Evobio Pp I-Ii

Total Page:16

File Type:pdf, Size:1020Kb

Evobio Pp I-Ii EVOLUTION, SCIENCE, AND SOCIETY EVOLUTIONARY BIOLOGY AND THE NATIONAL RESEARCH AGENDA A companion document serves as an executive summary. To receive copies of either report, or for more informa- tion, please consult our web site via http://www.amnat.org or contact one of the Chairs listed below. Prepared by delegates representing the following scientific societies. These societies have all endorsed the final document. American Society of Naturalists Animal Behavior Society Ecological Society of America Genetics Society of America Paleontological Society Society for Molecular Biology and Evolution Society for the Study of Evolution Society of Systematic Biologists Additional endorsement by: American Institute of Biological Sciences With financial sponsorship from: A.P. Sloan Foundation National Science Foundation Editorial Chair: Douglas J. Futuyma, State University of New York–Stony Brook Organizational Chair: Thomas R. Meagher, Rutgers, The State University of New Jersey Steering Committee: Michael J. Donoghue, Harvard University James Hanken, University of Colorado Charles H. Langley, University of California–Davis Linda Maxson, University of Iowa Working Group: Albert F. Bennett, University of California–Irvine H. Jane Brockmann, University of Florida Marcus W. Feldman, Stanford University Walter M. Fitch, University of California–Irvine Laurie R. Godfrey, University of Massachusetts David Jablonski, University of Chicago Carol B. Lynch, University of Colorado Leslie Real, Emory University Margaret A. Riley, Yale University J. John Sepkoski, Jr., University of Chicago Vassiliki Betty Smocovitis, University of Florida Designed and produced by the Office of University Publications, Rutgers, The State University of New Jersey LA-161-99 CONTENTS EXECUTIVE SUMMARY 1 PREAMBLE 2 I. INTRODUCTION 3 II. WHAT IS EVOLUTION? 3 III. WHAT ARE THE GOALS OF EVOLUTIONARY BIOLOGY? 5 A. Subdisciplines of Evolutionary Biology 5 B. Perspectives from Evolutionary Biology 7 IV. HOW IS EVOLUTION STUDIED? 8 V. H OW DOES EVOLUTIONARY BIOLOGY CONTRIBUTE TO SOCIETY? 11 A. Human Health and Medicine 11 B. Agriculture and Natural Resources 14 C. Finding Useful Natural Products 17 D. Environment and Conservation 17 E. Applications beyond Biology 19 F. Understanding Humanity 19 VI. HOW DOES EVOLUTIONARY BIOLOGY CONTRIBUTE TO BASIC SCIENCE? 20 A. Accomplishments in the Study of Evolution 20 B. Contributions to Other Biological Disciplines 24 VII. WHAT DOES THE FUTURE HOLD FOR EVOLUTIONARY BIOLOGY? 27 A. Applied Science 27 B. Basic Science 31 VIII. MECHANISMS FOR MEETING THE CHALLENGES OF THE FUTURE 35 A. Advancing Understanding through Research 35 B. Advancing Understanding through Education 37 C. Advancing Understanding through Communication 38 IX. CONCLUSION 39 BIBLIOGRAPHY 41 APPENDICES 43 I. Evolution: Fact, Theory, Controversy 43 II. How This Document Was Produced 44 III. Glossary of Frequently Used Terms 44 IV. Matching Evolutionary Research to Agency Missions 45 volutionary biology is the study of the history of life and the processes that lead to its diversity. Based on principles of adaptation, chance, and history, evolutionary biology seeks to explain all the characteristics of organisms, and, therefore, occupies a central position in the biological sciences. RELEVANCE OF EVOLUTIONARY BIOLOGY TO THE ADVANCING UNDERSTANDING THROUGH RESEARCH NATIONAL RESEARCH AGENDA To capitalize on evolutionary biology as an organizing and The twenty-first century will be the “Century of Biology.” integrating principle, we urge that: Driven by a convergence of accelerating public concerns, the ■ evolutionary perspectives be incorporated as a foundation biological sciences will be increasingly called on to address issues for interdisciplinary research to address complex vital to our future well-being: threats to environmental quality, scientific problems food production needs due to population pressures, new dangers ■ evolutionary biologists work toward building meaningful to human health prompted by the emergence of antibiotic links between basic research and practical application resistance and novel diseases, and the explosion of new technolo- ■ evolutionary biology play a more explicit role in the gies in biotechnology and computation. Evolutionary biology in