Planet Imagery Product Specifications

Total Page:16

File Type:pdf, Size:1020Kb

Planet Imagery Product Specifications PLANET IMAGERY PRODUCT SPECIFICATIONS [email protected] | PLANET.COM LAST UPDATED JANUARY 2018 TABLE OF CONTENTS LIST OF FIGURES _______________________________________________________________________________________ 3 LIST OF TABLES ________________________________________________________________________________________ 4 GLOSSARY ____________________________________________________________________________________________ 5 1. OVERVIEW OF DOCUMENT _____________________________________________________________________________ 7 1.1 Company Overview _________________________________________________________________________________ 7 1.2 Data Product Overview ______________________________________________________________________________ 7 2. SATELLITE CONSTELLATION AND SENSOR OVERVIEW _____________________________________________________ 8 2.1 PlanetScope Satellite Constellation and Sensor Characteristics ______________________________________________ 8 2.2 RapidEye Satellite Constellation and Sensor Characteristics ________________________________________________ 8 2.3 SkySat Satellite Constellation and Sensor Characteristics ___________________________________________________ 9 3. PLANETSCOPE IMAGERY PRODUCTS ____________________________________________________________________ 10 3.1 PlanetScope Basic Scene Product Specification _________________________________________________________ 10 3.2 PlanetScope Ortho Scenes Product Specification _________________________________________________________ 11 3.2.1 PlanetScope Visual Ortho Scene Product Specification _________________________________________________ 12 3.2.2 PlanetScope Analytic Ortho Scene Product Specification ______________________________________________ 13 3.3 PlanetScope Ortho Tile Product Specification ___________________________________________________________ 14 3.3.1 PlanetScope Visual Ortho Tile Product Specification __________________________________________________ 15 3.3.2 PlanetScope Analytic Ortho Tile Product Specification ________________________________________________ 16 4. RAPIDEYE IMAGERY PRODUCTS _______________________________________________________________________ 18 4.1 RapidEye Basic Scene Product Specification ___________________________________________________________ 18 4.2 RapidEye Ortho Tile Product Specification _____________________________________________________________ 20 4.2.1 RapidEye Visual Ortho Tile Product Specification_____________________________________________________ 20 4.2.2 RapidEye Analytic Ortho Tile Product Specification __________________________________________________ 22 5. SKYSAT IMAGERY PRODUCTS __________________________________________________________________________ 23 5.1 SkySat Basic Scene Product Specification ______________________________________________________________ 23 5.2 SkySat Ortho Scene Product Specification _____________________________________________________________ 24 5.2.1 SkySat Visual Ortho Scene ______________________________________________________________________ 24 5.2.2 SkySat Pansharpened Multispectral Ortho Scene ____________________________________________________ 25 5.2.3 SkySat Analytic DN Ortho Scene _________________________________________________________________ 25 5.2.4 SkySat Panchromatic DN Ortho Scene _____________________________________________________________ 26 6. OTHER PROVIDER IMAGERY PRODUCTS _________________________________________________________________ 27 6.1 Landsat 8 Product Specification ______________________________________________________________________ 27 6.2 Sentinel-2 Product Specification _____________________________________________________________________ 28 7. PRODUCT PROCESSING _______________________________________________________________________________ 29 7.1 PlanetScope Processing ____________________________________________________________________________ 29 7.2 RapidEye Processing _______________________________________________________________________________ 31 7.3 SkySat Processing _________________________________________________________________________________ 32 8. QUALITY ATTRIBUTES_______________________________________________________________________________ 33 © Planet Labs Inc 2018 Page 2 8.1 Product Geometric Positional Accuracy ________________________________________________________________ 33 8.2 Cloud Cover ______________________________________________________________________________________ 33 8.2.1 PlanetScope ___________________________________________________________________________________ 33 8.2.2 RapidEye _____________________________________________________________________________________ 33 8.3 Band Co-Registration ______________________________________________________________________________ 34 8.3.1 PlanetScope __________________________________________________________________________________ 34 8.3.2 RapidEye _____________________________________________________________________________________ 34 8.3.3 SkySat _______________________________________________________________________________________ 34 8.4 Radiometry and Radiometric Accuracy ________________________________________________________________ 35 8.4.1 PlanetScope __________________________________________________________________________________ 35 8.4.2 RapidEye ____________________________________________________________________________________ 35 9. PRODUCT METADATA ________________________________________________________________________________ 37 9.1 Ortho Tiles _______________________________________________________________________________________ 37 9.1.1 PlanetScope ___________________________________________________________________________________ 