Characterization of Muskox Habitat in Northeastern Alaska

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Muskox Habitat in Northeastern Alaska View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarWorks@UA CHARACTERIZATION OF MUSKOX HABITAT IN NORTHEASTERN ALASKA A THESIS Presented to the University of Alaska in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Constance Marsha O'Brien, B.A. Fairbanks, Alaska December 1988 CHARACTERIZATION OF MUSKOX HABITAT IN NORTHEASTERN ALASKA by Constance Marsha O'Brien RECOMMENDED: r—Ex Officifl Committee Member Advisory Committee Chair Head, Department of Biology, Fisheries and Wildlife APPROVED: Dean. College of Natiixal Sciences Dean of the Graduate School Date ' ABSTRACT In northeastern Alaska, muskoxen have been most often found in riparian habitats and proximate uplands. Vegetation was studied in nine adjacent river drainages; six of the drainages are regularly used by muskoxen. Twenty-two vegetation/land cover types were described using aerial photographs, point-intercept sampling, and ocular cover estimates. The proportion of each cover type was estimated for each drainage and compared among drainages by MANOVA. There was no significant difference among non-muskox drainages in the average proportion of cover types. A marginally significant difference was found among muskox drainages. There were no significant differences in the proportions of each vegetation type in non-muskox drainages versus muskox drainages. Five vegetation types associated with high forage quality and availability and low snow accumulation were often used by muskoxen. Four of these five vegetation types typically had <7% cover in the nine drainages and are critical habitat components in northeastern Alaska. i i i TABLE OF CONTENTS LIST OF F I G U R E S ............................................. .. vi LIST OF TABLES.............................................................vii LIST OF APPENDICES vi i i ACKNOWLEDGMENTS ......................................................... ix INTRODUCTION...................................... 1 STUDY OBJECTIVES......................................................... 5 STUDY AREA DESCRIPTIONS AND MUSKOX DISTRIBUTION .................... 6 N i g u a n a k .............................................................. 12 O k e r o k o v i k ........................................................... 13 J a g o .................................................................. 14 Okpilak................................................................ 15 H u l a h u l a ..............................................................15 Sadi erochit........................................................... 16 K a t a k t u r u k ........................................................... 17 T a m a y a r i a k ........................................................... 18 West Tamayariak....................................................... 19 METHODS .................................................................... 21 Selection of Areas for Habitat Description .................... 21 Reconnaissance of Study Areas...................................... 22 Quantitative Vegetation Description............................... 23 Vegetation Sampling ......................................... 23 Twinspan......................................................... 25 Stereoscopic Photograph Interpretation ......................... 26 Ground-Truthing.. 28 Statistical Comparisons of Study Areas ......................... 29 Fecal A n a l y s i s ....................................................... 31 RESULTS .................................................................... 33 Reconnaissance of Study Areas...................................... 33 Quantitative Vegetation Description................................39 Vegetation Sampling ......................................... 39 Twinspan......................................................... 43 Stereoscopic Photograph Interpretation ......................... 44 Ground-Truthing....................................................... 52 i v TABLE OF CONTENTS, continued RESULTS, continued Statistical Comparisons of Study Areas ......................... 54 Fecal A n a l y s i s ....................................................... 56 DISCUSSION.................................................................. 60 Muskox Diet........................................................... 60 Vegetation Types .....................................................63 Muskox Use of Study Areas........................................... 