overall mission of federal agencies that could benefit from particular is poised to make very significant contributions. It will contributions made by this field contribute directly to pressing societal challenges as well as inform and accelerate other biological disciplines. ADVANCING UNDERSTANDING THROUGH EDUCATION Evolutionary Biology has unequivocally established that We encourage major efforts to strengthen curricula in all organisms evolved from a common ancestor over the last primary and secondary schools, as well as in colleges and 3.5 billion years; it has documented many specific events in universities, including: evolutionary history; and it has developed a well-validated ■ support of supplemental training for primary school teachers theory of the genetic, developmental, and ecological mechanisms and or midcareer training for secondary school science of evolutionary change. The methods, concepts, and perspec- teachers in evolutionary biology tives of evolutionary biology have made and will continue to ■ greater emphasis on evolution in undergraduate college make important contributions to other biological disciplines, curricula for biology majors and premedical students, with such as molecular and developmental biology, physiology, and accessible alternative courses for non-majors ecology, as well as to other basic sciences such as psychology, anthropology, and computer science. ■ integration of relevant evolutionary concepts into the In order for evolutionary biology to realize its full potential, postbaccalaureate training of all biologists and of biologists must integrate the methods and results of evolutionary professionals in areas such as medicine, law, agriculture, research with those of other disciplines both within and outside of and environmental sciences biology. We must apply evolutionary research to societal problems, ADVANCING UNDERSTANDING THROUGH COMMUNICATION and we must include the implications of that research in the education of a scientifically informed citizenry. We urge the following roles for evolutionary biologists: To further such goals, delegates from eight major profes- ■ communicating to federal agencies, and to other institutions sional scientific societies in the United States, whose subject that support basic or applied research, the relevance of matter includes evolution, have prepared this document. It evolutionary biology to the missions of these organizations includes contributions by other specialists in various areas. ■ training the next generation of evolutionary biologists to be Feedback on earlier drafts was elicited from the community of aware of the relevance of their field to societal needs evolutionary biologists in the United States, and the draft was ■ informing the public about the nature, progress, and made public on the World Wide Web. The delegates arrived at implications of evolutionary biology a series of recommendations that address the areas that follow. 1 PREAMBLE ■ to suggest ways in which progress can be facilitated in Three great themes run through the biological sciences: basic research, in applications of evolutionary biology to function, unity, and diversity. Much of biology, from molecular societal needs, and in science education. biology to behavioral biology, from bacteriology to medicine, This document was prepared for decision-makers is concerned with the mechanisms by which organisms responsible for guiding basic and applied scientific research and function. Many of these mechanisms are adaptations: features for developing educational curricula at all levels. Delegates from that enhance survival and reproduction. Some adaptations eight major professional scientific societies in the United States are found only in certain groups of organisms, but others are whose subject matter includes evolution have developed the shared by almost all living things, reflecting the unity of life. document. Contributions have also been made by other At the same time, the diversity of characteristics among the specialists in various topics. A draft of the document was earth’s millions of species is staggering. revised in light of feedback elicited from the community of The unity, diversity, and adaptive characteristics of evolutionary biologists in the United States and by making the organisms are consequences of evolutionary history, and