37 9.1.2 RapidEye _____________________________________________________________________________________ 38 9.2 Ortho Scenes _____________________________________________________________________________________ 39 9.2.1 PlanetScope ___________________________________________________________________________________ 39 9.2.2 SkySat _______________________________________________________________________________________ 40 9.3 Basic Scenes _____________________________________________________________________________________ 41 9.3.1 PlanetScope __________________________________________________________________________________ 41 9.3.2 RapidEye _____________________________________________________________________________________ 42 9.3.3 SkySat _______________________________________________________________________________________ 43 10. PRODUCT DELIVERY ________________________________________________________________________________ 44 10.1 Planet Application Programming Interface (API) ________________________________________________________ 45 10.2 Planet Graphical User Interface (GUI) _________________________________________________________________ 47 10.3 Planet Account Management Tools ___________________________________________________________________ 47 10.4 File Format ______________________________________________________________________________________ 48 10.5 Bulk Delivery Folder Structure ______________________________________________________________________ 48 APPENDIX A - IMAGE SUPPORT DATA _____________________________________________________________________ 49 1. General XML Metadata File ___________________________________________________________________________ 49 2. Unusable Data Mask File _____________________________________________________________________________ 53 APPENDIX B - TILE GRID DEFINITION _____________________________________________________________________ 55 LIST OF FIGURES Figure A: Planet Imagery Product Offerings __________________________________________________________________ 7 Figure B: PlanetScope Scene to Ortho Tile Conversion ________________________________________________________ 14 Figure C: PlanetScope Analytic Ortho Tiles with RGB (left) and NIR False-Color Composite (right) ____________________ 16 Figure D: PlanetScope Analytic Bands ______________________________________________________________________ 17 Figure E: RapidEye Visual Ortho Tile ________________________________________________________________________ 21 Figure F: PlanetScope Image Processing Chain ______________________________________________________________ 30 Figure G: RapidEye Image Processing Chain _________________________________________________________________ 31 Figure H: SkySat Image Processing Chain ___________________________________________________________________ 32 © Planet Labs Inc 2018 Page 3 Figure A-1: Concepts Behind the Unusable Data Mask File ______________________________________________________ 54 Figure B-1: Layout of UTM Zones __________________________________________________________________________ 55 Figure B-2: Layout of Tile Grid within a single UTM zone _______________________________________________________ 56 Figure B-3: Illustration of Grid Layout of Rows and Columns for a Single UTM Zone _________________________________ 57 LIST OF TABLES Table 2-A: PlanetScope Constellation and Sensor Specifications __________________________________________________ 8 Table 2-B: RapidEye Constellation and Sensor Specifications ____________________________________________________ 8 Table 2-C: SkySat Constellation Overview ____________________________________________________________________ 9 Table 2-D: SkySat Pointing ________________________________________________________________________________ 9 Table 2-E: SkySat Sensor Specifications ______________________________________________________________________
Recommended publications
  • In-Depth Review of Satellite Imagery / Earth Observation Technology in Official Statistics Prepared by Canada and Mexico
    In-depth review of satellite imagery / earth observation technology in official statistics Prepared by Canada and Mexico Julio A. Santaella Conference of European Statisticians 67th plenary session Paris, France June 28, 2019 Earth observation (EO) EO is the gathering of information about planet Earth’s physical, chemical and biological systems. It involves monitoring and assessing the status of, and changes in, the natural and man-made environment Measurements taken by a thermometer, wind gauge, ocean buoy, altimeter or seismograph Photographs and satellite imagery Radar and sonar images Analyses of water or soil samples EO examples EO Processed information such as maps or forecasts Source: Group on Earth Observations (GEO) In-depth review of satellite imagery / earth observation technology in official statistics 2 Introduction Satellite imagery uses have expanded over time Satellite imagery provide generalized data for large areas at relatively low cost: Aligned with NSOs needs to produce more information at lower costs NSOs are starting to consider EO technology as a data collection instrument for purposes beyond agricultural statistics In-depth review of satellite imagery / earth observation technology in official statistics 3 Scope and definition of the review To survey how various types of satellite data and the techniques used to process or analyze them support the GSBPM To improve coordination of statistical activities in the UNECE region, identify gaps or duplication of work, and address emerging issues In-depth review of satellite imagery / earth observation technology in official statistics 4 Overview of recent activities • EO technology has developed progressively, encouraging the identification of new applications of this infrastructure data.
