(Betula Populifolia) R

Total Page:16

File Type:pdf, Size:1020Kb

(Betula Populifolia) R PRODUCTION AND PROPERTIES OF BIRCH SYRUP (Betula populifolia) R. Kok1, E.R. Norris1, and T. Beveridge2 1Department of Agricultural Engineering, and 2SchoolofFood Science. Macdonald College of McGillUniversity, Ste. Annede Bellevue, Quebec HOA ICO Received 30 November 1976 Kok, R., E.R. Norris, and T. Beveridge. 1978. Production and properties of birchsyrup(Betulapopulifolia). Can. Agric. Eng. 20: 5-9. Sixteen grey birch trees ( B. populifolia) were tapped during 1975; fifty were tapped during 1976. Sapwas collected daily and boiled to a syrup. Thesugar content as well as the volume of thesapproduced byeachtreewas measured every dayduring the 1976 season. Theaverage seasonal sap production during 1975 was 42.8 //tree;during 1976 it was 27.9 //tree.Theaverage sap sugarcontent during 1976 was 0.74% (w/v). Trees tapped suffered noapparentilleffects from thetapping. Average syrup/;Hwas 4.8. The average syrup (50% byweight sugar) viscosity was 15 centipoise. Thesyrup ash content increased during the tapping season from 1.22 to 3.3%. Thedominant wavelength ofthesyrup color was 580 nm; itsexcitation purity was 0.671. The syrup was judged as being acceptable by 59%, of an 82-member taste panel. INTRODUCTION birch), B. papyri/era (white birch) and B. combined and kept for boiling. alleghaniensis (yellow birch) (Marie- The solids content of the daily individual Although maple products and their Victorin 1964; Hosie 1969). For this study, characteristic flavor are today well known, tree sap samples was determined by the grey birch was chosen, since it was similar products obtainable from birch, pipetting 10 ml of sap into a drying dish, abundantly available in the immediate walnut, hickory, ash, basswood and leaving the dish in a drying oven at 75°C for vicinity. The grey birch is characteristically butternut trees (Nearing 1950), once 24 h and weighing. This method of solids one of the first species to reappear after produced in quantity, are all but forgotten; content determination was found to yield forest destruction and often occurs in dense syrup, butter and taffy can be manufactured solid contents within 0.02% (w/v) when stands. Grey birch might therefore not only from the saps of these trees as well as from tested with sucrose solutions over the range be considered as a sugar-producing plant maple sap. The winning of maple sap and its 0.25 - 1.25 % (w/ v). Sucrose has been found but simultaneously as a principal processing have been adequately described to be the major dissolved solid of maple component of an energy plantation wherein in the literature (Nearing 1950; Perrin 1972; syrup (Nearing 1950). sugar could be produced as a secondary Anonymous 1973). In the spring of 1975, the birch sap was product. The Canadian per capita annual concentrated to syrup by boiling in an consumption of maple sugar fell from 1.1 electrically-heated, deep-fat fryer (Torcan to 0.09 kg person between 1947 and 1971 SAP COLLECTION AND PROCESSING Model 210) equipped with a float-operated (Hassan 1973). Canada's annual export Methods automatic shut-off switch. Unconcentrated value of maple products rose from 4.3 to 6.4 Grey birch trees were tapped during the sap was added manually every time the million dollars between 1949 and 1968 spring of 1975 and 1976 in the Morgan liquid level decrease caused the heating (Daviault 1975); thereafter the annual Arboretum of McGill University. During element power to be switched off until 1 /of export value has remained almost constant the 1975 season, 16 trees were tapped on 17 approximately 50% (w/v) sugar was present at 6.5 million dollars during the period 1969 March. Trees of circumference greater than in the boiler. The syrup sugar concentration - 1974(Bolton 1974, 1975). Canadian maple 45 cm at 150 cm height above the ground was monitored with a refractometer (Pocket sugar production, consumption and export were randomly selected. During the 1976 Refractometer, Bellingham and Stanly Ltd., volumes have steadily declined since 1949. season, 50 trees of circumference greater London, U.K.) whose readings were The price of maple sugar has steadily risen than 42 cm were randomly selected and converted to the equivalent of % (w/v) since 1949. tapped on 8 April. In 1976 the trees were sucrose by means of a calibration curve. The Low utilization of equipment (2 or 3 tapped considerably later than in 1975, since electric boiler was found to produce a birch wk, yr) caused by the seasonal nature of sap flow in 1975 started only on 14 April. syrup with a slightly scorched flavor maple sugar production is partly responsible Tap holes 12 mm in diam and 57 mm deep although it imparted no such flavor to maple for the high cost of maple products. To were drilled in each tree