can be draft available for public comment at scientific meetings and on understood fully only in this light. The science of evolutionary the World Wide Web. Although full agreement cannot be biology is the study of the history of life and of the processes expected on every detail and point of emphasis, the major that lead to its unity and diversity. Evolutionary biology sheds points and conclusions in the following pages represent the light on phenomena studied in the fields of molecular biology, opinion of a large majority of professional evolutionary developmental biology, physiology, behavior, paleontology, biologists in the United States. ecology, and biogeography, complementing these disciplines’ study of biological mechanisms with explanations based on I. INTRODUCTION history and adaptation. Throughout the biological sciences, the “What a piece of work is man! The beauty of the world, the evolutionary
Recommended publications
  • History and Philosophy of Systematic Biology
    History and Philosophy of Systematic Biology Bock, W. J. (1973) Philosophical foundations of classical evolutionary classification Systematic Zoology 22: 375-392 Part of a general symposium on "Contemporary Systematic Philosophies," there are some other interesting papers here. Brower, A. V. Z. (2000) Evolution Is Not a Necessary Assumption of Cladistics Cladistics 16: 143- 154 Dayrat, Benoit (2005) Ancestor-descendant relationships and the reconstruction of the Tree of Lif Paleobiology 31: 347-353 Donoghue, M.J. and J.W. Kadereit (1992) Walter Zimmermann and the growth of phylogenetic theory Systematic Biology 41: 74-84 Faith, D. P. and J. W. H. Trueman (2001) Towards an inclusive philosophy for phylogenetic inference Systematic Biology 50: 331-350 Gaffney, E. S. (1979) An introduction to the logic of phylogeny reconstruction, pp. 79-111 in Cracraft, J. and N. Eldredge (eds.) Phylogenetic Analysis and Paleontology Columbia University Press, New York. Gilmour, J. S. L. (1940) Taxonomy and philosophy, pp. 461-474 in J. Huxley (ed.) The New Systematics Oxford Hull, D. L. (1978) A matter of individuality Phil. of Science 45: 335-360 Hull, D. L. (1978) The principles of biological classification: the use and abuse of philosophy Hull, D. L. (1984) Cladistic theory: hypotheses that blur and grow, pp. 5-23 in T. Duncan and T. F. Stuessy (eds.) Cladistics: Perspectives on the Reconstruction of Evolutionary History Columbia University Press, New York * Hull, D. L. (1988) Science as a process: an evolutionary account of the social and conceptual development of science University of Chicago Press. An already classic work on the recent, violent history of systematics; used as data for Hull's general theories about scientific change.
    [Show full text]
  • Lecture 20 - the History of Life on Earth
    Lecture 20 - The History of Life on Earth Lecture 20 The History of Life on Earth Astronomy 141 – Autumn 2012 This lecture reviews the history of life on Earth. Rapid diversification of anaerobic prokaryotes during the Proterozoic Eon Emergence of Photosynthesis and the rise of O2 in the Earth’s atmosphere. Rise of Eukaryotes and the Cambrian Explosion in biodiversity at the start of the Phanerozoic Eon Colonization of land first by plants, then by animals Emergence of primates, then hominids, then humans. A brief digression on notation: “ya” = “years ago” Introduce a simple compact notation for writing the length of time before the present day. For example: “3.5 Billion years ago” “454 Million years ago” Gya = “giga-years ago”, hence 3.5 Gya = 3.5 Billion years ago Mya = “mega-years ago”, hence 454 Mya = 454 Million years ago [Note: some sources use Ga and Ma] Astronomy 141 - Winter 2012 1 Lecture 20 - The History of Life on Earth The four Eons of geological time. Hadean: 4.5 – 3.8 Gya: Formation, oceans & atmosphere Archaean: 3.8 – 2.5 Gya: Stromatolites & fossil bacteria Proterozoic: 2.5 Gya – 454 Mya: Eukarya and Oxygen Phanerozoic: since 454 Mya: Rise of plant and animal life The Archaean Eon began with the end of heavy bombardment ~3.8 Gya. Conditions stabilized. Oceans, but no O2 in the atmosphere. Stromatolites appear in the geological record ~3.5 Gya and thrived for >1 Billion years Rise of anaerobic microbes in the deep ocean & shores using Chemosynthesis. Time of rapid diversification of life driven by Natural Selection.
