Molecular Reprogramming in Tomato Pollen During Development And

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Reprogramming in Tomato Pollen During Development And Molecular reprogramming in tomato pollen during development and heat stress Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich Biowissenschaften (FB15) der Goethe-Universität Frankfurt am Main von Mario Keller geboren in Frankfurt am Main (Hessen) Frankfurt am Main 2018 (D30) Vom Fachbereich Biowissenschaften (FB15) der Goethe-Universität als Dissertation angenommen. Dekan: Prof. Dr. Sven Klimpel Gutachter: Prof. Dr. Enrico Schleiff, Jun. Prof. Dr. Michaela Müller-McNicoll Datum der Disputation: 25.03.2019 Index of contents Index of contents Index of contents ....................................................................................................................................... i Index of figures ........................................................................................................................................ iii Index of tables ......................................................................................................................................... iv Index of supplemental material ................................................................................................................ v Index of supplemental figures ............................................................................................................... v Index of supplemental tables ................................................................................................................ v Abbreviations ........................................................................................................................................... vi Zusammenfassung ................................................................................................................................. vii Das Transkriptom von sich entwickelnden und wärmebelasteten Pollen ......................................... viii Die regulatorische Rolle von miRNAs in der Entwicklung und Hitzestressantwort von Pollen ........... ix Regulation von Proteinen während der Entwicklung und Hitzestressantwort von Pollen ................... xi Abstract ................................................................................................................................................. xiii 1 Introduction....................................................................................................................................... 1 1.1 Cellular transcriptome and proteome dynamic ........................................................................ 1 1.2 Development of pollen in flowering plants ............................................................................. 10 1.3 Response of pollen to elevated temperature ........................................................................ 13 1.4 Objectives of this study ......................................................................................................... 16 2 Methods.......................................................................................................................................... 17 2.1 Biological methods ................................................................................................................ 17 2.2 Databases ............................................................................................................................. 19 2.3 Programs ............................................................................................................................... 20 2.4 Determination of publication rates of transcriptomics technologies ...................................... 23 2.5 Transcriptome analysis ......................................................................................................... 23 2.6 Analysis of miRNAs in pollen ................................................................................................ 26 2.7 Analysis of the relationship between the transcriptome and proteome of pollen .................. 29 i Index of contents 3 Results ........................................................................................................................................... 32 3.1 The transcriptome of developing and heat-stressed pollen .................................................. 32 3.2 The regulatory role of miRNAs in the development and heat stress response of pollen ...... 45 3.3 Regulation of proteins during the development and heat stress response of pollen ............ 54 4 Discussion ...................................................................................................................................... 67 4.1 New insights in the development of pollen by transcriptome and proteome analyses ......... 67 4.2 Response of the pollen transcriptome and proteome to heat stress ..................................... 76 5 Conclusion and outlook .................................................................................................................. 83 6 References ..................................................................................................................................... 86 7 Supplemental Material ................................................................................................................. 102 Danksagung ............................................................................................................................................ A Erklärung ................................................................................................................................................. B Versicherung ........................................................................................................................................... B Lebenslauf ............................................................................................................................................... C ii Index of figures Index of figures Figure 1: Publication rates of transcriptomics technologies .................................................................... 3 Figure 2: Development of pollen in tomato ........................................................................................... 11 Figure 3: Determination of an mRNA detection threshold .................................................................... 