trunk 90 cm above syrup during a pre-production test. increase the period of equipment use would the ground level. Tap holes were drilled at a To lower the boiling surface temperature require trees yielding sugar-bearing sap at a slight angle facing downward. Spiles were and yet retain a high rate of heat input, a time other than the productive season of inserted by moderate hammering until a steam-heated boiler was constructed for sap maple trees. This condition is fulfilled by tight fit between the spile and tap hole and boiling during the 1976 season (Fig. 1). The birch trees which start their sap flow during the tree bark was obtained. boiler was completely constructed of 316 the final stage of the maple sugar season. During both the 1975 and the 1976 stainless steel. It was subdivided by The large scale production of birch sap seasons, the sap was collected daily when partitions into five sections, each containing iiom Betual pendula Roth, B. platyphylla possible (on several occasions seasonal a steam coil of '/2-inch diam tubing, 75 cm Sukacv and B. clahurica Pall has been snowstorms prevented collection) at 1400 h. long. The five steam coils were connected in reported by Kalinishenko (1974); 28,000 Daily sap flows were recorded for series by bulkhead unions. Incoming steam tons oV birch sap were produced in the spring individual trees. was saturated and was regulated to remain of 1972 in the Ukraine. The sugar During the 1975 season, the sap of all at 1.7 kPa, thus limiting the maximum concentrations of B. pendula Roth, B. trees were combined and kept for possible surface temperature to 131°C. platyphylla and B. clahurica Pall saps in the subsequent boiling and syrup production. Unconcentrated sap was continuously fed middle of the sap-production season in 1973 No samples of individual tree saps were kept by gravity from a constant head tank to the were 1.2, 1.9 and 1.8%, respectively. during this season. In 1976, the sap of each first compartment. Partially concentrated In Quebec, three species of birch are tree was sampled daily at the time of sap flowed over weirs cut at successively commonly found: B. populifolia (grey collection and the rest of the sap was lower heights in the partitions into CANADIAN AGRICULTURAL ENGINEERING, VOL. 20 NO.l, JUNE 1978 EVAPORATOR CONDENSATE OUT VALVE Figure 1. The steam-heated evaporator. Figure 2. Average daily sap production per tree during the 1975 season. consecutive boiler compartments. A Observations during the 1976 Season stand pipe in the last compartment permitted Tree diameters were normally distributed continuous operation; the lack of adequate (5% significance, chi-square); the average control equipment made the utilization of diameter was 17.4 cm (SD = 2.8 cm). this feature impossible. The incoming sap Sap was obtained from the trees between flow rate was therefore manually adjusted so 8 April and 28 April inclusive (21 days). Not that the final compartment would not all trees commenced and finished sap overflow for up to 6 h of operation. All production simultaneously; during the 21- steam coils were mounted 7.5 cm above the day season, the average production period bottom of the boiler to prevent the syrup for trees was 16 days. By 28 April, sap flow from becoming excessively concentrated had decreased significantly (Fig. 3a) and the when the incoming sap flow rate became birch sap had acquired its characteristic inadequate to utilize the heat supply either unpleasant flavor and odor signalling the as a result of pump failure, line clogging or end of the collection season. Subsequent to exhaustion of sap in the reservoir. A sap the removal of spiles and buckets from the flow rate of approximately 0.20 //min trees, sap continued to be exuded from the usually proved adequate. Upon exhaustion tap holes in some trees for another 3 wk. The of the available sap, partially concentrated average daily sap production per tree is syrup from the first four compartments was shown in Fig. 3a. manually transferred to the last The average total quantity of sap compartment and there concentrated to produced per tree during the collection 50% (w/v) sugar as determined by the period was 27.9 / (SD = 21.0 /). The total refractometer. The syrup was transferred quantity of sap produced per tree was from the boiler to 1-/ bottles and stored in a normally distributed as determined by the refrigerator at 4°C for further analysis. chi-square test (5% significance level). The Fourteen batches of syrup were thus total quantity of sap collected and processed produced, the first batch from the saps was 1,395 /. collected up to and including 14 April, the The average daily sap dissolved solids fourth batch being produced from the contents (henceforth referred to as the sugar combined sap collected on 17 and 18 April content) is shown in Fig.