    [Show full text]
  • Impacts of Future Agricultural Change on Ecosystem Service Indicators Sam S
    https://doi.org/10.5194/esd-2019-44 Preprint. Discussion started: 15 August 2019 c Author(s) 2019. CC BY 4.0 License. Impacts of future agricultural change on ecosystem service indicators Sam S. Rabin1, Peter Alexander2,3, Roslyn Henry2, Peter Anthoni1, Thomas A. M. Pugh4,5, Mark Rounsevell1, and Almut Arneth1 1Institute of Meteorology and Climate Research / Atmospheric Environmental Research, Karlsruhe Institute of Technology, Germany 2School of Geosciences, University of Edinburgh, UK 3Global Academy of Agriculture and Food Security, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK 4School of Geography, Earth and Environmental Sciences, University of Birmingham, UK 5Birmingham Institute of Forest Research, University of Birmingham, UK Correspondence: Sam S. Rabin ([email protected]) Abstract. A future of increasing atmospheric carbon dioxide concentrations, changing climate, growing human populations, and shifting socioeconomic conditions means that the global agricultural system will need to adapt in order to feed the world. These changes will affect not only agricultural land, but terrestrial ecosystems in general. Here, we use the coupled land use and vegetation model LandSyMM to quantify future land use change and resulting impacts on ecosystem service indicators 5 including carbon sequestration, runoff, and nitrogen pollution. We additionally hold certain variables, such as climate or land use, constant to assess the relative contribution of different drivers to the projected impacts. While indicators of some ecosystem services (e.g., flood and drought risk) see trends that are mostly dominated by the direct effects of climate change, others (e.g., carbon sequestration) depend critically on land use and management. Scenarios in which climate change mitigation is more difficult (Shared Socioeconomic Pathways 3 and 5) have the strongest impacts on ecosystem service indicators, such as a loss 10 of 13–19% of land in biodiversity hotspots and a 28% increase in nitrogen pollution.
    [Show full text]
  • 1. Adaptation and the Evolution of Physiological Characters
    Bennett, A. F. 1997. Adaptation and the evolution of physiological characters, pp. 3-16. In: Handbook of Physiology, Sect. 13: Comparative Physiology. W. H. Dantzler, ed. Oxford Univ. Press, New York. 1. Adaptation and the evolution of physiological characters Department of Ecology and Evolutionary Biology, University of California, ALBERT F. BENNETT 1 Irvine, California among the biological sciences (for example, behavioral CHAPTER CONTENTS science [I241). The Many meanings of "Adaptationn In general, comparative physiologists have been Criticisms of Adaptive Interpretations much more successful in, and have devoted much more Alternatives to Adaptive Explanations energy to, pursuing the former rather than the latter Historical inheritance goal (37). Most of this Handbook is devoted to an Developmentai pattern and constraint Physical and biomechanical correlation examination of mechanism-how various physiologi- Phenotypic size correlation cal systems function in various animals. Such compara- Genetic correlations tive studies are usually interpreted within a specific Chance fixation evolutionary context, that of adaptation. That is, or- Studying the Evolution of Physiological Characters ganisms are asserted to be designed in the ways they Macroevolutionary studies Microevolutionary studies are and to function in the ways they do because of Incorporating an Evolutionary Perspective into Physiological Studies natural selection which results in evolutionary change. The principal textbooks in the field (for example, refs. 33, 52, 102, 115) make explicit reference in their titles to the importance of adaptation to comparative COMPARATIVE PHYSIOLOGISTS HAVE TWO GOALS. The physiology, as did the last comparative section of this first is to explain mechanism, the study of how organ- Handbook (32). Adaptive evolutionary explanations isms are built functionally, "how animals work" (113).
