The Pennsylvania State University the Graduate School College Of

Total Page:16

File Type:pdf, Size:1020Kb

The Pennsylvania State University the Graduate School College Of The Pennsylvania State University The Graduate School College of Agricultural Sciences GREENTOWERS: PRODUCTION AND FINANCIAL ANALYSES OF URBAN AGRICULTURAL SYSTEMS A Thesis in Horticulture by Jonathan Gumble 2015 Jonathan Gumble Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2015 The thesis of Jonathan Gumble was reviewed and approved* by the following: Robert D. Berghage Associate Professor of Horticulture Thesis Co-Advisor Dan T. Stearns J. Franklin Styer Professor Thesis Co-Advisor Mark A. Gagnon Harbaugh Entrpreneurship Scholar & Entrepreneur Coordinator Andrew Lau Associate Professor of Engineering Rich Marini Professor of Horticulture Head of the Department of Horticulture *Signatures are on file in the Graduate School ii Abstract By the year 2050, the population of planet Earth is expected to reach over nine billion people. In the next 35 years, we will have the task of supporting an additional two billion lives on a planet that is already struggling to provide a stable and acceptable food supply as well as an effective means of food distribution. Estimates show that of the seven billion people living on planet Earth, 870 million suffer from hunger. The fight against world hunger is a complex, challenging, and multi-faceted issue that can only be fought through innovative solutions that address the multiple aspects comprising it. One of these aspects is simply limited access to food in urban neighborhoods and rural towns which are referred to as “food deserts”. These are prevalent throughout the United States and have resulted in food-insecure households. Solutions to limited access do exist today in the form of innovative growing on developed land. The use of controlled agricultural environments through the means of greenhouse structures, LED lights, hydroponics, aquaponics, and aeroponics have made this possible. Multiple companies have come into existence and have built their businesses out of providing these innovative growing systems or growing food through their utilization. Although these techniques and systems do exist, there is limited information and data on production yields both from the companies themselves as well as from existing scientific literature. GreenTowers, LLC is an Urban Agricultural Design Company that came into existence in the past three years as a result of Penn State University’s College of Agricultural Science’s 2012 Ag Springboard Competition. The four co-founders; Dustin Betz, Jared Yarnall-Schane, Michael Zaengle, and Jonathan Gumble have transformed GreenTowers from a student competition team, to a full-time business. GreenTowers’ mission is “to reconnect individuals with nature and with food to help consumers realize the interconnection shared between ecological systems and food systems”. This is primarily accomplished through the use of two innovative growing systems developed by the company; the Rotating Living Wall and Living Furniture. The goal of this master’s program through these sets of experiments was to understand not only the production potentials of these two systems, but the financial aspects as well to determine economic viability in specific case scenarios. The Rotating Living Wall was tested through the growing of 12 varieties of microgreens. Experiments were performed from June 2014 to June 2015 to understand differences in seasonal yields, differences in yields based on variety of microgreen, yield comparison to a traditionally grown microgreen control group; both on a yields per/trough method as well as a yields per/ft.² method, rotational timing, moving versus stationary growth, differences in growth based on media depth, and differences in production yields from supplemental lighting. iii Performance criteria were based on measuring fresh weight, dry weight, height, and SPAD-meter readings (soil plant analysis development). Differences in yields throughout seasons were significant as well as differences between the Rotating Living Wall systems compared to the control group. The use of LED supplemental lighting provided significant differences in yields throughout winter season growing. Rotational timing, media depth, as well as physical movement of plants showed minimal or no significant influence on yields. By establishing the potential revenues and various costs that are part of growing with the Rotating Living Wall system, financial viability was analyzed showing that these systems can be profitable when used in State College, PA, within certain operating parameters. Living Furniture, which is a small scale aesthetic aquaponics system, was tested through the course of ten trials to understand not only