33 Figure 4: PCA on the MACE libraries of non- and heat-stressed pollen ............................................... 34 Figure 5: Detected and stage-accumulated mRNAs in developing pollen ............................................ 35 Figure 6: Enriched MapMan terms within the groups of stage-accumulated mRNAs .......................... 37 Figure 7: Detected mRNAs between non- and heat-stressed pollen stages ........................................ 40 Figure 8: Response of pollen transcriptomes to HS.............................................................................. 41 Figure 9: HS regulation of Hsf and Hsp families in pollen developmental stages ................................ 42 Figure 10: Hsf and Hsp family members pointing towards a developmental priming of tetrads ........... 43 Figure 11: Stage-accumulated mRNAs differentially regulated in response to HS .............................. 44 Figure 12: Detected miRNAs in developing pollen................................................................................ 47 Figure 13: Clusters of stage-accumulated miRNAs .............................................................................. 48 Figure 14: Developmentally relevant MTIs ............................................................................................ 49 Figure 15: TFs regulated by miRNAs in a developmental context ........................................................ 50 Figure 16: Detected miRNAs between non- and heat-stressed pollen stages ..................................... 51 Figure 17: Protein group sizes and mRNA levels of majority and minority proteins ............................. 55 Figure 18: Correlation of non-stressed pollen transcriptomes and proteomes ..................................... 56 Figure 19: Detected and stage-accumulated protein groups in developing pollen ............................... 57 Figure 20: Two possible translation modes in developing pollen .......................................................... 58 Figure 21: mRNAs with direct and delayed translation during pollen development .............................. 59 Figure 22: Proteins accumulated in mature pollen as a result of direct and delayed translation .......... 62 Figure 23: Detected protein groups between non- and heat-stressed pollen stages ........................... 64 Figure 24: HS regulation of mRNAs encoding down- and upregulated proteins .................................. 65 Figure 25: Alteration of RP levels in response to HS ............................................................................ 66 Figure 26: New molecular insights in the development and HSR of pollen .......................................... 85 iii Index of tables Index of tables Table 1: Alignment statistics of the MACE libraries .............................................................................. 32 Table 2: Known and novel miRNAs among the predicted miRNAs ...................................................... 46 Table 3: HS-relevant MTIs with opposite regulation between miRNA and target mRNA ..................... 53 iv Index of supplemental material Index of supplemental material Index of supplemental figures Supplemental Figure 1: Overlap of down- and upregulated
Recommended publications
  • The Rise and Fall of the Bovine Corpus Luteum
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-6-2017 The Rise and Fall of the Bovine Corpus Luteum Heather Talbott University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Biochemistry Commons, Molecular Biology Commons, and the Obstetrics and Gynecology Commons Recommended Citation Talbott, Heather, "The Rise and Fall of the Bovine Corpus Luteum" (2017). Theses & Dissertations. 207. https://digitalcommons.unmc.edu/etd/207 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. THE RISE AND FALL OF THE BOVINE CORPUS LUTEUM by Heather Talbott A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor John S. Davis University of Nebraska Medical Center Omaha, Nebraska May, 2017 Supervisory Committee: Carol A. Casey, Ph.D. Andrea S. Cupp, Ph.D. Parmender P. Mehta, Ph.D. Justin L. Mott, Ph.D. i ACKNOWLEDGEMENTS This dissertation was supported by the Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture (NIFA) Pre-doctoral award; University of Nebraska Medical Center Graduate Student Assistantship; University of Nebraska Medical Center Exceptional Incoming Graduate Student Award; the VA Nebraska-Western Iowa Health Care System Department of Veterans Affairs; and The Olson Center for Women’s Health, Department of Obstetrics and Gynecology, Nebraska Medical Center.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Glucocerebrosidase Mutations and Synucleinopathies. Potential Role of Sterylglucosides and Relevance of Studying Both GBA1 and GBA2 Genes
    MINI REVIEW published: 28 June 2018 doi: 10.3389/fnana.2018.00052 Glucocerebrosidase Mutations and Synucleinopathies. Potential Role of Sterylglucosides and Relevance of Studying Both GBA1 and GBA2 Genes Rafael Franco 1,2*†, Juan A. Sánchez-Arias 3†, Gemma Navarro 1,2,4 and José L. Lanciego 2,3,5* 1Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain, 2Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain, 3Department of Neuroscience, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain, 4Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain, 5Department of Neuroscience, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain Gaucher’s disease (GD) is the most prevalent lysosomal storage disorder. GD is caused Edited by: by homozygous mutations of the GBA1 gene, which codes for beta-glucocerebrosidase Francesco Fornai, (GCase). Although GD primarily affects peripheral tissues, the presence of neurological Università degli Studi di Pisa, Italy symptoms has been reported in several GD subtypes. GBA1 mutations have Reviewed by: Rosario Moratalla, recently deserved increased attention upon the demonstration that both homo- and Consejo Superior de Investigaciones heterozygous GBA1 mutations represent the most important genetic risk factor for the Científicas (CSIC), Spain Fabrizio Michetti, appearance of synucleinopathies like Parkinson’s disease (PD) and dementia with Lewy Università Cattolica del Sacro Cuore, bodies (LBD). Although reduced GCase activity leads to alpha-synuclein aggregation, Italy the mechanisms sustaining a role for GCase in alpha-synuclein homeostasis still *Correspondence: Rafael Franco remain largely unknown.