67 CONCLUSIONS AND RECOMMENDATIONS ....................................... 70 REFERENCES CITED........................................................... 73 PERSONAL COMMUNICATIONS ................................................ 83 v LIST OF FIGURES Figure 1. Rivers of the coastal plain in northeastern Alaska. 7 Fiqure 2. Study areas along the Jago, Okerokovik, and Niguanak rivers....................................................... 8 Figure 3. Study areas along the Sadlerochit, Hulahula, and Okpilak rivers............................................. 9 Figure 4. Study areas along the West Tamayariak, Tamayariak, and Katakturuk rivers .................................... 10 Figure 5. Estimated cover of 22 vegetation/land cover types in nine study areas in the A N W R ......................... 46 Figure 6. Number of ground-truthed sites (45 total) in eight accuracy categories before and after four descriptors were omitted for photo-interpretations.................. 53 vi LIST OF TABLES Table 1. Descriptions of vegetation/land cover types .............. 34 Table 2. Alpha-numerical codes and names of vegetation/land cover types .....................................................47 Table 3. Cross-reference of vegetation/land cover types in which muskoxen were observed in four ANWR studies .... 48 Table 4. Estimated cover (%) of frequently used upland and riparian vegetation types in nine study areas in the ANWR......................................................... 50 Table 5. Estimated cover (%) of infrequently used vegetation types in nine study areas in the A N W R ....................... 51 Table 6. Univariate F-test results for variables (vegetation/ land cover types) analyzed in two MANOVAs ................ 55 Table 7. Relative percent densities of plant fragments in winter and winter-type samples of muskox feces from four study areas in Alaska. .'................................ 57 Table 8. Relative percent densities of plant fragments in summer samples of muskox feces from four study areas in Alaska ................................................ 58 Table 9. Plants showing evidence of grazing and browsing by muskoxen during reconnaissance of study areas ........... 59 vii LIST OF APPENDICES Appendix A. Options used in Twinspan analysis of transects .... 84 Appendix B. Percent cover of plant species along 170 point-intercept transects in 15 vegetation types . 85 Appendix C. Percent cover of major taxa and cover categories for 177 ocular estimates (releves) made in conjunction with point-intercept transects to ' describe 16 vegetation types ........................... 105 Appendix D. Twinspan grouping of transects .......................... 109 Appendix E. Estimated cover of vegetation/land cover types for nine drainages in the ANWR, in hectares (ha) and percent (%)............................................. 113 Appendix F. Alpha-numerical codes and names of vegetation/ land cover types .......................................... 114 vi i i ACKNOWLEDGMENTS This study was funded by the Alaska Department of Fish and Game through the Alaska Cooperative Wildlife Research Unit. The U.S. Fish and Wildlife Service, Arctic National Wildlife Refuge, provided logistic support, information, and aerial photographs. Special thanks are extended to the members of my committee: Dr. David Klein, chairman; Patricia Reynolds; and Drs. Robert White, Terry Chapin, and Gerald Garner. Their continued interest in the project and scrutiny of the manuscript were greatly appreciated. Dr. Dana Thomas provided crucial assistance in disentangling the statistics. I would like to thank Drs. Skip Walker, Tass Kelso, and David Murray for contributing their time and expertise. Norma Mosso, Kathy Pearse, and Nan Lederer each contributed enormously to this project. I would like to thank the many University of Alaska professors and graduate students who assisted me, particularly Robin O'Connor, Kathleen Frisby, Claire Fleischman, Cris Linesch, and Clay Cranor for being there when I needed them most. Drs. John Marr, Charles Olmsted, and David Cooper introduced me to the dynamics of arctic and alpine ecosystems, and I thank them. Special recognition goes to my husband, Cort Zachel, and to my parents for their continued support during this process. ix INTRODUCTION In 1930, muskoxen (Ovibos moschatus) from Greenland were transplanted to Alaska where they were held in captivity in College, Alaska. In 1935 and 1936, 31 of these muskoxen were released on Nunivak Island, Alaska. Subsequently, there were two transplants of muskoxen from Nunivak Island to the northeastern coast of Alaska, in an effort to reestablish muskoxen in historical range areas (Burris and McKnight 1973). Fifty-one muskoxen were released during the first transplant in 1969 on Barter Island (Griffin 1969, in U.S. Fish and Wildlife Service (USFWS) 1986), and in 1970, an additional 13 muskoxen were released at the Kavik River, 130 km west of Barter Island (Jennings and Burris 1971, in USFWS 1986). Muskoxen were also transplanted from Nunivak