the yield potentials for a variety of microgreens, but the operating costs as well. Number of fish and fish food mass did not result in significant differences in production yields with chelated iron supplementation, but did result in significant differences for water chemistry (specifically concentrations of ammonia, nitrite, and nitrate). Water chemistry overall did prove to be better in the Living Furniture systems compared to a control setup tank with a standard mechanical filter. Chelated iron supplementation resulted in significant improvement for overall production of the systems; even resulting in the aquaponic systems surpassing the production yields from control-grown microgreens produced in a commercial potting mix. The research completed throughout these studies has not only provided a base line of operation for both these systems, but has also given insight into future studies and research that can be completed for further optimization and increased efficiency. Developed and improved growing systems may have the potential to provide solutions for fighting food deserts and ultimately the big picture of world hunger. iv Table of Contents Page List of Figures vii List of Tables xi Acknowledgements xii Chapter 1 Literature Review 1 1.1 Current Global Food Statistics and Future Predictions 1 1.2 Vertical Farming 4 1.3 Controlled Environment Agriculture (CEA) 6 1.4 Innovative Growing Systems and Current Use of CEA 7 1.5 CEA through LED utilization 9 1.6 Realizations of CEA and Energy Consumption 11 1.7 Microgreen and Organic Food Trends 13 1.8 Urban Agriculture and Urban Farming 15 1.9 Urban Agriculture Implementation 16 1.10 Realizations of Urban Farming 17 1.11 Benefits of Urban Farming 19 1.12 CEA and Urban Farming 19 1.13 Review and Preface 20 1.14 GreenTowers 21 1.15 Aquaponics 22 Chapter 2 Rotating Living Wall 28 2.1 Introduction 28 2.2 Materials and Methods 28 2.2.1 System Design and Construction 28 2.2.2 Production Experiments Methods 33 2.2.3 Experimental Setup and Layout 37 2.2.4 Process 40 2.2.5 Performance Criteria 43 2.2.6 Light Analysis Methods 44 2.2.7 Financial Analysis Methods 46 2.3 Results and Discussion 49 2.3.1 Production Experiments Results 49 2.3.2 Light Analysis Results 59 2.3.3 Financial Analysis Results 62 Chapter 3 Living Furniture 68 v 3.1 Introduction 68 3.2 Materials and Methods 68 3.3 Results and Discussion 80 3.4 Financial Analysis 81 3.5 Discussion 82 Chapter 4 Conclusions and Future Direction 83 4.1 Conclusions for Rotating Living Wall 83 4.2 Future Direction and Research 84 4.2.1 Passively Rotating Living Wall Integration 84 with Commercial Aquaponics Systems 4.2.2 Research for the Future 89 4.3 Conclusions for Living Furniture 90 4.4 Future Direction and Research for Living Furniture 90 4.5 Future Predictions 92 References 93 Appendix A Statistical Outputs Rotating Living Walls 98 Appendix B Statistical Outputs Living Furniture 104 Appendix C Light Analysis Data 109 vi List of Figures Page Figure 1.1-1. USDA Economic Research Service Food Access Research Atlas (US) 2 Figure 1.1-2. USDA Economic Research Service Food Access Research Atlas 2 (NY, PA, MD, DC) Figure 1.1-3. USDA Economic Research Service Food Access Research Atlas 3 (NY-Philadelphia) Figure 1.1-4. US Households By Food Security Status, 2013 3 Figure 1.7-1. USDA Economic Research Service U.S. Organic Food Sales (2012) 14 Figure 1.7-2. USDA Economic Research Service U.S. Certified Organic Cropland (2012) 14 Figure 2.2.1-1. Overall System Layout 28 Figure 2.2.1-2. Friction Drive 29 Figure 2.2.1-3. Gutter Trough J Bolt 29 Figure 2.2.1-4. Gutter Troughs 29 Figure 2.2.1-5. C.A.P. ART-DNE Digital Adjustable Recycling Timer 30 Figure 2.2.1-6. Framing 30 Figure 2.2.1-7. 3D SketchUp Model (Front View) 31 Figure 2.2.1-8. 3D SketchUp Model (Side View) 31 Figure 2.2.1-9. 3D SketchUp Model (Trough Detail) 32 Figure 2.2.1-10. 3D SketchUp Model (Alternative Frame) 32 Figure 2.2.2-1. 12 Varieties of Microgreens 34 Figure 2.2.2-2. Oscillating Linear Actuator Bench 36 Figure 2.2.3-1. Greenhouse Setup 37 vii Figure 2.2.3-2. SketchUp Model of Experimental SetUp 37 Figure 2.2.3-3. General Experimental Layout 38 Figure 2.2.3-4. Experimental Setup in Greenhouse (Summer) 38 Figure 2.2.3-5. Experimental Setup in Greenhouse (Fall) 39 Figure 2.2.3-6. Experimental Setup in Greenhouse (Winter) 39 Figure 2.2.3-7. Experimental Setup in Greenhouse (Spring) 40 Figure 2.2.4-1. Vacuum Seeder Manifold 41 Figure 2.2.4-2. Shop Vacuum 41 Figure 2.2.4-3. Seeding Template 41 Figure 2.2.4-4. Jig and Hopper 42 Figure 2.2.4-5. Hedge Trimmer 42 Figure 2.2.4-6. Harvested Product 43 Figure 2.2.5-1. SPAD Meter 43 Figure 2.2.7-1. Two Fluorescent Light Fixtures 46 Figure 2.2.7-2. Metal Halide Light Fixture 47 Figure 2.2.7-3. LED Light Fixture 47 Figure 2.2.7-4. Light Meter 48 Figure 2.2.7-5.