Recommended publications
  • Non-Timber Forest Resources Information Compendium
    Future Forest Products and Fibre Use Backgrounder: Non-Timber Forest Resources Information Compendium Prepared for: Omineca Beetle Action Coalition By: Ashley Kearns and Greg Halseth Community Development Institute University of Northern British Columbia January 2009 Future Forest Products and Fibre Use Backgrounder: Non-Timber Forest Resources in the OBAC Region Table of Contents Page Number About this Project iii Acknowledgements iv Project Availability v Contact Information v 1. Introduction 1 2. Agroforestry 3 2.1 Alley Cropping 6 2.2 Integrated Riparian Management and Timber Belting 8 2.3 Forest Farming 10 2.4 Silvopasture 12 3. Energy Production 14 3.1 Biomass Energy 16 4. Birch Products 19 5. Botanical Products 22 5.1 Beauty Products 24 5.2 Herbal Health Products 26 6. Crafts and Wild Flowers 29 7. Eco-services 31 7.1 Carbon Sequestration 33 7.2 Eco-tourism 36 8. Traditional Ecological Knowledge 39 9. Wild Greenery and Christmas Trees 41 10. Honey and Honey Products 43 i UNBC Community Development Institute 2009 Future Forest Products and Fibre Use Backgrounder: Non-Timber Forest Resources in the OBAC Region Table of Contents Page Number 11. Wild Edibles 46 11.1 Wild Fruits and Berries 46 11.2 Wild Vegetables and Seasonings 48 11.3 Wild Mushrooms 50 12. Sustainable Landscaping 53 13. General Links for Non-Timber Forest Resources 55 14. References 58 ii UNBC Community Development Institute 2009 Future Forest Products and Fibre Use Backgrounder: Non-Timber Forest Resources in the OBAC Region About this Project The Mountain Pine Beetle infestation has had, and will continue to have, an impact on the timber supply and forest sector in northern British Columbia.
    [Show full text]
  • Coastal Landscaping in Massachusetts Plant List
    Coastal Landscaping in Massachusetts Plant List This PDF document provides additional information to supplement the Massachusetts Office of Coastal Zone Management (CZM) Coastal Landscaping website. The plants listed below are good choices for the rugged coastal conditions of Massachusetts. The Coastal Beach Plant List, Coastal Dune Plant List, and Coastal Bank Plant List give recommended species for each specified location (some species overlap because they thrive in various conditions). Photos and descriptions of selected species can be found on the following pages: • Grasses and Perennials • Shrubs and Groundcovers • Trees CZM recommends using native plants wherever possible. The vast majority of the plants listed below are native (which, for purposes of this fact sheet, means they occur naturally in eastern Massachusetts). Certain non-native species with specific coastal landscaping advantages that are not known to be invasive have also been listed. These plants are labeled “not native,” and their state or country of origin is provided. (See definitions for native plant species and non-native plant species at the end of this fact sheet.) Coastal Beach Plant List Plant List for Sheltered Intertidal Areas Sheltered intertidal areas (between the low-tide and high-tide line) of beach, marsh, and even rocky environments are home to particular plant species that can tolerate extreme fluctuations in water, salinity, and temperature. The following plants are appropriate for these conditions along the Massachusetts coast. Black Grass (Juncus gerardii) native Marsh Elder (Iva frutescens) native Saltmarsh Cordgrass (Spartina alterniflora) native Saltmeadow Cordgrass (Spartina patens) native Sea Lavender (Limonium carolinianum or nashii) native Spike Grass (Distichlis spicata) native Switchgrass (Panicum virgatum) native Plant List for a Dry Beach Dry beach areas are home to plants that can tolerate wind, wind-blown sand, salt spray, and regular interaction with waves and flood waters.
