RESEARCH ARTICLE An epigenetic switch regulates the ontogeny of AXL-positive/EGFR-TKi- resistant cells by modulating miR-335 expression Polona Safaric Tepes1,2†, Debjani Pal1,3†, Trine Lindsted1, Ingrid Ibarra1, Amaia Lujambio4, Vilma Jimenez Sabinina1, Serif Senturk1, Madison Miller1, Navya Korimerla1,5, Jiahao Huang1, Lawrence Glassman6, Paul Lee6, David Zeltsman6, Kevin Hyman6, Michael Esposito6, Gregory J Hannon1,7, Raffaella Sordella1,8* 1Cold Spring Harbor Laboratory, Cold Spring Harbor, United States; 2Faculty of Pharmacy University of Ljubljana, Ljubljana, Slovenia; 3Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, United States; 4Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, United States; 5Graduate Program in Biomedical Engineering, Stony Brook University, New York, United States; 6Northwell Health Long Island, Jewish Medical Center, New York, United States; 7Cancer Research UK – Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; 8Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States *For correspondence:
[email protected] Abstract Despite current advancements in research and therapeutics, lung cancer remains the †These authors contributed leading cause of cancer-related mortality worldwide. This is mainly due to the resistance that equally to this work patients develop against chemotherapeutic agents over the course of treatment. In the context of Competing interests: The non-small cell lung cancers (NSCLC) harboring EGFR-oncogenic mutations, augmented levels of authors declare that no AXL and GAS6 have been found to drive resistance to EGFR tyrosine kinase inhibitors such as competing interests exist. Erlotinib and Osimertinib in certain tumors with mesenchymal-like features.