Recommended publications
  • What Better Plants Are Grown on Grown Are Plants Better What
    GroWSToNe what better plants are grown on 100% Recycled. 100% American Made. www.growstone.com 100% Recycled. 100% American Made. Growstone Hydroponic Growth Mediums and Super Soil Aerators are a horticultural, scientific and environmental win-win-win. Growstones are an effective alternative to perlite and Hydroton®. They guarantee a considerably higher aeration and faster drainage than perlite, while simultaneously holding more water than Hydroton. Growstones provide: Other Growstones characteristics are: 3 times more water than Hydroton® High porosity and aeration Over 70% more aeration than perlite Proven yields ‘as-good-as’ the industry standards 4 times more aeration than coco coir Can satisfy a wide range of plant requirements for different growing systems and climates Made from 100% recycled glass The perfect balance of air and water Not strip-mined like Hydroton® and perlite Growstones highly porous media associate a good water holding Inert capacity to high air-filled porosity. At field capacity, Growstones pH neutral after preparation hold 30% water within its pores and 50% air by volume within its 100% non-toxic and chemical free inner and inter aggregate spaces. This water to air ratio maximizes Lightweight, dust-free water availability and aeration to your plant roots. It also Impossible to over water facilitates drainage making it impossible to over irrigate. Does not float to top when irrigated Non-degradable Non-compacting Average Water Holding Capacity Reusable Air Filled Porosity of Substrates After Drainage Made in the USA “What growers like about “Our Rocks Growstones are they hold a lot of oxygen and moisture. Don’t Roll” And the fact they are recycled —Andrew makes them even better.” Founder & Inventor of Growstone Santa Fe, New Mexico —Dylan | Deep Roots Hydroponics Garden Supply | Sebastopol, California Propagation How to Use Growstones Place your seeds in any propagation media.
    [Show full text]
  • Francesco Orsini Marielle Dubbeling Henk De Zeeuw Giorgio Gianquinto Editors Rooftop Urban Agriculture
    Urban Agriculture Francesco Orsini Marielle Dubbeling Henk de Zeeuw Giorgio Gianquinto Editors Rooftop Urban Agriculture 123 Urban Agriculture Series editors Christine Aubry, AgroParisTech, INRA UMR SADAPT, Paris, France Éric Duchemin, Université du Québec à Montréal Institut des Science de Environment, Montreal, Québec, Canada Joe Nasr, Centre for Studies in Food Security, Ryerson University, Toronto, Ontario, Canada The Urban Agriculture Book Series at Springer is for researchers, professionals, policy-makers and practitioners working on agriculture in and near urban areas. Urban agriculture (UA) can serve as a multifunctional resource for resilient food systems and socio-culturally, economically and ecologically sustainable cities. For the Book Series Editors, the main objective of this series is to mobilize and enhance capacities to share UA experiences and research results, compare methodologies and tools, identify technological obstacles, and adapt solutions. By diffusing this knowledge, the aim is to contribute to building the capacity of policy-­ makers, professionals and practitioners in governments, international agencies, civil society, the private sector as well as academia, to effectively incorporate UA in their field of interests. It is also to constitute a global research community to debate the lessons from UA initiatives, to compare approaches, and to supply tools for aiding in the conception and evaluation of various strategies of UA development. The concerned scientific field of this series is large because UA combines agricultural issues with those related to city management and development. Thus this interdisciplinary Book Series brings together environmental sciences, agronomy, urban and regional planning, architecture, landscape design, economics, social sciences, soil sciences, public health and nutrition, recognizing UA’s contribution to meeting society’s basic needs, feeding people, structuring the cities while shaping their development.