    [Show full text]
  • Gypsy Moth CP
    INDUSTRY BIOSECURITY PLAN FOR THE NURSERY & GARDEN INDUSTRY Threat Specific Contingency Plan Gypsy moth (Asian and European strains) Lymantria dispar dispar Plant Health Australia December 2009 Disclaimer The scientific and technical content of this document is current to the date published and all efforts were made to obtain relevant and published information on the pest. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Further information For further information regarding this contingency plan, contact Plant Health Australia through the details below. Address: Suite 5, FECCA House 4 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 Email: [email protected] Website: www.planthealthaustralia.com.au PHA & NGIA | Contingency Plan – Asian and European gypsy moth (Lymantria dispar dispar) 1 Purpose and background of this contingency plan .............................................................. 5 2 Australian nursery industry .................................................................................................... 5 3 Eradication or containment determination ............................................................................ 6 4 Pest information/status ..........................................................................................................
    [Show full text]
  • Harvesting Birch
    UAMN Virtual Early Explorers: Water Harvesting Birch Sap A delicious way to explore water in spring! OneTree Alaska is offering two at-home citizen science projects for children in grades K-12 (inquire about younger children). See information below. The “Tapping into Spring” project is providing free birch tapping kits (while supplies last) for families to use at home, through the FNSB School District. The kits are also available to purchase for $25. Instructions and video tutorials are provided. If you are interested, please read the information sheet below, then contact your teacher (K- 12) or Jan Dawe at OneTree Alaska: [email protected]. Photo by Andy Padilla Before all the snow melts, birch trees start producing sap. In the two or three weeks before leaves come out, we can harvest this sweet sap. Watch a video to see how it is done: https://www.youtube.com/watch?v=Sw9JWSum5fs There are two ways you can enjoy birch sap: 1) Drink sap straight from the tree. Birch sap tastes similar to water, with a slightly sweet flavor, and is rich in minerals. 2) Boil the sap slowly to make birch syrup. Birch syrup is tastes great on pancakes, but takes work to produce. If you are ready to try making syrup, contact the staff at OneTree Alaska and they can guide you through the process. Citizen Science Month at Home Be a citizen scientist from the comfort of your own home! OneTree Alaska is offering two projects in honor of Citizen Science Month, each appropriate for students of all ages—plus their families and friends! To participate, let your child’s teacher know of your interest By the end of the day on Monday, April 13, 2020.
    [Show full text]
  • Birch Defoliator Yukon Forest Health — Forest Insect and Disease 4
    Birch Defoliator Yukon Forest Health — Forest insect and disease 4 Energy, Mines and Resources Forest Management Branch Introduction The birch leafminer (Fenusa pusilla), amber-marked birch leafminer (Profenusa thomsoni), birch leaf skeletonizer (Bucculatrix canadensisella) and the birch-aspen leafroller (Epinotia solandriana) are defoliators of white birch (Betula papyrifera) in North America. Of the four, only the Bucculatrix is native to North America, but it is not currently found in Yukon. The other three species, as invasives, pose a far greater threat to native trees because their natural enemies in the form of predators, parasites and diseases are absent here. The birch leafminer was accidently introduced from Europe in 1923 and is now widely distributed in Canada, Alaska and the northern United States, though it has not yet been found in Yukon. The amber-marked birch leafminer was first described in Quebec in 1959 but is now found throughout Canada, the northern contiguous U.S., and Alaska. The amber-marked birch leafminer has proven to be, by far, the more damaging of the two species. Both species are of the blotch mining type as opposed to the skeletonizing Bucculatrix and the leafrolling Epinotia. Amber-marked leafminer damage is typically found along road systems. Infestations along roadsides are often greater in areas of high traffic, or where parked cars are common, suggesting that this pest will hitchhike on vehicles. It was first identified in Anchorage, Alaska in 1996 and has since spread widely to other communities. In areas of Alaska, efforts to control the spread of the amber-marked birch leafminer have been underway since 2003 with the release of parasitic wasps (Lathrolestes spp.).