Recommended publications
  • Cervid TB DPP Testing August 2017
    Cervid TB DPP Testing August 2017 Elisabeth Patton, DVM, PhD, Diplomate ACVIM Veterinary Program Manager Wisconsin Department of Agriculture, Trade and Consumer Protection Division of Animal Health Why Use the Serologic Test? Employ newer, accurate diagnostic test technology Minimizes capture and handling events for animal safety Expected to promote additional cervid TB testing • Requested by USAHA and cervid industry Comparable sensitivity and specificity to skin tests 2 Historical Timeline 3 Stat-Pak licensed for elk and red deer, 2009 White-tailed and fallow deer, 2010-11 2010 - USAHA resolution - USDA evaluate Stat-Pak as official TB test 2011 – Project to evaluate TB serologic tests in cervids (Cervid Serology Project); USAHA resolution to approve Oct 2012 – USDA licenses the Dual-Path Platform (DPP) secondary test for elk, red deer, white-tailed deer, and fallow deer Improved specificity compared to Stat-Pak Oct 2012 – USDA approves the Stat-Pak (primary) and DPP (secondary) as official bovine TB tests in elk, red deer, white- tailed deer, fallow deer and reindeer Recent Actions Stat-Pak is no longer in production 9 CFR 77.20 has been amended to approve the DPP as official TB program test. An interim rule was published on 9 January 2013 USDA APHIS created a Guidance Document (6701.2) to provide instructions for using the tests https://www.aphis.usda.gov/animal_health/animal_ diseases/tuberculosis/downloads/vs_guidance_670 1.2_dpp_testing.pdf 4 Cervid Serology Project Objective 5 Evaluate TB detection tests for official bovine tuberculosis (TB) program use in captive and free- ranging cervids North American elk (Cervus canadensis) White-tailed deer (Odocoileus virginianus) Reindeer (Rangifer tarandus) Primary/screening test AND Secondary Test: Dual Path Platform (DPP) Rapid immunochromatographic lateral-flow serology test Detect antibodies to M.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Bison and Elk in Yellowstone National Park - Linking Ecosystem, Animal Nutrition, and Population Processes
    Bison and Elk in Yellowstone National Park - Linking Ecosystem, Animal Nutrition, and Population Processes Part 3 - Final Report to U.S. Geological Survey Biological Resources Division Bozeman, MT Project: Spatial-Dynamic Modeling of Bison Carrying Capacity in the Greater Yellowstone Ecosystem: A Synthesis of Bison Movements, Population Dynamics, and Interactions with Vegetation Michael B. Coughenour Natural Resource Ecology Laboratory Colorado State University Fort Collins, Colorado December 2005 INTRODUCTION Over the last three decades bison in Yellowstone National Park have increased in numbers and expanded their ranges inside the park up to and beyond the park boundaries (Meagher 1989a,b, Taper et al. 2000, Meagher et al. 2003). Potentially, they have reached, if not exceeded the capacity of the park to support them. The bison are infected with brucellosis, and it is feared that the disease will be readily transmitted to domestic cattle, with widespread economic repercussions. Brucellosis is an extremely damaging disease for livestock, causing abortions and impaired calf growth. After a long campaign beginning in 1934 and costing over $1.3 billion (Thorne et al. 1991), brucellosis has been virtually eliminated from cattle and bison everywhere in the conterminous United States except in the Greater Yellowstone Ecosystem. Infection of any livestock in Montana, Idaho, or Wyoming would result in that state losing its brucellosis-free status, leading to considerable economic hardships resulting from intensified surveillance, testing, and control (Thorne et al. 1991). Management alternatives that have been considered include hazing animals back into the park, the live capture and holding of animals that leave the park, and culling or removal from within the park.