    [Show full text]
  • Chapter 22 Notes: Introduction to Evolution
    NOTES: Ch 22 – Descent With Modification – A Darwinian View of Life Our planet is home to a huge variety of organisms! (Scientists estimate of organisms alive today!) Even more amazing is evidence of organisms that once lived on earth, but are now . Several hundred million species have come and gone during 4.5 billion years life is believed to have existed on earth So…where have they gone… why have they disappeared? EVOLUTION: the process by which have descended from . Central Idea: organisms alive today have been produced by a long process of . FITNESS: refers to traits and behaviors of organisms that enable them to survive and reproduce COMMON DESCENT: species ADAPTATION: any inherited characteristic that enhances an organism’s ability to ~based on variations that are HOW DO WE KNOW THAT EVOLUTION HAS OCCURRED (and is still happening!!!)??? Lines of evidence: 1) So many species! -at least (250,000 beetles!) 2) ADAPTATIONS ● Structural adaptations - - ● Physiological adaptations -change in - to certain toxins 3) Biogeography: - - and -Examples: 13 species of finches on the 13 Galapagos Islands -57 species of Kangaroos…all in Australia 4) Age of Earth: -Rates of motion of tectonic plates - 5) FOSSILS: -Evidence of (shells, casts, bones, teeth, imprints) -Show a -We see progressive changes based on the order they were buried in sedimentary rock: *Few many fossils / species * 6) Applied Genetics: “Artificial Selection” - (cattle, dogs, cats) -insecticide-resistant insects - 7) Homologies: resulting from common ancestry Anatomical Homologies: ● comparative anatomy reveals HOMOLOGOUS STRUCTURES ( , different functions) -EX: ! Vestigial Organs: -“Leftovers” from the evolutionary past -Structures that Embryological Homologies: ● similarities evident in Molecular/Biochemical Homologies: ● DNA is the “universal” genetic code or code of life ● Proteins ( ) Darwin & the Scientists of his time Introduction to Darwin… ● On November 24, 1859, Charles Darwin published On the Origin of Species by Means of Natural Selection.
    [Show full text]
  • Looking Ahead to 2050: Evolution of Agricultural Trade Policies
    Looking Ahead to 2050: Evolution of Agricultural Trade Policies Tim Josling* The past four decades have seen remarkable developments in agricultural trade and in the policies and institutions that provide the environment for that trade. Agricultural trade has moved from being dominated by the purchase of raw materials from land-rich countries and those blessed with tropical climates to a complex network of marketing chains supplying food and other farm products to all corners of the world. The multilateral trade rules have evolved from informal codes of conduct for manufactured goods that had little impact on agricultural trade to a treaty-based agreement that determines in what form and by how much governments can intervene in agricultural markets at home and at the border. The regional trade rules that have been adopted in an explosion of preferential agreements also increasingly apply to agricultural and food trade, leading to a partial polarization of trade around several major markets. The task of this paper is to discuss future trends in agricultural and food trade policies. How are the institutions, domestic, regional or multilateral, likely to evolve over the next forty years? Will the emphasis be on consolidation of progress already made? Will globalization reach its ultimate endpoint of a borderless market for agricultural and food products with consumer choice determining trade flows along with the cool logic of sourcing from low-cost suppliers? Or are we likely to see trade evolve in different directions? Will we see a resurgence
    [Show full text]
  • Auditory Experience Controls the Maturation of Song Discrimination and Sexual Response in Drosophila Xiaodong Li, Hiroshi Ishimoto, Azusa Kamikouchi*
    RESEARCH ARTICLE Auditory experience controls the maturation of song discrimination and sexual response in Drosophila Xiaodong Li, Hiroshi Ishimoto, Azusa Kamikouchi* Graduate School of Science, Nagoya University, Nagoya, Japan Abstract In birds and higher mammals, auditory experience during development is critical to discriminate sound patterns in adulthood. However, the neural and molecular nature of this acquired ability remains elusive. In fruit flies, acoustic perception has been thought to be innate. Here we report, surprisingly, that auditory experience of a species-specific courtship song in developing Drosophila shapes adult song perception and resultant sexual behavior. Preferences in the song-response behaviors of both males and females were tuned by social acoustic exposure during development. We examined the molecular and cellular determinants of this social acoustic learning and found that GABA signaling acting on the GABAA receptor Rdl in the pC1 neurons, the integration node for courtship stimuli, regulated auditory tuning and sexual behavior. These findings demonstrate that maturation of auditory perception in flies is unexpectedly plastic and is acquired socially, providing a model to investigate how song learning regulates mating preference in insects. DOI: https://doi.org/10.7554/eLife.34348.001 Introduction Vocal learning in infants or juvenile birds relies heavily on the early experience of the adult conspe- cific sounds. In humans, early language input is necessary to form the ability of phonetic distinction *For correspondence: and pattern detection in the phase of auditory learning (Doupe and Kuhl, 1999; Kuhl, 2004). [email protected] Because of the strong parallels between speech acquisition of humans and song learning of song- Competing interests: The birds, and the difficulties to investigate the neural mechanisms of human early auditory memory at authors declare that no cellular resolution, songbirds have been used as a predominant model in studying memory formation competing interests exist.