    [Show full text]
  • The Contribution of Earth Observation Technologies to Monitoring Strategies of Cultural Landscapes and Sites
    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W5, 2017 26th International CIPA Symposium 2017, 28 August–01 September 2017, Ottawa, Canada THE CONTRIBUTION OF EARTH OBSERVATION TECHNOLOGIES TO MONITORING STRATEGIES OF CULTURAL LANDSCAPES AND SITES B. Cuca a* a Dept. of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Via Ponzio 31, 20133 Milan, Italy – [email protected] KEY WORDS: Cultural landscapes, Earth Observation, satellite remote sensing, GIS, Cultural Heritage policy, geo-hazards ABSTRACT: Coupling of Climate change effects with management and protection of cultural and natural heritage has been brought to the attention of policy makers since several years. On the worldwide level, UNESCO has identified several phenomena as the major geo-hazards possibly induced by climate change and their possible hazardous impact to natural and cultural heritage: Hurricane, storms; Sea-level rise; Erosion; Flooding; Rainfall increase; Drought; Desertification and Rise in temperature. The same document further referrers to satellite Remote Sensing (EO) as one of the valuable tools, useful for development of “professional monitoring strategies”. More recently, other studies have highlighted on the impact of climate change effects on tourism, an economic sector related to build environment and traditionally linked to heritage. The results suggest that, in case of emergency the concrete threat could be given by the hazardous event itself; in case of ordinary administration, however, the threat seems to be a “hazardous attitude” towards cultural assets that could lead to inadequate maintenance and thus to a risk of an improper management of cultural heritage sites. This paper aims to illustrate potential benefits that advancements of Earth Observation technologies can bring to the domain of monitoring landscape heritage and to the management strategies, including practices of preventive maintenance.
    [Show full text]
  • International Charter ‚Space and Major Disasters‘ Outlines
    International Charter ‚Space and Major Disasters‘ Outlines Claire Tinel, CNES (French space agency) 8th UN International Conference on Space-based Technologies for Disasters Risk Reduction , 11-12 September 2019, Beijing, China History Declaration of UNISPACE III Conference (Vienna, 1999) The international space community is asked to initiate a programme to promote the use of […] Earth observation data for disastermanagement by civil protection authorities, particularly those in developing countries. History • Following UNISPACE III, the French Space Agency (CNES) and the European Space Agency (ESA) initiated the International Charter. • The Canadian Space Agency CSA signed the Charter on October 20, 2000. • Charter declared operational as of November 1, 2000 • The Charter is the world’s premier multi-satellite system of data © ESA – S. Corvaja acquisition for emergency response Charter Members CSA Canada UKSA/DMC DLR ROSCOSMOS UK Germany Russia CNES ESA KARI NOAA France EUMETSAT Korea USGS Europe JAXA USA CNSA Japan UAESA China UAE ISRO ABAE India Venezuela INPE Brasil CONAE Argentina 17 members in 2019 from 14 countries + Europe Charter Satellites ABAE VRSS-1 CNES PLEIADES, SPOT CNSA CBERS-4, GF-1, GF-2, GF-3, GF-4, FY-3C CONAE SAOCOM CSA RADARSAT-2 TerraSAR-X/TanDEM-X DLR RapidEye DMC UK-DMC2 ESA Sentinel-1, Sentinel-2, PROBA-V EUMETSAT Meteosat, Metop ISRO Cartosat-2, Resourcesat-2, Resourcesat-2A INPE CBERS-4 JAXA ALOS-2, KIBO HDTV-EF KARI KOMPSAT-2, KOMPSAT-3, KOMPSAT-3A, KOMPSAT-5 NOAA POES, SUOMI-NPP, GOES PLANET Planetscope ROSCOSMO RESURS-DK, METEOR-M, KANOPUS-V, KANOPUS-V-IK, S RESURS-P UAESA DubaiSat-2 USGS Landsat-7, Landsat-8, QuickBird, WorldView, Geoeye What is the Charter? An International agreement among participating Agencies to provide images/information of the member’s Earth-observing satellites in support of the management of major disasters worldwide.