    [Show full text]
  • Growing Hydroponic Leafy Greens Figure 1
    FRESH FARE Growing Hydroponic Leafy Greens Figure 1. Lettuce growing in deep Have you thought about making the move toward controlled water culture environment vegetable growing? Here are some things to consider. (DWC) ponds BY NEIL MATTSON eafy greens such as lettuce, arugula, kale, mustard In NFT, seedlings are transplanted onto shallow channels and spinach are among the most popular locally grown where a thin film of nutrient solution is continuously circulated Lvegetables. They can be produced locally year-round (Figure 2). The channels are sloped at 1 to 4 percent away in controlled environment greenhouses in hydroponics. This from a center aisle and drained at the ends back to the water article will cover some of the basics of hydroponic systems and reservoir. An advantage of the DWC system is because a large production methods for these crops. volume of water is used rapid changes are avoided in water temperature, pH, electrical conductivity (EC) and nutrient CHOOSE YOUR SYSTEM solution composition. The two most common hydroponic growing systems for leafy greens are deep water culture (DWC) and nutrient film technique HEAD LETTUCE (NFT). In DWC, also referred to as raft or pond culture, seedlings The Cornell University Controlled Environment Agriculture are transplanted into Styrofoam rafts which are floated on a 6- to (CEA) group has a long history of research to optimize production 12-inch constructed pond containing a large volume of nutrient of hydroponic lettuce. When proper growing conditions are solution (Figure 1). A pump is used to circulate water through maintained a 5- to 6-ounce head of lettuce can be produced from the pond and an air pump or injection with oxygen is used to seed in 35 days.
    [Show full text]
  • Green Technologies, Innovations and Practice in the Agricultural Sector
    Green Technologies, Innovations and Practice in the Agricultural Sector Shared Prosperity Dignified Life GREEN TECHNOLOGIES, INNOVATIONS AND PRACTICES IN THE AGRICULTURAL SECTOR E/ESCWA/SDPD/2019/INF.8 The Arab region faces many challenges including severe water scarcity, rising population, increasing land degradation, aridity, unsustainable energy consumption, food insecurity and deficiency in waste management. These challenges are expected to worsen with the negative impact of climate change, the protracted crises plaguing the region and the rapidly changing consumption patterns. Some of these challenges, however, can still be mitigated with the judicious use of appropriate technologies, practices and innovative ideas so as to transform depleted, wasted or overlooked resources into new opportunities for revenue generation, livelihood improvement and resource sustainability. Innovation and technology are the main drivers of economic growth and societal transformation through enhanced efficiency, connectivity and access to resources and services. Yet, current growth models have led to environmental degradation and depletion of natural resources. Such environmental technologies and innovations may result in what is often referred to as “green technologies or practices” or “clean technologies”. These technologies and innovations may help bridge the gap between growth and sustainability as they reduce unfavorable effects on the environment, improve productivity, efficiency and operational performance. It is high time the region brought this
    [Show full text]
  • Plant Propagation for Successful Hydroponic Production
    2/19/2018 Plant Propagation for Successful Hydroponic Production Hye-Ji Kim Assistant Professor of Sustainable Horticulture Crop Production February 13, 2018 Purdue University is an equal access/equal opportunity institution. What is Hydroponics? Hydroponics = hydros + ponos Water labor The cultivation of plants by placing the roots in liquid nutrient solutions rather than in soil; soilless growth of plants. Purdue University is an equal access/equal opportunity institution. 1 2/19/2018 Why hydroponics? . Crops can be produced on non‐arable land including land with poor soils and/or high salinity levels. Efficient use of water and nutrients. High density planting = minimum use of land area. Year‐round production. Local food. Direct and immediate control over the rhizosphere. Isolation from diseases or insect pests usually found in the soil. Higher yield, quality and storability of products. Ease of cleaning the systems. No weeding or cultivation is needed. Transplanting of seedlings is easy. Purdue University is an equal access/equal opportunity institution. Hydroponics Basics Types of Hydroponics: Water vs. Substrate-base Open vs. Closed Purdue University is an equal access/equal opportunity institution. 2 2/19/2018 Types of Hydroponics: Water vs. Substrate-base Water-based System Substrate-based System Deep water culture “Raft” system Ebb‐and‐flow Nutrient Film Techniques (NFT) Aeroponics Drip irrigation Purdue University is an equal access/equal opportunity institution. Source: Chiwon Lee Types of Hydroponics: Water vs. Substrate-base Water-based System Deep water culture “Raft” system Nutrient Film Techniques (NFT) Aeroponics Source: Chiwon Lee Source: hydrocentre.com.au Source: Petrus Langenhoven Mobile channel system Facility of Great Lakes Growers, Burton, Ohio Purdue University is an equal access/equal opportunity institution.