    [Show full text]
  • A New Middle Eocene Protocetid Whale (Mammalia: Cetacea: Archaeoceti) and Associated Biota from Georgia Author(S): Richard C
    A New Middle Eocene Protocetid Whale (Mammalia: Cetacea: Archaeoceti) and Associated Biota from Georgia Author(s): Richard C. Hulbert, Jr., Richard M. Petkewich, Gale A. Bishop, David Bukry and David P. Aleshire Source: Journal of Paleontology , Sep., 1998, Vol. 72, No. 5 (Sep., 1998), pp. 907-927 Published by: Paleontological Society Stable URL: https://www.jstor.org/stable/1306667 REFERENCES Linked references are available on JSTOR for this article: https://www.jstor.org/stable/1306667?seq=1&cid=pdf- reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms SEPM Society for Sedimentary Geology and are collaborating with JSTOR to digitize, preserve and extend access to Journal of Paleontology This content downloaded from 131.204.154.192 on Thu, 08 Apr 2021 18:43:05 UTC All use subject to https://about.jstor.org/terms J. Paleont., 72(5), 1998, pp. 907-927 Copyright ? 1998, The Paleontological Society 0022-3360/98/0072-0907$03.00 A NEW MIDDLE EOCENE PROTOCETID WHALE (MAMMALIA: CETACEA: ARCHAEOCETI) AND ASSOCIATED BIOTA FROM GEORGIA RICHARD C. HULBERT, JR.,1 RICHARD M. PETKEWICH,"4 GALE A.
    [Show full text]
  • Qrup: 127E; Fənn: Ecological Genetics İmtahan Sualları (2021-Ci Il, Tədris Yükü (Saat) Cəmi: 90 Saat; Mühazirə 45 Saat; Məşğələ 45 Saat)
    Bakı Dövlət Universiteti Biologiya fakültəsi; Qrup: 127E; Fənn: Ecological genetics İmtahan sualları (2021-ci il, tədris yükü (saat) cəmi: 90 saat; mühazirə 45 saat; məşğələ 45 saat) 1. The subject of Ecological genetics, its main problems 2. The theoretical and practical problems of Ecological genetics 3. Brief history of Ecological genetics 4. The investigation methods of Ecological genetics 5. Conception of adaptation, adaptive reaction norm 6. The role of modifications and genotypic variations in adaptation 7. Different types of adaptations 8. Ontogenetic and phylogenetic adaptations 9. Population-species adaptations and adaptations in biogeocenosis 10. Adaptive traits of biological systems: plasticity, flexibility, stability, homeostasis, genetic homeostasis and canalization 11. Genetic diversity, its types; significance of conservation of genetic diversity 12. Genetic erosion, its causes and results 13. Genetic effects of population fragmentation, population size, inbreeding and gene flow 14. Population bottleneck and fonder effect 15. Conservation methods of genetic diversity 16. Evolution as a consequence of changes in alleles and allele frequencies in populations over time 17. Factors affecting allele frequencies and genetic equilibrium in populations 18. Genetic nature of adaptive reactions 19. Role of heterozygosity and polymorphism in adaptation 20. Explaining the high level of genetic variation in populations 21. Detecting genetic variation by artificial selection and genetic markers 22. Polymerase chain reaction (PCR); its steps, limits, types and applications 23. Integration of adaptive reactions 24. Role of supergenes and gene-complexes in adaptation 25. Heterostyly, its role in adaptation 26. Genetic regulation mechanisms of adaptive traits 27. Effects of environmental factors on gene expression in prokaryotes; the operon model of regulation 28.