    [Show full text]
  • Differential Habitat Selection by Moose and Elk in the Besa-Prophet Area of Northern British Columbia
    ALCES VOL. 44, 2008 GILLINGHAM AND PARKER – HABITAT SELECTION BY MOOSE AND ELK DIFFERENTIAL HABITAT SELECTION BY MOOSE AND ELK IN THE BESA-PROPHET AREA OF NORTHERN BRITISH COLUMBIA Michael P. Gillingham and Katherine L. Parker Natural Resources and Environmental Studies Institute, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9, email: [email protected] ABSTRACT: Elk (Cervus elaphus) populations are increasing in the Besa-Prophet area of northern British Columbia, coinciding with the use of prescribed burns to increase quality of habitat for ungu- lates. Moose (Alces alces) and elk are now the 2 large-biomass species in this multi-ungulate, multi- predator system. Using global positioning satellite (GPS) collars on 14 female moose and 13 female elk, remote-sensing imagery of vegetation, and assessments of predation risk for wolves (Canis lupus) and grizzly bears (Ursus arctos), we examined habitat use and selection. Seasonal ranges were typi- cally smallest for moose during calving and for elk during winter and late winter. Both species used largest ranges in summer. Moose and elk moved to lower elevations from winter to late winter, but subsequent calving strategies differed. During calving, moose moved to lowest elevations of the year, whereas elk moved back to higher elevations. Moose generally selected for mid-elevations and against steep slopes; for Stunted spruce habitat in late winter; for Pine-spruce in summer; and for Subalpine during fall and winter. Most recorded moose locations were in Pine-spruce during late winter, calv- ing, and summer, and in Subalpine during fall and winter.
    [Show full text]
  • Deer, Elk, Bear, Moose, Lynx, Bobcat, Waterfowl
    Hunt ID: 1501-CA-AL-G-L-MDeerWDeerElkBBearMooseLynxBobcatWaterfowl-M1SR-O1G-N2EGE Great Economy Deer and Moose Hunts south of Edmonton, Alberta, Canada American Hunters trekking to Canada for low cost moose, along with big Mule Deer and Whitetail and been pleasantly surprised by the weather and temperatures that they were greeted by when they hunted British Columbia, located in Canada, north of Washington State. Canada should be and is cold but there are exceptions, if you know where to go. In BC if you stay on the western Side of the Rocky Mountains the weather is quite mild because it is warmed by the Pacific Ocean. If you hunt east of the Rocky Mountains, what I call the Canadian Interior it can be as much as 50 degrees colder depending on the time of the year. The area has now preference point requirements, the Outfitter has his allotted vouchers so you can get a reasonably priced license and, in most cases, less than you can get for the same animal in the US as a non-resident. You don’t even buy the voucher from the Outfitter it is part of his hunt cost because without it you could not get a license anyway. Travel is easy and the residents are friendly. Like anywhere outside the US you will need a easy to acquire Passport if you don’t have one, just don’t wait until the last minute to get one for $10 from your local Post office by where you live. The one thing in Canada is if you have a felony on your record Canada will not allow you into their safe Country.