    [Show full text]
  • Vertical Farming Sustainability and Urban Implications
    Master thesis in Sustainable Development 2018/32 Examensarbete i Hållbar utveckling Vertical Farming Sustainability and Urban Implications Daniela Garcia-Caro Briceño DEPARTMENT OF EARTH SCIENCES INSTITUTIONEN FÖR GEOVETENSKAPER Master thesis in Sustainable Development 2018/32 Examensarbete i Hållbar utveckling Vertical Farming Sustainability and Urban Implications Daniela Garcia-Caro Briceño Supervisor: Cecilia Mark-Herbert Evaluator: Daniel Bergquist Copyright © Daniela Garcia-Caro Briceño, Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2018 Content 1. INTRODUCTION .............................................................................................................................. 1 1.1 PROBLEM FORMULATION ............................................................................................................... 1 1.2 AIM ................................................................................................................................................. 2 1.3 OUTLINE ......................................................................................................................................... 3 2. METHODS ......................................................................................................................................... 4 2.1 RESEARCH APPROACH AND DESIGN ............................................................................................... 4 2.2 RESEARCH DELIMITATIONS ...........................................................................................................
    [Show full text]
  • The Role of Urban Agriculture for Sustainable and Resilient Cities
    THE ROLE OF URBAN AGRICULTURE FOR SUSTAINABLE AND RESILIENT CITIES A Dissertation Submitted by Thomas Alexander Masyk To the Faculty of Spatial Planning TU Dortmund University, Germany In Fulfillment of the Requirements for the Degree of Doctor of Engineering (Dr.- Ing.) 2021 - 2 - Doctoral Committee Supervisor/Examiner: Univ.-Prof. Dr.-Ing. Dietwald Gruehn Examiner: Univ.-Prof. Dr. Sophie Schramm Chairman of the Examination Committee: Univ.-Prof. Dr. rer. nat. habil. Nguyen Xuan Thinh Declaration I hereby declare that this doctoral dissertation is the result of an independent investigation and it has been generated by me as the result of my own research. Where it is indebted to the work of others, acknowledgements have duly been made. Thomas Alexander Masyk Augsburg, 24.03.2021 - 3 - ACKNOWLEDGEMENTS A scholarly paper is never the work of a single person. Therefore, I want to thank everyone who made it possible for me to write this thesis. My deepest thanks go to Univ.-Prof. Dr.-Ing. Dietwald Gruehn for accepting me as a Ph.D. candidate. I want to thank him for his encouragement, patience, advices and constructive criticism on my thoughts and drafts. I also want to thank Univ.-Prof. Dr. Sophie Schramm for her thoughts and ideas that improved my thesis greatly and gave it its finishing touch. My greatest thanks and gratitude go to both my parents Dr. Eva-Maria Masyk and Dr. Taras Masyk as well as to my wife Tanja Masyk. Without their support, encouragement and love, I would not be where I am right now and would never have been able to finish this thesis.