    [Show full text]
  • Full Text (PDF)
    Published OnlineFirst November 11, 2014; DOI: 10.1158/0008-5472.CAN-14-1041 Cancer Tumor and Stem Cell Biology Research Loss of Estrogen-Regulated microRNA Expression Increases HER2 Signaling and Is Prognostic of Poor Outcome in Luminal Breast Cancer Shannon T. Bailey1,2,3, Thomas Westerling1,2,3, and Myles Brown1,2,3 Abstract Among the genes regulated by estrogen receptor (ER) are Genome Atlas (TCGA). Among luminal tumors, these miRNAs miRNAs that play a role in breast cancer signaling pathways. To are expressed at higher levels in luminal A versus B tumors. determine whether miRNAs are involved in ER-positive breast Although their expression is uniformly low in luminal B tumors, cancer progression to hormone independence, we profiled the they are lost only in a subset of luminal A patients. Interestingly, expression of 800 miRNAs in the estrogen-dependent human this subset with low expression of these miRNAs had worse breast cancer cell line MCF7 and its estrogen-independent deriv- overall survival compared with luminal A patients with high ative MCF7:2A (MCF7:2A) using NanoString. We found 78 expression. We confirmed that miR125b directly targets HER2 miRNAs differentially expressed between the two cell lines, and that let-7c also regulates HER2 protein expression. In addi- including a cluster comprising let-7c, miR99a, and miR125b, tion, HER2 protein expression and activity are negatively corre- which is encoded in an intron of the long noncoding RNA lated with let-7c expression in TCGA. In summary, we identified LINC00478. These miRNAs are ER targets in MCF7 cells, and an ER-regulated miRNA cluster that regulates HER2, is lost with nearby ER binding and their expression are significantly progression to estrogen independence, and may serve as a bio- þ decreased in MCF7:2A cells.
    [Show full text]
  • Timo Lassmann, Yoshiko Maida 2, Yasuhiro Tomaru, Mami Yasukawa
    Int. J. Mol. Sci. 2015, 16, 1192-1208; doi:10.3390/ijms16011192 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Telomerase Reverse Transcriptase Regulates microRNAs Timo Lassmann 1,†, Yoshiko Maida 2,†, Yasuhiro Tomaru 1, Mami Yasukawa 2, Yoshinari Ando 1, Miki Kojima 1, Vivi Kasim 2, Christophe Simon 1, Carsten O. Daub 1, Piero Carninci 1, Yoshihide Hayashizaki 1,* and Kenkichi Masutomi 2,3,* 1 RIKEN Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; E-Mails: [email protected] (T.L.); [email protected] (Y.T.); [email protected] (Y.A.); [email protected] (M.K.); [email protected] (C.S.); [email protected] (C.O.D.); [email protected] (P.C.) 2 Cancer Stem Cell Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; E-Mails: [email protected] (Y.M.); [email protected] (M.Y.); [email protected] (V.K.) 3 Precursory Research for Embryonic Science and Technology (PREST), Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan † These authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (Y.H.); [email protected] (K.M.); Tel.: +81-45-503-9248 (Y.H.); +81-3-3547-5173 (K.M.); Fax: +81-45-503-9216 (Y.H.); +81-3-3547-5123 (K.M.). Academic Editor: Martin Pichler Received: 22 November 2014 / Accepted: 26 December 2014 / Published: 6 January 2015 Abstract: MicroRNAs are small non-coding RNAs that inhibit the translation of target mRNAs.