    [Show full text]
  • Thermal Adaptation of Amphibians in Tropical Mountains
    Thermal adaptation of amphibians in tropical mountains. Consequences of global warming Adaptaciones térmicas de anfibios en montañas tropicales: consecuencias del calentamiento global Adaptacions tèrmiques d'amfibis en muntanyes tropicals: conseqüències de l'escalfament global Pol Pintanel Costa ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia.
    [Show full text]
  • Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes
    Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes by Ryan Matthew Bebej A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2011 Doctoral Committee: Professor Philip D. Gingerich, Co-Chair Professor Philip Myers, Co-Chair Professor Daniel C. Fisher Professor Paul W. Webb © Ryan Matthew Bebej 2011 To my wonderful wife Melissa, for her infinite love and support ii Acknowledgments First, I would like to thank each of my committee members. I will be forever grateful to my primary mentor, Philip D. Gingerich, for providing me the opportunity of a lifetime, studying the very organisms that sparked my interest in evolution and paleontology in the first place. His encouragement, patience, instruction, and advice have been instrumental in my development as a scholar, and his dedication to his craft has instilled in me the importance of doing careful and solid research. I am extremely grateful to Philip Myers, who graciously consented to be my co-advisor and co-chair early in my career and guided me through some of the most stressful aspects of life as a Ph.D. student (e.g., preliminary examinations). I also thank Paul W. Webb, for his novel thoughts about living in and moving through water, and Daniel C. Fisher, for his insights into functional morphology, 3D modeling, and mammalian paleobiology. My research was almost entirely predicated on cetacean fossils collected through a collaboration of the University of Michigan and the Geological Survey of Pakistan before my arrival in Ann Arbor.
    [Show full text]
  • N.Orntates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM N.orntates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3068, 15 pp., 12 figures, 1 table June 11, 1993 A New Poison Frog from Manu INational Park, Southeastern Peru (Dendrobatidae, Epipedobates) LILY RODRIGUEZ' AND CHARLES W. MYERS2 ABSTRACT Epipedobates macero is a new species of den- ilar to a few other species occurring along the An- drobatid poison frog from lowland rain forest of dean front in eastern Peru, namely E. petersi and the Manu National Park, in the upper Madre de E. cainarachi, which differ in details ofcoloration, Dios drainage ofsoutheastern Peru. It is most sim- morphology, and vocalization. RESUMEN Epipedobates macero, especie nueva, es un den- del llano amaz6nico al pie de los Andes orientales drobatido venenoso de la selva pluvial baja del peruanos, a saber, E. petersi y E. cainarachi, las Parque Nacional del Manu, en el drenaje del Rio cuales difieren en detalles de coloracion, morfo- Alto Madre de Dios, al sudeste del Peru. Es similar logla, y vocalizacion. a otras dos especies que ocurren en los bosques ' Field Associate, Department of Herpetology and Ichthyology, American Museum of Natural History. Investi- gadora Asociada: Asociaci6n Peruana para la Conservaci6n de la Naturaleza (APECO), Parque Jos6 de Acosta 187, Lima 17, Perfi; and Museo de Historia Natural de la Universidad Mayor de San Marcos, apartado 140434, Lima 14, Peru. 2 Curator, Department of Herpetology and Ichthyology, American Museum of Natural History. Copyright © American Museum of Natural History 1993 ISSN 0003-0082 / Price $3.90 2 AMERICAN MUSEUM NOVITATES NO.
    [Show full text]