    [Show full text]
  • Annual Yield Comparison
    2/3/2021 Feb 27, 2018 Controlled Environment Plant Physiology & Technology Lab Hydroponics & (The Kubota Lab) Controlled Environment Agriculture (CEA) http://extension.psu.edu/publications/ul207 Our Mission Dr. Chieri Kubota To serve for science‐based technology development in the area of controlled Horticulture and Crop Science environment agriculture (CEA). The Ohio State University To translate scientific understanding and discoveries into innovative applications. 12 Controlled Environment Agriculture Controlled Environment Agriculture • High yield • High quality • Minimum resource use (water, pesticide, and fertilizer) • Year‐round production (Year‐ round employment) • Ergonomic improvement • Various technology levels – Low tech (high tunnels, soil) – High tech (computer control, automation, soilless/hydroponics) 34 Annual yield comparison • Tomato – Florida open‐field fresh tomato average = 3.2 kg/m2 (950 million pounds out of 33000 harvested acres in 2015) (0.7 lb/ft2) – Greenhouse benchmark yield = 50‐60 kg/m2 (various sources) (10‐12 lb/ft2) – Greenhouse record yield = 100 kg/m2 (Village Farms, USA/Canada) (20 lb/ft2) Photo by Merle Jensen 56 1 2/3/2021 Water use comparison Recirculation of WUE –Water Use Efficiency (kg/m3) nutrient solution in tomato, 3 • California open‐field tomato 10‐12 kg/m with cucumber, and flood irrigation; 19‐25 kg/m3 with drip pepper crops irrigation (San Joaquin Valley data) (high‐wire crops) • Greenhouse tomato 30‐66 kg/m3 with recirculated irrigation system (reported in the Netherlands and Spain).
    [Show full text]
  • Risk of Human Pathogen Internalization in Leafy Vegetables During Lab-Scale Hydroponic Cultivation
    horticulturae Review Risk of Human Pathogen Internalization in Leafy Vegetables During Lab-Scale Hydroponic Cultivation Gina M. Riggio 1, Sarah L. Jones 2 and Kristen E. Gibson 2,* 1 Cellular and Molecular Biology Program, Department of Food Science, University of Arkansas, Fayetteville, AR 72701, USA; [email protected] 2 Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-479-575-6844 Received: 13 February 2019; Accepted: 7 March 2019; Published: 15 March 2019 Abstract: Controlled environment agriculture (CEA) is a growing industry for the production of leafy vegetables and fresh produce in general. Moreover, CEA is a potentially desirable alternative production system, as well as a risk management solution for the food safety challenges within the fresh produce industry. Here, we will focus on hydroponic leafy vegetable production (including lettuce, spinach, microgreens, and herbs), which can be categorized into six types: (1) nutrient film technique (NFT), (2) deep water raft culture (DWC), (3) flood and drain, (4) continuous drip systems, (5) the wick method, and (6) aeroponics. The first five are the most commonly used in the production of leafy vegetables. Each of these systems may confer different risks and advantages in the production of leafy vegetables. This review aims to (i) address the differences in current hydroponic system designs with respect to human pathogen internalization risk, and (ii) identify the preventive control points for reducing risks related to pathogen contamination in leafy greens and related fresh produce products. Keywords: hydroponic; leafy greens; internalization; pathogens; norovirus; Escherichia coli; Salmonella; Listeria spp.; preventive controls 1.
    [Show full text]
  • Poster Session Abstracts POSTERS–Saturday 106Th Annual International Conference of the American Society for Horticultural Science Millennium Hotel, St
    Poster Session Abstracts POSTERS–Saturday 106th Annual International Conference of the American Society for Horticultural Science Millennium Hotel, St. Louis, Missouri All posters are displayed in the Poster Hall, located in the Illinois/Missouri/Meramac rooms. The number in parentheses ( ) preceding the poster title corresponds to the location of the poster within the Poster Hall. Presenting authors are denoted by an asterisk (*). (42) Rheological Properties of Water-soluble Crop Physiology/Physiology: Polysaccharide in Peach Gum from Cross-Commodity Almond (Prunus dulcis) Saturday, 25 July 2009 12:00–12:45 pm Sen Wang Central South University of Forestry and Technology, Changsha; wangq- (41) Growth and Salinity Tolerance of Zinnia elegans [email protected] When Irrigated with Wastewater from Two Distinct Lin Zhang Central South University of Forestry and Technology, Huann 410004; Growing Regions in California [email protected] Christy T. Carter* Deyi Yuan* Tennessee Tech University, Cookeville, TN; [email protected] Central South University of Forestry and Technology, Changsha; yuan- Catherine Grieve [email protected] U.S. Salinity Laboratory, Riverside, CA; [email protected] Qiuping Zhong Using recycled greenhouse effluents to irrigate salt-tolerant floral crops Central South University of Forestry and Technology, Changsha; wangq- provides an economic and environmental benefit for growers. Produc- [email protected] ers are able to reduce their direct use of high quality water for certain Yina Li crops and simultaneously reduce or prevent groundwater contamina- Central South University of Forestry and Technology, Changsha; wangq- tion. We selected Zinnia elegans as a potential salt-tolerant crop for [email protected] use in a recycled greenhouse system based on the known hardiness of The rheological properties of water-soluble polysaccharide in peach its wild relatives and because of its economic value to the floriculture gum from almond (Prunus dulcis) were studied in this paper in order industry.