    [Show full text]
  • Lucerastat, an Iminosugar with Potential As Substrate Reduction Therapy for Glycolipid Storage Disorders: Safety, Tolerability
    Guérard et al. Orphanet Journal of Rare Diseases (2017) 12:9 DOI 10.1186/s13023-017-0565-9 RESEARCH Open Access Lucerastat, an iminosugar with potential as substrate reduction therapy for glycolipid storage disorders: safety, tolerability, and pharmacokinetics in healthy subjects N. Guérard1*, O. Morand2 and J. Dingemanse1 Abstract Background: Lucerastat, an inhibitor of glucosylceramide synthase, has the potential to restore the balance between synthesis and degradation of glycosphingolipids in glycolipid storage disorders such as Gaucher disease and Fabry disease. The safety, tolerability, and pharmacokinetics of oral lucerastat were evaluated in two separate randomized, double-blind, placebo-controlled, single- and multiple-ascending dose studies (SAD and MAD, respectively) in healthy male subjects. Methods: In the SAD study, 31 subjects received placebo or a single oral dose of 100, 300, 500, or 1000 mg lucerastat. Eight additional subjects received two doses of 1000 mg lucerastat or placebo separated by 12 h. In the MAD study, 37 subjects received placebo or 200, 500, or 1000 mg b.i.d. lucerastat for 7 consecutive days. Six subjects in the 500 mg cohort received lucerastat in both absence and presence of food. Results: In the SAD study, 15 adverse events (AEs) were reported in ten subjects. Eighteen AEs were reported in 15 subjects in the MAD study, in which the 500 mg dose cohort was repeated because of elevated alanine aminotransferase (ALT) values in 4 subjects, not observed in other dose cohorts. No severe or serious AE was observed. No clinically relevant abnormalities regarding vital signs and 12–lead electrocardiograms were observed. Lucerastat Cmax values were comparable between studies, with geometric mean Cmax 10.5 (95% CI: 7.5, 14.7) and 11.1 (95% CI: 8.7, 14.2) μg/mL in the SAD and MAD study, respectively, after 1000 mg lucerastat b.i.d.
    [Show full text]
  • Charakterisierung Interindividueller Strahlenempfindlichkeit in Zellen Aus Tumorpatienten
    Charakterisierung interindividueller Strahlenempfindlichkeit in Zellen aus Tumorpatienten Anne Maria Dietz Charakterisierung interindividueller Strahlenempfindlichkeit in Zellen aus Tumorpatienten Dissertation an der Fakultät für Biologie der Ludwig-Maximilians-Universität München zur Erlangung des Doktorgrades der Naturwissenschaften Angefertigt an der Klinik und Poliklinik für Strahlentherapie und Radioonkolgie in der Arbeitsgruppe Molekulare Strahlenbiologie unter der Leitung von PD. Dr. Anna Friedl Vorgelegt von Anne Maria Dietz München, den 03. Dezember 2014 Erstgutachter: PD Dr. Anna A. Friedl Zweitgutachter: Prof. Dr. Peter Becker Tag der mündlichen Prüfung: 05.05.2015 Meinem Vater Inhaltsverzeichnis Inhaltsverzeichnis 1 Zusammenfassung ........................................................................................................................... 5 2 Einleitung ......................................................................................................................................... 7 2.1 Individuelle Strahlenempfindlichkeit ...................................................................................... 7 2.2 Das Chromosomeninstabilitätssyndrom Ataxia Telangiectasia .............................................. 9 2.3 Biomarker-Entdeckung im Zeitalter der Omics-Technologien .............................................. 12 2.3.1 Charakterisierung eines validen Biomarkers ................................................................. 12 2.3.2 Biomarker für Strahlenempfindlichkeit ........................................................................
