Modeling, Simulation, and Characterization of Space Debris in Low-Earth Orbit Paul D

Total Page:16

File Type:pdf, Size:1020Kb

Modeling, Simulation, and Characterization of Space Debris in Low-Earth Orbit Paul D Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-15-2013 Modeling, Simulation, and Characterization of Space Debris in low-Earth Orbit Paul D. McCall [email protected] Follow this and additional works at: http://digitalcommons.fiu.edu/etd Part of the Signal Processing Commons, and the Space Vehicles Commons Recommended Citation McCall, Paul D., "Modeling, Simulation, and Characterization of Space Debris in low-Earth Orbit" (2013). FIU Electronic Theses and Dissertations. Paper 965. http://digitalcommons.fiu.edu/etd/965 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida MODELING, SIMULATION, AND CHARACTERIZATION OF SPACE DEBRIS IN LOW-EARTH ORBIT A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in ELECTRICAL ENGINEERING by Paul David McCall 2013 To: Dean Amir Mirmiran College of Engineering and Computing This dissertation, written by Paul David McCall, and entitled Modeling, simulation, and characterization of space debris in low-Earth orbit, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Jean H. Andrian _______________________________________ Armando Barreto _______________________________________ Naphtali David Rishe _______________________________________ Malek Adjouadi, Major Professor Date of Defense: November 15, 2013 The dissertation of Paul David McCall is approved. _______________________________________ Dean Amir Mirmiran College of Engineering and Computing _______________________________________ Dean Lakshmi N. Reddi University Graduate School Florida International University, 2013 ii © Copyright 2013 by Paul David McCall All rights reserved. iii DEDICATION This text is dedicated to my wife and the love of my life, Natalie McCall. Without her support and sacrifice this effort would not have been possible. Thank you and I love you. 1 John 3:18 iv ACKNOWLEDGMENTS First and foremost, I would like to convey my heartfelt gratitude to my mentor and research advisor, Dr. Malek Adjouadi. His support, passion, and commitment to research have been an inspiration to many young researchers including myself. His teachings, encouragement, and positive attitude have made this dissertation a reality. Throughout this entire process, from choosing internships, to preparing for presentations, writing recommendation letters, and editing this dissertation his knowledge, guidance, and patience have been truly inexhaustible. He is directly responsible for my choice to pursue graduate studies in signal and image processing. His dedication to research and his students are evident through all his actions and efforts. If blessed with the opportunity, I hope to be half the mentor to someone else that he has been to me. For the works listed above, and the numerous others not listed here, thank you. I would like to recognize the other members of my dissertation committee, Dr. Jean H. Andrian, Dr. Armando Barreto, and Dr. Naphtali Rishe, for their continued commitment towards this research and the sage advice given throughout this process. Through numerous classroom lectures, projects, and discussions they have taught, challenged, and developed me as a young engineer. Their insight and expertise has allowed me to pursue diverse and meaningful research for which I am very appreciative. I would like to take time to thank the other numerous scientists and engineers whom made this research possible; Dr. Leslie Vaughn and Mrs. Millay Morgan for their oversight of the Local Area Sensors program at the AFRL, Dr. Madeleine Naudeau, for her role as advisor and mentor during the Summer Scholars Program at the AFRL, Mr. v Chris Dodson for laying a foundation with the radiant flux modeling efforts, Mrs. Rachel Sharples for help, guidance, and contributions in all thermal-related simulation endeavors, Dr. Scott Milster for his help in astronomical conversions, Mr. Marlon Sorge for his assistance regarding astrodynamics and debris modeling, Mr. Tom Farrell for his guidance and expertise in optical systems, and Dr. Paul LeVan, Dr. Moriba Jah, and Dr. Carolin Frueh for their knowledge and guidance on many aspects of this research. I would like to thank the many science, math, history, and literature teachers from elementary, middle, and high school that provided the much needed challenges, encouragement, and patience necessary to enable this life-long student with a thirst for knowledge. My lab mates in the Center for Advanced Technology and Education at Florida International University, Krishna Vedala and Anas Eddin, have provided many thoughtful insights, laughs, and interesting discussions for which I am very thankful. I would like to thank my family. My brothers, Philip McCall and Sean McCall, and sister, Heather, have all been a tremendous inspiration, guiding light, and support structure throughout my life. My parents, Philip and Phyllis McCall have been a blessing for which I cannot be thankful enough. This work was supported by the National Science Foundation under grants CNS- 0959985, CNS-1042341, HRD-0833093 and IIP-1338922 and IIP-1230661. The author of this dissertation was partially supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program, and through participation in the Air Force Research Laboratory Summer Scholars vi Program. The author is supported through the Betty G. Reader Graduate Scholarship from Florida International University. Use of STK 10 was provided via the Educational Alliance Program partnership between Florida International University and Analytic Graphics Inc. Dissemination and presentation of this work would not be possible without the support provided by Dr. Jaydeep Mukherjee and the Florida Space Grant Consortium. vii ABSTRACT OF THE DISSERTATION MODELING, SIMULATION, AND CHARACTERIZATION OF SPACE DEBRIS IN LOW-EARTH ORBIT by Paul David McCall Florida International University, 2013 Miami, Florida Professor Malek Adjouadi, Major Professor Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the viii origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble- rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite’s Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft. ix TABLE OF CONTENTS CHAPTER PAGE 1. INTRODUCTION ........................................................................................................ 1 2. LITERATURE REVIEW ........................................................................................... 10 2.1. Classical initial orbit determination methods ..................................................... 10 2.2. Other orbit determination methods and associated topics .................................. 11 2.2.1. Too Short Arc observations ............................................................................ 12 2.2.2. Orbit determination for space debris .............................................................
Recommended publications
  • Case File Copy
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Technical Report 32-7360 Periodic Orbits in fh e Ell@tic Res f~icted Three-Body Problem CASE FILE COPY JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA July 15, 1 969 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Technical Report 32-1360 Periodic Orbifs in the Elliptic Res tiicted Three-Body Problem R. A. Broucke JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA July 15, 1969 Prepared Under Contract No. NAS 7-100 National Aeronautics and Space Administration Preface The work described in this report was performed by the Mission AnaIysis Division of the Jet Propulsion Laboratory during the period from July 1, 1967 to June 30, 1963. JPL TECHNICAL REPORT 32- 1360 iii Acknowledgment The author wishes to thank several persons with whom he has had constructive conversations concerning the work presented here. In particular, some of the ideas expressed by Dr. A. Deprit of Boeing, Seattle, are at the origin of the work. ilt JPL, special thanks are due to Harry Lass and Carleton Solloway, with whom the problem of the stability of orbits has been discussed in depth. Thanks are also due to Dr. C. Lawson, who has provided the necessary programs for the differential corrections with a least-squares approach, thus avoiding numerical cliKiculties associated with nearly singular matrices; and to Georgia Dvornychenko, who has done much of the programming and computer runs. JPL TECHNICAL REPORT 32-7360 Contents I. Introduction ................ 1 II . Equations of Motion .............. 3 A . The Underlying Two-Body Problem ......... 3 B. Inertial Barycentric Equations of Motion of the Satellite .
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • ON FORMING the MOON in GEOCENTRIC ORBIT Herbert, F., Et Al
    ON FORMING ME MOON IN GEOCENTRIC ORBIT; DYNAMICAL EVOLUTION OF A CIRCUMTERRESTRIAL PLANETESIMAL SWARM; Floyd Herbert, University of Arizona, Tucson, and D.R. Davis and S.J. Weidenschilling, Planetary Science Institute, Tucson, AZ. The wclassicalv theories of lunar origin all have major difficulties that have prevented any of them from beinq generally accepted: the capture hypo- thesis is quite improbable, while the fission hypothesis suffers a larqe anqular momentum problem. New theories have, of course, sprouted to replace these -- tidal disruption/capture, accretion in geocentric orbit, and the qiant impact hypothesis. At a recent conference on the oriqin of the moon (October, 1984, Kona, HI), the qiant impact hypothesis, which holds that the moon formed as the result of a large (Mercury-to-Mars-sized) planetesimal impactinq the proto-Earth, emerqed as the current favored hypothesis, with co-formation in geocentric orbit a possible alternative. The latter model, which suqgests that the moon formed from planetesimals captured from helio- centric orbit and forminq a circumterrestrial disk, was criticized also as suffering an angular momentum deficit, based on our preliminary results (1). We present here additional results of studies of anqular momen-tum input to a circumterrestrial swarm by planetesimals arriving from heliocentric orbits. Such a target swarm could have formed initially by collisions among heliocentric planetesimals passing within Earth's sphere of influence. Such collisions have a siqnificant probability (tens of $1 of yieldinq capture into qeocentric orbit (2). We assume that the swarm is evolvinq due to collisions with the heliocentric planetesimal population as they pass close to the Earth.