    [Show full text]
  • 2019 Nano/Microsatellite Market Forecast, 9Th Edition
    2019 NANO/MICROSATELLITE MARKET FORECAST, 9TH EDITION Copyright 2018, SpaceWorks Enterprises, Inc. (SEI) APPROVED FOR PUBLIC RELEASE. SPACEWORKS ENTERPRISES, INC., COPYRIGHT 2018. 1 Since 2008, SpaceWorks has actively monitored companies and economic activity across both the satellite and launch sectors 0 - 50 kg 50 - 250kg 250 - 1000kg 1000 - 2000kg 2000kg+ Custom market assessments are available for all mass classes NANO/MICROSATELLITE DEFINITION Picosatellite Nanosatellite Microsatellite Small/Medium Satellite (0.1 – 0.99 kg) (1 – 10 kg) (10 – 100 kg) (100 – 1000 kg) 0 kg 1 kg 10 kg 100 kg 1000 kg This report bounds the upper range of interest in microsatellites at 50 kg given the relatively large amount of satellite development activity in the 1 – 50 kg range FORECASTING METHODOLOGY SpaceWorks’ proprietary Launch Demand Database (LDDB) Downstream serves as the data source for all satellite market Demand assessments ▪ Planned The LDDB is a catalogue of over 10,000+ historical and Constellations future satellites containing both public and non-public (LDDB) satellite programs Launch Supply SpaceWorks newly updated Probabilistic Forecast Model (PFM) is used to generate future market potential SpaceWorks PFM Model ▪ The PFM considers down-stream demand, announced/planed satellite constellations, and supply-side dynamics, among other relevant factors Expert Analysis The team of expert industry analysts at SpaceWorks SpaceWorks further interprets and refines the PFM results to create Forecast accurate market forecasts Methodology at a Glance 2018 SpaceWorks forecasted 2018 nano/microsatellite launches with unprecedented accuracy – actual satellites launched amounted to just 5% below our analysts’ predictions. In line with SpaceWorks’ expectations, the industry corrected after a record launch year in 2017, sending 20% less nano/microsatellites to orbit than in 2018.
    [Show full text]
  • Improving the Usability of Nighttime Imagery from Low Light Sensors
    Improving the Usability of Nighttime Imagery from Low Light Sensors Thomas F. Lee F. Joseph Turk Jeffrey D. Hawkins Cristian Mitrescu Naval Research Laboratory, Monterey California (USA) Steven D. Miller Cooperative Institute for Research in the Atmosphere Fort Collins Colorado (USA) Mike Haas Aerospace Corporation Silver Spring Maryland (USA) 1. Abstract This article presents the nighttime visible sensor on the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument to be flown aboard the upcoming NPOESS and NPP polar-orbiting satellites. First, we will introduce the sensor and explain how it improves on a similar sensor, the Operational Linescan System (OLS) flown on the Defense Meteorological Satellite Program (DMSP) series. A brief summary of the new instrument will be given, followed by a few example products from the OLS. The paper will close with a discussion of how the crossing time of the satellite affects the number of scenes that will have lunar illumination. 2. Introduction Low light imagery from the Operational Linescan System (OLS) aboard the Defense Meteorological Satellite Program (DMSP) satellites (Johnson et al. 1994) has prompted a number of important applications never foreseen by the United States Air Force which originally designed and launched the sensor in the early 1970’s. The unforeseen applications include composites of worldwide city lights at night; detection of fires; imaging of the aurora; monitoring of fishing boats; imaging of snow fields; detection of bioluminescence (Miller et al. 2005); and the detection of power outages. However, the sensor is still underutilized for the application for which it was originally designed, the imaging of clouds using moonlight.