    [Show full text]
  • Betula Alleghaniensis Britton Yellow Birch Betu Laceae Birch Family G
    Betula alleghaniensis Britton Yellow Birch Betu laceae Birch family G. G. Erdmann Yellow birch (Bet&a alleghaniensis) is the most precipitation may be snow. Snowfall ranges from 152 valuable of the native birches. It is easily recognized to 356 cm (60 to 140 in) and averages 229 cm (90 in) by the yellowish-bronze exfoliating bark for which it in the north. The growing season ranges from 60 to is named. The inner bark is aromatic and has a 150 days and averages about 120 days. flavor of winter-green. Other names are gray birch, silver birch, and swamp birch. This slow-growing Soils and Topography long-lived tree is found with other hardwoods and conifers on moist well-drained soils of the uplands Yellow birch grows over a large area with diverse and mountain ravines. It is an important source of hardwood lumber and a good browse plant for deer geology, topography, and soil and moisture condi- and moose. Other wildlife feed on the buds and tions. In Michigan and Wisconsin it is found on gla- cial tills, outwash sands, lacustrine deposits, shallow seeds. loess deposits, and residual soils derived from sandstone, limestone, and igneous and metamorphic Habitat rock (95). Soils are also derived from granites, schists, and shales in other parts of its range. Native Range Growth of yellow birch is affected by soil texture, drainage, rooting depth, stone content in the rooting Yellow birch (fig. 1) ranges from Newfoundland, zone, elevation, aspect, and fertility. Yellow birch Nova Scotia, New Brunswick, and Anticosti Island grows best on well-drained, fertile loams and west through southern Ontario to extreme moderately well-drained sandy loams within the soil southeastern Manitoba; south to Minnesota and orders Spodosols and Inceptisols and on flats and northeastern Iowa; east to northern Illinois, Ohio, lower slopes (45).
    [Show full text]
  • Value Network of Non-Timber Forest Products and Services Derived from Birch
    Value Network of Non-Timber Forest Products and Services Derived from Birch Introduction Results Conclusions Research on the value network around birch- Key actors and activities are directly business Business relationships based non-timber forest products and services. Non-business relationships related, but non-business actors have important role in e.g. collaborative R&D-activities Objective is to figure out who are key actors, Products Services Pakuri (Inonotus obliquus) Pakuri cultivation: planning and what resources they posses and what kind of Birch sap inoculums Key tangible resources and capabilities are raw Bark Sauna experience with bunch of activities are performed? Leaves birch twigs (saunavasta) materials, products and services, but intangible Cultural value of birch resources of competence and knowledge are It is important to widen the view of forest-based equally important. resources. Taking a business perspective on Photo by Nika Akin value networks and recognising capabilities and from Pixabay What more one could derive from birch? Opportunities within e.g. biotechnology and strengths within the network helps in noticing Gathering Companies tourism? possibilities arising from crossing sectoral Forest owners borders. Licensed pickers Raw material Logistics and Acknowledgements Theoretical framework: sales, B2B warehouse services Business networks and Actor, Resource & e.g.. pakuri e.g. freight freezing Research funded by The European Agricultural Activity -framework (Håkansson & Snehota 1995) Fund for Rural Development. Thank you for all Production and upgrading Value network analysis (Allee 2008) Cosmetics: pakuri, sap, bark powder, leaves interviewees. Beverages: sap, pakuri Health supplements: leaf extract, xylitol products containing pakuri Methods References Product sales, B2C Logistics and Qualitative theory-based content analysis.
