentração: Oncologia. Orientador: Fábio de Abreu Alves Descritores: 1. LEUCOPLASIA/genética. 2. LEUCOPLASIA/etiologia. 3. NEOPLASIAS BUCAIS/diagnóstico. 4. INFECÇÕES POR PAPILLOMAVIRUS. “With a little help from my friends” Paul and John DEDICATÓRIA Dedico este trabalho a minha mãe Leda e meu pai Nelsi. E a todos os pacientes portadores desta condição. AGRADECIMENTOS Ao meu orientador Prof. Dr. Fábio de Abreu Alves, que abriu as portas do seu serviço para eu poder realizar minha formação, mudando minha carreira e minha vida. E pelo exemplo de profissionalismo e dedicação. A minha co-orientadora Profª Dra. Silvia Regina Rogatto, pela colaboração indispensável neste projeto, pelos conselhos, e aceitar que eu participasse da rotina do seu laboratório. E pelo exemplo de liderança. A minha família, minha mãe Leda, meu pai Nelsi, minha irmã Renata e meu irmão Felipe, por entenderem minha longa ausência, e por apoiarem minhas decisões. A minha namorada Fernanda Mariá, pelo Amor, pelo carinho, pela ajuda, e por estar sempre ao meu lado.
    [Show full text]
  • 1078-0432.CCR-15-0737.Full-Text.Pdf
    Author Manuscript Published OnlineFirst on September 18, 2015; DOI: 10.1158/1078-0432.CCR-15-0737 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Non-coding small RNAs as biomarkers for high stage and locally metastatic colorectal cancer Distinct profiles for mitochondrial t-RNAs and small nucleolar RNAs in locally invasive and metastatic colorectal cancer. Lai Xu1, Joseph Ziegelbauer2, Rong Wang1, Wells W. Wu3, Rong-Fong Shen3, Hartmut Juhl4, Yaqin Zhang1, Amy Rosenberg1* (corresponding author). 1OBP/DBRR-III, CDER, FDA, Silver Spring, Maryland, 2 HIV/AIDS Malignancy Branch, NCI, Bethesda, Maryland, 3 Facility for Biotechnology Resources, CBER, FDA, Silver Spring, Maryland, 4 Indivumed GMBH. Hamburg, Germany. Running Title: Small RNAs as novel biomarkers in colorectal cancer Keywords: MT-tRNAs, snoRNAs, microRNAs, mRNAs and tumor biomarkers *Correspondence should be addressed to Amy Rosenberg Bldg 71, Rm 2238 10903 New Hampshire Ave Silver Spring, MD 20903 ([email protected]) Disclosure of Potential Conflicts of Interest There are no current financial considerations to disclose. 1 Downloaded from clincancerres.aacrjournals.org on September 29, 2021. © 2015 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 18, 2015; DOI: 10.1158/1078-0432.CCR-15-0737 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Non-coding small RNAs as biomarkers for high stage and locally metastatic colorectal cancer Statement of translational relevance: The precise molecular profiling of colorectal cancer (CRC) should facilitate development of better staging systems as well as identify targets for development of novel treatments.
    [Show full text]