    [Show full text]
  • In-Orbit Maintenance: the Future of the Satellite Industry
    MCTP Title: In-Orbit maintenance: the future of the satellite industry Supervised by: Kevin CARILLO Professor in Information Systems Names of the participants Abhishek KRISHNA Muzikayise Clive SKENJANA Viet Hoang DO Ryota YOSHIDA Qingqing WANG Florent RIZZO Toulouse Business School MCTP project: In-Orbit maintenance: The future of the satellite industry 1 MCTP project: In-Orbit maintenance: The future of the satellite industry Acknowledgement We would like to thank our academic supervisor Kevin Carillo for his continued support throughout the project. We also would like to thank the industry players, who through their busy schedule have managed to grant us an opportunity to hear their views on our topic. Sarah Kartalia for all the provocative MCTP lectures that made us grow during this process. Many thanks to Christophe Benaroya and the AeMBA staff who were readily available for their assistance throughout the process of our project. A special word of thanks also goes to our families for their tremendous support over the past 7 months. 2 MCTP project: In-Orbit maintenance: The future of the satellite industry TEAM 3 MCTP project: In-Orbit maintenance: The future of the satellite industry “It is not the strongest of the species that survive, nor the most intelligent, but the one most responsive to change.” - Charles Darwin 4 MCTP project: In-Orbit maintenance: The future of the satellite industry Contents Acknowledgement ........................................................................................................... 2 I. Executive
    [Show full text]
  • Successful Demonstration for Upper Stage Controlled Re-Entry Experiment by H-IIB Launch Vehicle
    Mitsubishi Heavy Industries Technical Review Vol. 48 No. 4 (December 2011) 11 Successful Demonstration for Upper Stage Controlled Re-entry Experiment by H-IIB Launch Vehicle KAZUO TAKASE*1 MASANORI TSUBOI*2 SHIGERU MORI*3 KIYOSHI KOBAYASHI*3 The space debris created by launch vehicles after orbital injections can be hazardous. A piece of debris can collide with artificial satellites or cause a casualty when it falls back to earth, which is an ongoing problem among countries that utilize outer space. This paper reports on a Japanese controlled re-entry disposal method that brings the upper stage of a launch vehicle down in a safe ocean area after the mission has been completed. The method was successfully demonstrated on the H-IIB launch vehicle during Flight No. 2, and provides a means of reducing the amount of space debris and the risk of ground casualty. |1. Introduction The H-IIB launch vehicle was jointly developed by the Japan Aerospace Exploration Agency (JAXA) and Mitsubishi Heavy Industries, Ltd., to launch the Kounotori (‘Stork’) H-II Transfer Vehicle (HTV), which carries supply goods to the International Space Station (ISS). The H-IIB launch vehicle has the largest launch capability of the H-IIA launch vehicle family: it can inject a 16.5-ton HTV into a low earth orbit (ISS transfer orbit). Figure 1 shows an overview of the H-IIB launch vehicle. Figure 1 Overview of the H-IIB launch vehicle The changes introduced in the H-IIB launch vehicle are as follows: ・ Enhanced first stage relative to the H-IIA: tank diameter extension, cluster system for two main engines, and four solid rocket boosters (SRB-A) ・ Reinforced upper stage (second stage) relative to the H-IIA to launch the HTV ・ 5S-H fairing (newly developed to launch the HTV) H-IIB Test Flight No.