    [Show full text]
  • Mule Deer and Antelope Staff Specialist Peregrine Wolff, Wildlife Health Specialist
    STATE OF NEVADA Steve Sisolak, Governor DEPARTMENT OF WILDLIFE Tony Wasley, Director GAME DIVISION Brian F. Wakeling, Chief Mike Cox, Bighorn Sheep and Mountain Goat Staff Specialist Pat Jackson, Predator Management Staff Specialist Cody McKee, Elk Staff Biologist Cody Schroeder, Mule Deer and Antelope Staff Specialist Peregrine Wolff, Wildlife Health Specialist Western Region Southern Region Eastern Region Regional Supervisors Mike Scott Steve Kimble Tom Donham Big Game Biologists Chris Hampson Joe Bennett Travis Allen Carl Lackey Pat Cummings Clint Garrett Kyle Neill Cooper Munson Sarah Hale Ed Partee Kari Huebner Jason Salisbury Matt Jeffress Kody Menghini Tyler Nall Scott Roberts This publication will be made available in an alternative format upon request. Nevada Department of Wildlife receives funding through the Federal Aid in Wildlife Restoration. Federal Laws prohibit discrimination on the basis of race, color, national origin, age, sex, or disability. If you believe you’ve been discriminated against in any NDOW program, activity, or facility, please write to the following: Diversity Program Manager or Director U.S. Fish and Wildlife Service Nevada Department of Wildlife 4401 North Fairfax Drive, Mailstop: 7072-43 6980 Sierra Center Parkway, Suite 120 Arlington, VA 22203 Reno, Nevada 8911-2237 Individuals with hearing impairments may contact the Department via telecommunications device at our Headquarters at 775-688-1500 via a text telephone (TTY) telecommunications device by first calling the State of Nevada Relay Operator at 1-800-326-6868. NEVADA DEPARTMENT OF WILDLIFE 2018-2019 BIG GAME STATUS This program is supported by Federal financial assistance titled “Statewide Game Management” submitted to the U.S.
    [Show full text]
  • Muskox Management Report Alaska Dept of Fish and Game Wildlife
    Muskox Management Report of survey-inventory activities 1 July 1998–30 June 2000 Mary V. Hicks, Editor Alaska Department of Fish and Game Division of Wildlife Conservation December 2001 ADF&G Please note that population and harvest data in this report are estimates and may be refined at a later date. If this report is used in its entirety, please reference as: Alaska Department of Fish and Game. 2001. Muskox management report of survey-inventory activities 1 July 1998–30 June 2000. M.V. Hicks, editor. Juneau, Alaska. If used in part, the reference would include the author’s name, unit number, and page numbers. Authors’ names can be found at the end of each unit section. Funded in part through Federal Aid in Wildlife Restoration, Proj. 16, Grants W-27-2 and W-27-3. LOCATION 2 GAME MANAGEMENT UNIT: 18 (41,159 mi ) GEOGRAPHIC DESCRIPTION: Yukon–Kuskokwim Delta BACKGROUND NUNIVAK ISLAND Muskoxen were once widely distributed in northern and western Alaska but were extirpated by the middle or late 1800s. In 1929, with the support of the Alaska Territorial Legislature, the US Congress initiated a program to reintroduce muskoxen in Alaska. Thirty-one muskoxen were introduced from Greenland to Nunivak Island in Unit 18 during 1935–1936, as a first step toward reintroducing this species to Alaska. The Nunivak Island population grew slowly until approximately 1958 and then began a period of rapid growth. The first hunting season was opened in 1975, and the population has since fluctuated between 400 and 750 animals, exhibiting considerable reproductive potential, even under heavy harvest regimes.
    [Show full text]
  • Cust-Gall Forest Plan Comments May 2019
    PO Box 8783 ● Missoula, MT 59807-8783 May 15, 2019 Custer Gallatin National Forest Attn: Forest Plan Revision Team P.O. Box 130 Bozeman, MT 59771 Dear Custer-Gallatin Forest Plan Revision Team, Thank you for the opportunity to comment on the revision of the Custer Gallatin Forest Plan. We are writing on behalf of over 700 members of the Montana Native Plant Society (MNPS). The Society is a non-profit organization dedicated to preserving, conserving, and studying Montana’s native plants and plant communities, and educating the public about the values of our native flora and its habitats. Our comments, organized by draft document page, are below and submitted online. 2.3.5 Watershed and Aquatics (WTR), Objectives 01 MNPS believes that stream and wetland restoration is important for maintaining plant species diversity. The natural hydrology of wetlands such as fens and marshes as well as riparian areas should be protected and restored as much as possible. 2.3.5 Watershed and Aquatics (WTR), Objectives 03 MNPS believes that protection and restoration of at-risk aquatic plants should be prioritized. 2.3.9 At-Risk Plant Species (PRISK), Objectives 01 At-risk species occurring on Custer-Gallatin should first be ranked based on their degree of risk. For example, Carex gravida is associated with green ash woodlands on the Sioux and Ashland districts. These woodlands are heavily used for livestock grazing. On the other hand, Shoshonea pulvinata is globally rare but is not threatened by human activities at this time, so at this time it should be ranked lower than Carex gravida.