    [Show full text]
  • The HERITAGE River Birch (Betula Nigra 'Cully') a Notable Landscape
    1 Collyer Lane, Basking Ridge, NJ 07920 email: [email protected] Website: http://www.bernards.org/boards_commissions/shade_tree/default.aspx The HERITAGE River Birch (Betula nigra 'Cully') A notable landscape tree is the HERITAGE river birch (Betula nigra 'Cully'). This tree has gained a great deal of popularity and has been planted extensively in residential settings over the last ten years. It can be identified by the peeling tan bark of various shades. Most examples are multi-trunked in clumps of three to five. It is a native tree that grows both in the southern and northern areas of the United States. The cultivar HERITAGE was found by Earl Cully, a nurseryman from Illinois, who is well recognized for development of various worthwhile landscape trees. He found a birch tree that had exceptional peeling bark flourishing on a residential lawn in a St. Louis suburb more than two decades ago. River birch grow in moist, but not constantly wet areas, along streams and rivers. Other native birches in this area are the yellow birch which has curly black to gray peeling bark and the gray birch, Betula populifolia, which has chalky white non- peeling bark. In colder areas of the Northeast one may note white birch that in time develops peeling bark; these are non-native. The European white weeping birch, Betula pendula, is also useful in the landscape; it attains a good height and is strongly weeping. This is common plant to see European landscapes. Birch trees are also native to Asia and some have outstanding white bark and make wonderful specimen trees in colder areas of the Northeast.
    [Show full text]
  • Native Plant List Trees.XLS
    Lower Makefield Township Native Plant List* TREES LIGHT MOISTURE TYPE BOTANICAL NAME COMMON NAME STREET SUN PART SHADE DRY MOIST WET TREE SHADE EVERGREEN Chamaecyparis thyoides Atlantic White Cedar x x x x IIex opaca American Holly x x x x Juniperus virginiana Eastern Red Cedar x x x Picea glauca White Spruce x x x Picea pungens Blue Spruce x x x Pinus echinata Shortleaf Pine x x x Pinus resinosa Red Pine x x x Pinus rigida Pitch Pine x x Pinus strobus White Pine x x x Pinus virginiana Virginia Pine x x x Thuja occidentalis Eastern Arborvitae x x x x Tsuga canadensis Eastern Hemlock xx x DECIDUOUS Acer rubrum Red Maple x x x x x x Acer saccharinum Silver Maple x x x x Acer saccharum Sugar Maple x x x x Asimina triloba Paw-Paw x x Betula lenta Sweet Birch x x x x Betula nigra River Birch x x x x Betula populifolia Gray Birch x x x x x Carpinus caroliniana American Hornbeam x x x (C. tomentosa) Carya alba Mockernut Hickory x x x x Carya cordiformis Bitternut Hickory x x x Carya glabra Pignut Hickory x x x x x Carya ovata Shagbark Hickory x x Castanea pumila Allegheny Chinkapin xx x Celtis occidentalis Hackberry x x x x x x Crataegus crus-galli Cockspur Hawthorn x x x x Crataegus viridis Green Hawthorn x x x x Diospyros virginiana Common Persimmon x x x x Fagus grandifolia American Beech x x x x PAGE 1 Exhibit 1 TREES (cont'd) LIGHT MOISTURE TYPE BOTANICAL NAME COMMON NAME STREET SUN PART SHADE DRY MOIST WET TREE SHADE DECIDUOUS (cont'd) Fraxinus americana White Ash x x x x Fraxinus pennsylvanica Green Ash x x x x x Gleditsia triacanthos v.