    [Show full text]
  • Orbital Aggregation & Space Infrastructure Systems (OASIS)
    Revolutionary Aerospace Systems Concepts Orbital Aggregation & Space Infrastructure Systems (OASIS) Preliminary Architecture and Operations Analysis FY2001 Final Report June 10, 2002 This page intentionally left blank. Foreword Just as the early American settlers pushed west beyond the original thirteen colonies, the world today is on the verge of expanding the realm of humanity beyond its terrestrial bounds. The next great frontier lies ahead in low-Earth orbit and beyond. Commercialization of space has recently been mostly limited to communications and remote sensing applications, but materials processing, manufacturing, tourism and servicing opportunities will undoubtedly increase during the first part of the new millennium. Discoveries hinting at the existence of water on Mars and Europa offer additional motivation for establishing a space-based infrastructure that supports extended human exploration of the solar system. If this space-based infrastructure were also utilized to stimulate and support space commercialization, permanent human occupation of low-Earth orbit and beyond could be achieved sooner and more cost effectively. The purpose of this study is to identify synergistic opportunities and concepts among human exploration initiatives and space commercialization activities while taking into account technology assumptions and mission viability in an Orbital Aggregation & Space Infrastructure Systems (OASIS) framework. OASIS is a set of concepts that provide a common infrastructure for enabling a large class of space missions. The concepts include communication, navigation and power systems, propellant modules, tank farms, habitats, and transfer systems using several propulsion technologies. OASIS features in-space aggregation of systems and resources in support of mission objectives. The concepts feature a high level of reusability and are supported by inexpensive launch of propellant and logistics payloads.
    [Show full text]
  • Deep Space Network Ission Suppo
    870-14, Rev. AF Deep Space Network ission Suppo Jet Propulsion Laboratory California institute of Technology JPL 0-0787,Rev. AF 870-14, Rev. AF October 1991 Deep Space Network ission Support Re uirements Reviewed by: L.M. McKinley TDA Mission Support Off ice Approved by: R.J. Amorose Manager, TDA Mission Support Jet Propulsion Laboratory California Institute of Technology JPL 0-0787, Rev. AF 870.14. Rev . AF CONTENTS INTRODUCTION............................................................ 1-1 A . PURPOSE AND SCOPE ................................................. 1-1 B . REVISION AND CONTROL .............................................. 1-1 C . ORGANIZATION OF DOCUMENT 870-14 ................................... 1-1 D . ABBREVIATIONS ..................................................... 1-1 ASTRO-D ................................................................. 2-1 BROADCASTING SATELLITE-3A AND -3B (BS-3A AND -3B) ....................... 3-1 CRAF/CASSINI (c/c)...................................................... 4-1 COSMIC BACKGROUND EXPLORER (COBE)....................................... 5-1 DYNAMICS EXPLORER-1 (DE-1).............................................. 6-1 EARTH RADIATION BUDGET SATELLITE (ERBS)................................. 7-1 ENGINEERING TEST SATELLITE-VI (ETS-VI).................................. 8-1 EUROPEAN TELECOMMUNICATIONS SATELLITE I1 (EUTELSAT 11) .................. 9-1 EXTREME ULTRAVIOLET EXPLORER (EWE)..................................... 10-1 FRENCH DIRECT TV BROADCAST SATELLITE (TDF-1 AND -2) ....................