    [Show full text]
  • Horned Animals
    Horned Animals In This Issue In this issue of Wild Wonders you will discover the differences between horns and antlers, learn about the different animals in Alaska who have horns, compare and contrast their adaptations, and discover how humans use horns to make useful and decorative items. Horns and antlers are available from local ADF&G offices or the ARLIS library for teachers to borrow. Learn more online at: alaska.gov/go/HVNC Contents Horns or Antlers! What’s the Difference? 2 Traditional Uses of Horns 3 Bison and Muskoxen 4-5 Dall’s Sheep and Mountain Goats 6-7 Test Your Knowledge 8 Alaska Department of Fish and Game, Division of Wildlife Conservation, 2018 Issue 8 1 Sometimes people use the terms horns and antlers in the wrong manner. They may say “moose horns” when they mean moose antlers! “What’s the difference?” they may ask. Let’s take a closer look and find out how antlers and horns are different from each other. After you read the information below, try to match the animals with the correct description. Horns Antlers • Made out of bone and covered with a • Made out of bone. keratin layer (the same material as our • Grow and fall off every year. fingernails and hair). • Are grown only by male members of the • Are permanent - they do not fall off every Cervid family (hoofed animals such as year like antlers do. deer), except for female caribou who also • Both male and female members in the grow antlers! Bovid family (cloven-hoofed animals such • Usually branched.
    [Show full text]
  • FOH Newsletter 2012
    FRIENDS Of The University Of Montana HERBARIUM Spring 2012 ....Bruce McCune MORE THAN VASCULAR AT MONTU By Andrea Pipp While perusing the vascular plant, moss, and lichen were the ecological relatives of mosses and incorporated specimens at MONTU you might see the name of Bruce them into his work. He relied on Mason Hale’s first edi- McCune. During his years at UM (1971-1979) Bruce con- tion of How to Know the Lichens and a long paper with tributed mounts of 62 vascular plant species and a larger keys titled “Lichens of the State of Washington” by Grace number of moss and lichen vouchers to the herbarium. Howard. He soon realized Hale’s book was very biased Bruce came to Missoula from the Midwest. Having toward eastern species, for even the most conspicuous grown up in Cincinnati and after completing his freshman lichens found on Mt. Sentinel weren’t in the book. Later year at Lawrence University in Appleton, Wisconsin, he discovered that Howard’s key contained as much mis- Bruce attended a wilderness botany class in northern Min- (Continued on page 7) nesota. There in the moss-carpeted forests he became quite interested in mosses and, in his words, was swept away by a remarkable young lady (Patricia Muir). Eager to escape the industrial winter of Appleton, Bruce fol- lowed Patricia to the University of Montana. That was 1971. The ‘new’ library was under construction, Hitch- cock and Cronquist, as a book, did not exist, and Botany stood on its own – a vibrant, active department, firmly ensconced in its own building.