    [Show full text]
  • Untersuchung Zur Rolle Des La-Verwandten Proteins LARP4B Im Mrna- Metabolismus
    Untersuchung zur Rolle des La-verwandten Proteins LARP4B im mRNA-Metabolismus Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Maritta Küspert aus Schwäbisch Hall Würzburg 2014 Eingereicht bei der Fakultät für Chemie und Pharmazie am: ....................................... Gutachter der schriftlichen Arbeit: 1. Gutachter: Prof. Dr. Utz Fischer 2. Gutachter: Prof. Dr. Alexander Buchberger Prüfer des öffentlichen Promotionskolloquiums: 1. Prüfer: Prof. Dr. Utz Fischer 2. Prüfer: Prof. Dr. Alexander Buchberger 3. Prüfer: Prof. Dr. Stefan Gaubatz Datum des öffentlichen Promotionskolloquiums: ......................................................... Doktorurkunde ausgehändigt am: ................................................................................ Zusammenfassung Eukaryotische messenger-RNAs (mRNAs) müssen diverse Prozessierungsreaktionen durchlaufen, bevor sie der Translationsmaschinerie als Template für die Proteinbiosynthese dienen können. Diese Reaktionen beginnen bereits kotranskriptionell und schließen das Capping, das Spleißen und die Polyadenylierung ein. Erst nach dem die Prozessierung abschlossen ist, kann die reife mRNA ins Zytoplasma transportiert und translatiert werden. mRNAs interagieren in jeder Phase ihres Metabolismus mit verschiedenen trans-agierenden Faktoren und bilden mRNA-Ribonukleoproteinkomplexe (mRNPs) aus. Dieser „mRNP-Code“ bestimmt das Schicksal jeder mRNA und reguliert dadurch die Genexpression auf posttranskriptioneller
    [Show full text]
  • The Design, Synthesis and Enzymatic Evaluation of Aminocyclitol Inhibitors of Glucocerebrosidase
    Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Electronic Theses and Dissertations from 2009 2014-01-22 The design, synthesis and enzymatic evaluation of aminocyclitol inhibitors of glucocerebrosidase Adams, Benjamin Tyler http://knowledgecommons.lakeheadu.ca/handle/2453/478 Downloaded from Lakehead University, KnowledgeCommons THE DESIGN, SYNTHESIS AND ENZYMATIC EVALUATION OF AMINOCYCLITOL INHIBITORS OF GLUCOCEREBROSIDASE By Benjamin Tyler Adams A Thesis submitted to The Department of Chemistry Faculty of Science and Environmental Studies Lakehead University In partial fulfillment of the requirements for the degree of Master of Science August 2013 © Benjamin Tyler Adams, 2013 i Abstract Gaucher disease, the most common lysosomal storage disorder, is caused by mutations in the GBA gene which codes for the enzyme glucocerebrosidase (GCase) resulting in its deficiency. GCase deficiency results in the accumulation of its substrate glucosylceramide (GlcCer) within the lysosomes leading to various severities of hepatosplenomegaly, bone disease and neurodegeneration. For most forms of Gaucher disease, the mutations in the GBA gene cause the enzyme to misfold but retain catalytic activity. However, the misfolded mutant enzyme is recognized and degraded by the endoplasmic reticulum-associated degradation (ERAD) pathway prior to delivery into the lysosome. Symptoms begin to show in patients when the function of the defective enzyme drops below 10-20% residual enzyme activity. There are currently three therapeutic approaches to treat Gaucher disease: enzyme replacement therapy (ERT), substrate reduction therapy (SRT), and a relatively recent addition, enzyme enhancement therapy (EET) through the use of pharmacological chaperones. Many pharmacological chaperones are competitive inhibitors that are capable of enhancing lysosomal GCase activity by stabilizing the folded conformation of GCase enabling it to bypass the ERAD pathway.