    [Show full text]
  • Orbital Mechanics Joe Spier, K6WAO – AMSAT Director for Education ARRL 100Th Centennial Educational Forum 1 History
    Orbital Mechanics Joe Spier, K6WAO – AMSAT Director for Education ARRL 100th Centennial Educational Forum 1 History Astrology » Pseudoscience based on several systems of divination based on the premise that there is a relationship between astronomical phenomena and events in the human world. » Many cultures have attached importance to astronomical events, and the Indians, Chinese, and Mayans developed elaborate systems for predicting terrestrial events from celestial observations. » In the West, astrology most often consists of a system of horoscopes purporting to explain aspects of a person's personality and predict future events in their life based on the positions of the sun, moon, and other celestial objects at the time of their birth. » The majority of professional astrologers rely on such systems. 2 History Astronomy » Astronomy is a natural science which is the study of celestial objects (such as stars, galaxies, planets, moons, and nebulae), the physics, chemistry, and evolution of such objects, and phenomena that originate outside the atmosphere of Earth, including supernovae explosions, gamma ray bursts, and cosmic microwave background radiation. » Astronomy is one of the oldest sciences. » Prehistoric cultures have left astronomical artifacts such as the Egyptian monuments and Nubian monuments, and early civilizations such as the Babylonians, Greeks, Chinese, Indians, Iranians and Maya performed methodical observations of the night sky. » The invention of the telescope was required before astronomy was able to develop into a modern science. » Historically, astronomy has included disciplines as diverse as astrometry, celestial navigation, observational astronomy and the making of calendars, but professional astronomy is nowadays often considered to be synonymous with astrophysics.
    [Show full text]
  • Experimental Analysis of Low Earth Orbit Satellites Due to Atmospheric Perturbations
    IAETSD JOURNAL FOR ADVANCED RESEARCH IN APPLIED SCIENCES ISSN NO: 2394-8442 Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Aman Saluja#1, Manish Bansal#2, M Raja#3, Mohd Maaz#4 #Aerospace Department, University of Petroleum and Energy Studies, Dehradun [email protected], [email protected], [email protected], [email protected] Abstract— A satellite is expected to move in the orbit until its life is over. This would have been true if the earth was a true sphere and gravity was the only force acting on the satellite. However, a satellite is deviated from its normal path due to several forces. This deviation is termed as orbital perturbation. The perturbation can be generated due to many known and unknown sources such as Sun and Moon, Solar pressure, etc. This paper discusses the study of perturbation of a Low Earth satellite orbit due to the presence of aerodynamic drag. Numerical method (Runge - Kutta fourth order) is used to solve the Cowell’s equation of perturbation, which consists of ordinary differential equation. Keywords— Low Earth Orbit (LEO), Cowell’s method, atmospheric perturbation, orbital elements, numerical method (RK4) I. INTRODUCTION Satellite is a space vehicle which is used for different purposes like communication, weather forecasting, surveillance, etc. so, for each purpose the design, working and the altitude the satellite to be placed, is different for different types of satellites which depends on the purpose of the satellite. A perturbation is actually a deviation from real or expected motion. It can be small or large depending upon the type of perturbation and the type of orbit the satellite is in.
    [Show full text]
  • The Planetary Report's New Format Former Administra Tor
    A Publicafion 01 THE PLANETA SOCIETY o o o o o • 0-e Board ot Directors CARL SAGAN BRUCE MURRAY FROIVI THE President Vice President EDITOR Director. Laboratory for Planetary Professor of Planetary Studies, Cornell University Science, California Institute of Technology LOUIS FRIEOMAN Executive Director HENRY TANNER California Institute THOMAS O. PAIN E of Technology Welcome to The Planetary Report's New Format Former Administra tor. NASA Chairman, National JOSEPH RYAN Commission on Space O'Meiveny & Myers f you're like me, the fIrst thing you do Members' Dialogue. A few issues ago we Board ot Advisors I after picking up a magazine is to thumb asked you to let our Directors and staff DIANE ACKERMAN JOHN M. LOGSDON through it, look at the pictures and see what know your positions on policy issues that poet and author Director. Space POlicy Institute George Washington University topics are covered. If so, you've probably concern The Planetary Society. Your articu­ ISAAC ASIMOV author HANS MARK noticed that something has changed in The late and thoughtful responses inspired us to Chancel/or. RICHARD BERENDZEN University of Texas System Planetary Report. With this issue we are in­ make this dialogue a regular feature, so President, American University JAMES MICHENER stituting a new format designed to make the now each page 3 will be devoted to our JACOUES BLAMONT author Scientific Consultant. Centre magazine easier to read, to further involve members' opinions, with a sidebar featur­ National dHudes Spafiales, MARVIN MINSKY France Donner Professor of Science, ing material concerning the Society and its Massachusetts Institute our members in The Planetary Society's pri­ RAY BRADBURY of Technology policies culled from other media sources.