    [Show full text]
  • Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
    Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications ..............................................................................
    [Show full text]
  • Using the Spatial and Spectral Precision of Satellite Imagery to Predict Wildlife Occurrence Patterns
    Remote Sensing of Environment 97 (2005) 249 – 262 www.elsevier.com/locate/rse Using the spatial and spectral precision of satellite imagery to predict wildlife occurrence patterns Edward J. Laurenta,T, Haijin Shia, Demetrios Gatziolisb, Joseph P. LeBoutonc, Michael B. Waltersc, Jianguo Liua aCenter for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, East Lansing, MI 48824-1222, USA bPacific Northwest Research Station, United States Forest Service, 620 Main Street Suite 400, Portland, OR 97205, USA cDepartment of Forestry, Michigan State University, 126 Natural Resources Building, East Lansing, MI 48824-1222 USA Received 27 July 2004; received in revised form 26 April 2005; accepted 29 April 2005 Abstract We investigated the potential of using unclassified spectral data for predicting the distribution of three bird species over a ¨400,000 ha region of Michigan’s Upper Peninsula using Landsat ETM+ imagery and 433 locations sampled for birds through point count surveys. These species, Black-throated Green Warbler, Nashville Warbler, and Ovenbird, were known to be associated with forest understory features during breeding. We examined the influences of varying two spatially explicit classification parameters on prediction accuracy: 1) the window size used to average spectral values in signature creation and 2) the threshold distance required for bird detections to be counted as present. Two accuracy measurements, proportion correctly classified (PCC) and Kappa, of maps predicting species’ occurrences were calculated with ground data not used during classification. Maps were validated for all three species with Kappa values >0.3 and PCC >0.6. However, PCC provided little information other than a summary of sample plot frequencies used to classify species’ presence and absence.
    [Show full text]
  • Study of Future Perspectives of Micro/Nanosatellites Constellations in the Earth Observation Market
    Study of future perspectives of Micro/Nano-satellites constellations in the Earth Observation market Master’s thesis Master’s Degree in Aeronautical Engineering ANNEX Mariona Costa Rabionet June 2019 Supervisor of the TFM: Miquel Sureda Anfres Co-Supervisor of TFM: Silvia Rodríguez Donaire Study of future perspectives of micro/nanosatellites constellations in the Earth Observation market Content ANNEX 1: New Space companies .................................................................................................. 3 ANNEX 2: Flock satellites status. ................................................................................................. 11 ANNEX 3: TLE number of Flock constellation satellites .............................................................. 31 ANNEX 4: Flock satellites orbital parameters. ............................................................................ 42 ANNEX 4: SaVi configuration ....................................................................................................... 56 Bibliography ................................................................................................................................ 65 2 Study of future perspectives of micro/nanosatellites constellations in the Earth Observation market ANNEX 1: New Space companies In this annex, it can be found the list of New space companies that has been analysed to be included in the qualitative analysis (table 1). Table 1. New space companies[1] Planned Organization Launched First launch Form factor Field Technical
    [Show full text]
  • The Impact of New Trends in Satellite Launches on Orbital Debris Environment
    THE IMPACT OF NEW TRENDS IN SATELLITE LAUNCHES ON ORBITAL DEBRIS ENVIRONMENT Arif Göktuğ Karacalıoğlu STC / NASA Ames Research Center, United States, [email protected] Jan Stupl SGT / NASA Ames Research Center, United States The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. Starting from the launch of the first artificial satellite in 1957, space borne technology has become an indispensable part of our lives. More than 6,000 satellites have been launched into Earth orbit. Though the annual number of satellites launched stayed flat for many decades, the trend has recently changed. The satellite market has been undergoing a major evolution with new space companies replacing the traditional approach of deploying a few large, complex and costly satellites with an approach to use a multitude of smaller, less complex and cheaper satellites. This new approach creates a sharp increase in the number of satellites and so the historic trends are no longer representative. As a foundation for this study, a scenario for satellite deployments based on publicly announced future satellite missions has been developed. These constellation-deploying companies include, but are not limited to, Blacksky, CICERO, EROS, Landmapper, Leosat, Northstar, O3b, OmniEarth, OneWeb, Orbcomm, OuterNet, PlanetIQ, Planet Labs, Radarsat, RapidEye Next Generation, Sentinel, Skybox, SpaceX, and Spire. Information such as the annual number of launches, the number of orbital planes to be used by the constellation, as well as apogee, perigee, inclination, spacecraft mass and area were included or approximated.