    [Show full text]
  • Final Report for Pre-Dissertation Fellowship
    Community Forestry Research Fellowship Final Report for Pre-Dissertation Fellowship Assessing the Role of Non-Timber Forest Products in Interior Alaska Communities Kimberley Anne C. Maher University of Alaska Fairbanks Research Focus and Goals The harvest of non-timber forest products (NTFPs) is a prominent activity in Interior Alaska for both personal and subsistence uses. A survey conducted in 2004 showed that one–third of households in Alaska’s Tanana Valley picked wild blueberries and one-quarter of the households harvested firewood (ABFC 2003). A few niche industries in Alaska are based off NTFP resources such as birch syrup production. The birch syrup industry is almost two decades old. Alaskan birch syrup has created quite a buzz and has an unsatiated global market demand (Pounds 2000). Demand for birch syrup is growing (Cameron 2001), and it is a unique forest product that piques the interest of people ranging from tourists visiting Alaska to food connoisseurs (Jackinsky 2001). The number of birch syrup operations in Alaska increased during the 1990’s (ABFC 2005) but has since has declined with only two operations producing birch syrup in 2007. Little data is collected on NTFP harvest practices in Interior Alaska so forest managers do not have a clear idea about (1) who is collecting NTFPs (2) what NTFPs are being harvested, and (3) what non-market and non-tangible benefits people are also seeking and receiving from their harvesting practices. Therefore my research questions are: 1. Are forest management plans needed for personal-use NTFP harvesting? Are people’s current expectations for NTFP harvests being met under the present management? 2.
    [Show full text]
  • When the Sap Flows: Affection and Industry in the Maple Woods
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2014 WHEN THE SAP FLOWS: AFFECTION AND INDUSTRY IN THE MAPLE WOODS Nicholas R. Littman University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Nonfiction Commons Let us know how access to this document benefits ou.y Recommended Citation Littman, Nicholas R., "WHEN THE SAP FLOWS: AFFECTION AND INDUSTRY IN THE MAPLE WOODS" (2014). Graduate Student Theses, Dissertations, & Professional Papers. 4376. https://scholarworks.umt.edu/etd/4376 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. WHEN THE SAP FLOWS: AFFECTION AND INDUSTRY IN THE MAPLE WOODS By NICHOLAS RUSSELL LITTMAN B.A., Whitman College, Walla Walla, WA, 2009 Thesis presented in partial fulfillment of the requirements for the degree of M.S. in Environmental Studies The University of Montana Missoula, MT December 2014 Approved by: Sandy Ross, Dean of The Graduate School Graduate School Phil Condon, Chair Environmental Studies Tom Roy Environmental Studies Amy Ratto-Parks English © COPYRIGHT by Nicholas Russell Littman 2014 All Rights Reserved ii Littman, Nicholas, M.S., Autumn 2014 Environmental Studies Abstract: When the Sap Flows: Affection and Industry in the Maple Woods Chairperson: Phil Condon This thesis arises from my time waiting for, collecting, and boiling sap from maple trees into syrup.
    [Show full text]
  • The Boreal Forest
    Fall/Winter 2015 The Boreal Forest eNewsletter Interior Alaska Forest Science, Management Practices and News of Interest from the University of Alaska Fairbanks Cooperative Extension Service From the editor: What’s Inside Last summer more than 5 million acres burned in Alaska. The State Division of Forestry, Bureau Forestry, Forest of Land Management and the Alaska Fire Service, Management & Their Future along with national wildland fire crews, suppression in Alaska ............................... 2 experts and aircraft brought up from the Lower 48 and Canada, worked to fight the fires. More than Timber Harvest Methods 50 homes and structures were lost in Alaska. Many Promoting Forest more were saved because of fire suppression efforts. Property loss was far Regeneration, Part 1 ............ 3 higher in the Lower 48 this year. The Forest Ecosystem & Fire scientists and fire weather forecasters predict the possibility of larger, Biodiversity .......................... 7 more frequent and more intense wildfires in Alaska if our climatic change continues. The Working Forest Group (TWFG) ..................................8 In this edition we will briefly define some scientific methods in the prac- tice of forestry, and we will review the modern forest management meth- The Cooperative Alaska ods foresters use in Alaska. In this edition we will look at forest ecosystem Forest Inventory Project .....8 and biodiversity and what some UAF forestry researchers are doing in Black Spruce .........................9 Alaska. We will also be introduced to a new nonprofit organization pro- moting the “working forest” concept, outline Alaska’s black spruce tree spe- Interior Alaska Biomass cies, begin to discuss the role of forest management and look at some forest Projects .................................8 insect pest problems.
    [Show full text]