    [Show full text]
  • Disorders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses
    551 38 Disorders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses Marie T. Vanier, Catherine Caillaud, Thierry Levade 38.1 Disorders of Sphingolipid Synthesis – 553 38.2 Sphingolipidoses – 556 38.3 Niemann-Pick Disease Type C – 566 38.4 Neuronal Ceroid Lipofuscinoses – 568 References – 571 J.-M. Saudubray et al. (Eds.), Inborn Metabolic Diseases, DOI 10.1007/978-3-662-49771-5_ 38 , © Springer-Verlag Berlin Heidelberg 2016 552 Chapter 38 · Disor ders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses O C 22:0 (Fatty acid) Ganglio- series a series b HN OH Sphingosine (Sphingoid base) OH βββ β βββ β Typical Ceramide (Cer) -Cer -Cer GD1a GT1b Glc ββββ βββ β Gal -Cer -Cer Globo-series GalNAc GM1a GD1b Neu5Ac βαββ -Cer Gb4 ββ β ββ β -Cer -Cer αβ β -Cer GM2 GD2 Sphingomyelin Pcholine-Cer Gb3 B4GALNT1 [SPG46] [SPG26] β β β ββ ββ CERS1-6 GBA2 -Cer -Cer ST3GAL5 -Cer -Cer So1P So Cer GM3 GD3 GlcCer - LacCer UDP-Glc UDP Gal CMP -Neu5Ac - UDP Gal PAPS Glycosphingolipids GalCer Sulfatide ββ Dihydro -Cer -Cer SO 4 Golgi Ceramide apparatus 2-OH- 2-OH-FA Acyl-CoA FA2H CERS1-6 [SPG35] CYP4F22 ω-OH- ω-OH- FA Acyl-CoA ULCFA ULCFA-CoA ULCFA GM1, GM2, GM3: monosialo- Sphinganine gangliosides Endoplasmic GD3, GD2, GD1a, GD1b: disialo-gangliosides reticulum KetoSphinganine GT1b: trisialoganglioside SPTLC1/2 [HSAN1] N-acetyl-neuraminic acid: sialic acid found in normal human cells Palmitoyl-CoA Deoxy-sphinganine + Serine +Ala or Gly Deoxymethylsphinganine 38 . Fig. 38.1 Schematic representation of the structure of the main sphingolipids , and their biosynthetic pathways.
    [Show full text]
  • Gynecologic and Obstetric Pathology
    ANNUAL MEETING ABSTRACTS 273A Design: From January 2011 to August 2013, 162 patients underwent robotic laparoscopic radical prostatectomy for clinically localized prostatic carcinoma at our institution. Gynecologic and Obstetric Pathology Periprostatic fat pads, yielded during defatting of the prostate, were dissected and sent to pathology for histopathologic examination in 133 cases. Clinical and pathological 1128 Recurrent Grade I, Stage Ia Endometrioid Carcinomas of the Uterus: staging was recorded according to the 2009 American Joint Committee on Cancer Analysis of Pathology and Correlation with Clinical Data (AJCC) criterion. SN Agoff. Virginia Mason Medical Center, Seattle, WA. Results: Of 133 patients whose periprostatic fat was examined, 32 (24%) patients had Background: Low-grade and low-stage endometrioid carcinoma of the uterus is thought lymph nodes in the periprostatic fat pads. Metastatic prostatic carcinoma to periprostatic to have an excellent prognosis in the vast majority of patients. However, despite the lack lymph nodes was detected in 5 individuals (3.8%). All 32 patients had bilateral pelvic of myometrial invasion or superfi cial invasion, some patients develop recurrent disease, lymphadenectomy. 3 of the 5 patients with positive periprostatic lymph nodes had no often in the vaginal apex. There is limited literature on these tumors, but recent analyses metastasis in pelvic lymph nodes, thereby upstaging 3 cases from T3N0 to T3N1. No have implicated the pattern of myoinvasion as a prognostic factor. The emphasis of relationship exists between the presences of periprostatic LNs and prostate weight, the current study is non-invasive or stage Ia, grade I endometrioid adenocarcinomas. patient age, pathological staging or Gleason score.
    [Show full text]