    [Show full text]
  • Habitat Guidelines for Mule Deer: California Woodland Chaparral Ecoregion
    THE AUTHORS : MARY L. SOMMER CALIFORNIA DEPARTMENT OF FISH AND GAME WILDLIFE BRANCH 1812 NINTH STREET SACRAMENTO, CA 95814 REBECCA L. BARBOZA CALIFORNIA DEPARTMENT OF FISH AND GAME SOUTH COAST REGION 4665 LAMPSON AVENUE, SUITE C LOS ALAMITOS, CA 90720 RANDY A. BOTTA CALIFORNIA DEPARTMENT OF FISH AND GAME SOUTH COAST REGION 4949 VIEWRIDGE AVENUE SAN DIEGO, CA 92123 ERIC B. KLEINFELTER CALIFORNIA DEPARTMENT OF FISH AND GAME CENTRAL REGION 1234 EAST SHAW AVENUE FRESNO, CA 93710 MARTHA E. SCHAUSS CALIFORNIA DEPARTMENT OF FISH AND GAME CENTRAL REGION 1234 EAST SHAW AVENUE FRESNO, CA 93710 J. ROCKY THOMPSON CALIFORNIA DEPARTMENT OF FISH AND GAME CENTRAL REGION P.O. BOX 2330 LAKE ISABELLA, CA 93240 Cover photo by: California Department of Fish and Game (CDFG) Suggested Citation: Sommer, M. L., R. L. Barboza, R. A. Botta, E. B. Kleinfelter, M. E. Schauss and J. R. Thompson. 2007. Habitat Guidelines for Mule Deer: California Woodland Chaparral Ecoregion. Mule Deer Working Group, Western Association of Fish and Wildlife Agencies. TABLE OF CONTENTS INTRODUCTION 2 THE CALIFORNIA WOODLAND CHAPARRAL ECOREGION 4 Description 4 Ecoregion-specific Deer Ecology 4 MAJOR IMPACTS TO MULE DEER HABITAT 6 IN THE CALIFORNIA WOODLAND CHAPARRA L CONTRIBUTING FACTORS AND SPECIFIC 7 HABITAT GUIDELINES Long-term Fire Suppression 7 Human Encroachment 13 Wild and Domestic Herbivores 18 Water Availability and Hydrological Changes 26 Non-native Invasive Species 30 SUMMARY 37 LITERATURE CITED 38 APPENDICIES 46 TABLE OF CONTENTS 1 INTRODUCTION ule and black-tailed deer (collectively called Forest is severe winterkill. Winterkill is not a mule deer, Odocoileus hemionus ) are icons of problem in the Southwest Deserts, but heavy grazing the American West.
    [Show full text]
  • Section E, Hoofed Animals
    Hoofed Animals Hoofed Section E Caribou Muskox Section E-1 Section E-2 Moose Section E-3 Section E Diseases and Parasites of Hoofed Animals Nose and throat bots Hoofed Animals Hoofed Head Photo Credit: NWT Wildlife Division Caribou Section E-1.1 Lumpy jaw Contagious ecthyma Photo Credit: NWT Wildlife Division Caribou Section E-1.2 Photo Credit: GNWT Muskox Section E-2.1 Muskox Section E-2.2 Hoofed Animals Hoofed Section E Diseases and Parasites of Hoofed Animals Besnoitiosis Wildlife Division NWT Photo credit: Head Photo Credit: Susan Kutz Caribou Section E-1.11 Muskox Section E-2.6 Ticks Skin Moose Section E-3.1 Section E Diseases and Parasites of Hoofed Animals Warts Hoofed Animals Hoofed Skin Photo Credit: D. Campbell Caribou Section E-1.3 Moose Section E-3.2 Warbles Contagious ecthyma Photo credit: Dr. G. Wobeser Photo credit: Dr. Photo Credit: GNWT Caribou Section E-1.4 Muskox Section E-2.2 Hoofed Animals Hoofed Section E Diseases and Parasites of Hoofed Animals Besnoitiosis Wildlife Division NWT Photo credit: Photo Credit: Susan Kutz Caribou Section E-1.11 Muskox Section E-2.6 Skin Brucellosis Photo credit: Dr. G. Wobeser G. Photo credit: Dr. Caribou Section E-1.10 Muskox Section E-2.5 Moose Section E-3.6 Section E Diseases and Parasites of Hoofed Animals Liver tapeworm cyst Hoofed Animals Hoofed Photo credit: Dr. G. Wobeser Photo credit: Dr. Caribou Section E-1.5 Organs Moose Section E-3.3 Tapeworm cysts in the Lungs (Hydatid disease) Brucellosis Photo credit: Dr.
    [Show full text]