    [Show full text]
  • Order-Of-Magnitude Estimation Earth Orbiter (Level 1)
    Order-of-Magnitude Estimation Earth Orbiter (Level 1) The Question A geostationary satellite orbits the Earth once each day. About how fast is it traveling in miles per hour? Background Geostationary satellites are designed to remain above the same point on the Earth’s surface, orbiting the Earth exactly once per day. It is possible to expand this question to an expert- level question by determining the exact distance to a satellite with an orbital period of 24 hours. Or, as an alternative starting point, most people can be guided to estimate that a satellite orbits at “a few times the Earth’s radius”. Guiding Questions Here are some things you may need to consider: Always have an initial guess at the answer without any OoM estimation! • Newton’s Law of Gravity is F = GMm/r2 for a body of mass (M) exerting a gravi- • tational force on a second mass m at a distance r. G is the Gravitational Constant. Newton’s Second Law in angular form is F = ma = mrω2 = mr(4π2)/T 2 for a mass • m moving in a circle of radius r that takes a period T to orbit once. How can we estimate the distance to geostationary orbit? • How can we estimate the circumference of geostationary orbit? • How are speed and distance related to velocity? • The Solution To determine the distance r to geostationary orbit (from the center of the Earth), equate Newton’s Second Law and Newton’s Law of Gravity 1 2 GMm mr(4π ) 3 GM F = = r = T 2 (1) r2 T 2 ⇒ r 4π2 remembering that the time for one orbit of a geostationary satellite is 24 hours or 24 60 60 s, which is about (100/4) 36 100 105 and that π2 10: × × × × ∼ ∼ −11 24 13 3 (6.7 10 )(6 10 ) 3 (40 10 ) r = × × (105)2 × 1010 r 40 ∼ r 40 (2) 3 3 3 √1023 3 1021(100) √100√1021 4.5 107 m ∼ ∼ p ∼ ∼ × Thus we have calculated that geocentric orbit is 45,000km or 25,000 miles.
    [Show full text]
  • Data Product Specification for the MISR Cloud Motion Vector Product
    JPL D-74995 Earth Observing System Data Product Specification for the MISR Cloud Motion Vector Product -Incorporating the Science Data Processing Interface Control Document Kevin Mueller Jet Propulsion Laboratory September 2, 2014 California Institute of Technology JPL D-74995 Multi -angle Imaging SpectroRadiometer (MISR) Data Product Specification for the MISR Cloud Motion Vector Product -Incorporating the Science Data Processing Interface Control Document APPROVALS: David J. Diner MISR Principal Investigator Earl Hansen MISR Project Manager Approval signatures are on file with the MISR Project. To determine the latest released version of this document, consult the MISR web site (http://misr.jpl.nasa.gov). Jet Propulsion Laboratory September 2, 2014 California Institute of Technology JPL D-74995 Data Product Specification for the MISR Cloud Motion Vector Product Copyright 2014 California Institute of Technology. Government sponsorship acknowledged. The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. i JPL D-74995 Data Product Specification for the MISR Cloud Motion Vector Product Document Change Log Revision Date Affected Portions and Description 16 September 2012 All, original release 2 September 2014 The original document described only the Level 3 CMV product. Descriptions of the Level 2 NRT CMV product have been added, including information comparing/contrasting the two product variations. Which Product Versions Does this Document Cover? Product Filename ESDT Version Number Brief Prefix (short names) Description MISR_AM1_CMV MI2CMVPR F01_0001 Level 2 Cloud MI2CMVBR Motion Vectors MI3MCMVN F02_0002 Level 3 Cloud MI3QCMVN Motion Vectors MI3YCMVN ii JPL D-74995 Data Product Specification for the MISR Cloud Motion Vector Product TABLE OF CONTENTS 1 INTRODUCTION .....................................................................................................................................................
    [Show full text]