    [Show full text]
  • Rapideye Satellite Imagery Supporting Global REDD+ Activities on a National, Regional Or Local Level
    RapidEye Satellite Imagery Supporting Global REDD+ Activities on a National, Regional or Local Level Clear-cut area in Bolivia Offering the largest collection capacity, the largest archive and the quickest return times to any place on earth, the RapidEye constellation of five identical Earth Observation (EO) satellites is continuously collecting imagery over countries involved in the REDD and REDD+ programs. The combination of large-area coverage, frequent revisit intervals, five multi-spectral bands and high resolution makes RapidEye your best choice within the remote sensing industry. Reducing Emissions from Deforestation and forest Degradation (REDD, and later REDD+) was launched in 2005 as part of the Kyoto protocol. Each of these programs has the larger goal of stabilizing global average temperatures by reducing man-made emissions of carbon dioxide, making an effort to slow global warming. Nearly 20% of global greenhouse gas (GHG) emissions are caused by the following items, which all play a role in raising average global temperatures: » deforestation » expansion of agricultural lands » forest degradation » logging » infrastructure development » forest fires RAPIDEYE FOR REDD+ RapidEye Provides REDD+ MRV Support MRV (Measurement, Reporting and Verification) is a critical element for the implementation of any REDD+ mechanism. Remote sensing is a key ingredient of the ‘monitoring’ component, and imagery from the RapidEye constellation of satellites has been shown by many countries and organizations to be an excellent source of information for credible measurement. Since February 2009, RapidEye has been expanding its archive by over one billion square kilometers every year. Several million square 2009-2012 kilometers of the imagery in RapidEye’s archive are over countries participating in, or intending to participate in the Cloud Coverage: < 20% REDD initiative.
    [Show full text]
  • Maximizing the Utility of Satellite Remote Sensing for the Management of Global Challenges
    UN-GGIM Exchange Forum Maximizing the Utility of Satellite Remote Sensing for the Management of Global Challenges Paulo Bezerra Managing Director MDA Geospatial Services Inc. paulo@mdacorporation . com RESTRICTION ON USE, PUBLICATION OR DISCLOSURE OF PROPRIETARY INFORMATION This document contains information proprietary to MacDonald, Dettwiler and Associates Ltd., to its subsidiaries, or to a third party to which MacDonald, Dettwiler and Associates Ltd. may have a legal obligation to protect such information from unauthorized disclosure, use or duplication. Any disclosure, use or duplication of this document or of any of the information contained herein for other thanUse, the duplication,specific pur orpose disclosure for which of this it wasdocument disclosed or any is ofexpressly the information prohibited, contained except herein as MacDonald, is subject to theDettwiler restrictions and Assoon thciatese title page Ltd. ofmay this agr document.ee to in writing. 1 MDA Geospatial Services Inc. (GSI) Providing Essential Geospatial Products and Services to a global base of customers. SATELLITE DATA DISTRIBUTION DERIVED INFORMATION SERVICES Copyright © MDA ISI GeoCover Regional Mosaic. Generated Top Image - Copyright © 2002 DigitialGlobe from LANDSAT™ data. Bottom Image - RADARSAT-1 Data © CSA (()2001). Received by the Canada Centre for Remote Sensing. Processed and distributed by MDA Geospatial Services Inc. Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document. MDA GSI - Satellite Data Distribution Worldwide distributor of radar and optical satellite data RADARSAT-2 GeoEye WorldView RapidEye USA Canada Brazil Chile RADARSAT-2 Data and Products © MACDONALD DETTWILER AND Copyright © 2011 GeoEye ASSOCIATES LTD.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]