    [Show full text]
  • (NFT) and Deep Water Culture (DWC) Units
    57 When using timers for larger units a specific rule of thumb should be applied: ensure that at least the Fig. 4.54 The Mineralization Zone of a Grow Bed fish tank volume is pumped through the whole unit in 1 hour. Also, during warmer months of the year it is vital that you include an air pump into your fish tank to stabilize the oxygen levels as there are no 3) Mineralization Zone (The Wet Zone): bell siphons creating vast amounts of water aeration when using timer methods. Finally, make sure to flush the beds out once every week by temporarily removing the stand pipe and allowing the water This zone, the bottom 3-5cm of the bed, to drain out. remains permanently wet. In this zone, all the bacteria, red worms, water flies and other microorganisms thrive and consume all the solid waste, breaking E) Understanding the 3 Zones in Every Media Bed and Their Processes it into smaller fractions and molecules (Micro Eco-system) that can be absorbed by the plants. This manual has already discussed the nitrifying bacteria used for bio filtration, however in reality there is a whole ecosystem within every bed involving multiple types of bacteria, micro-organisms and tiny animals that all play their part in the breaking down of fish waste. It is not essential to be aware of all these organisms, but we will briefly explain their role in the 3 different zones of the bed in order to help you fully understand the benefits of this ecological process (Chapter 5: Bacteria, will also explain other key groups of bacteria involved).
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Raymond Allen Cloyd Home Address: Work Address: 3431 Treesmill Drive Kansas State University Manhattan, KS 66503 Department of Entomology (785) 537-0684 123 Waters Hall Manhattan, KS 66506-4004 (785) 532-4750 Date of Appointment at Kansas State University: August 1, 2006. Appointment Responsibilities: 70% Extension and 30% Research. Title: Professor and Extension Specialist in Horticultural Entomology/Plant Protection. BACKGROUND 1. Education Doctor of Philosophy Degree (Ph.D) in Entomology; Purdue University, West Lafayette, IN. March 1999. Dissertation: Effects of plant architecture on the attack rate of Leptomastix dactylopii (Howard) (Hymenoptera: Encyrtidae), a parasitoid of the citrus mealybug, Planococcus citri (Risso) (Homoptera: Pseudococcidae). Master of Science Degree in Entomology; Purdue University, West Lafayette, IN. June 1995. Thesis: Evaluation of trichome density levels and bean leaf beetle, Cerotoma trifurcata (Forster), feeding preference on soybean pods. Bachelor of Science Degree in Ornamental Horticulture; California Polytechnic State University—San Luis Obispo, CA. June 1990. Senior Project: Fungicide efficacy on Pythium ultimum of bedding plant seedlings. Minor Degree in Plant Protection/Pest Management. Associate of Science Degree in Ornamental Horticulture; Monterey Peninsula College, Monterey, CA. June 1985. 2. Professional Employment Owner/Manager: Ray Cloyd Landscape Gardeners and Horticultural Consultants. Monterey, CA. 1982- 1992. Responsibilities: landscape maintenance, installation, designing, and horticultural consulting for commercial and residential clients. Landscape Maintenance Supervisor: Sonora Hills Retirement Community. Sonora, CA. 1990-1992. Responsibilities: landscape and irrigation maintenance; insect, disease, and weed management; supervise and designate work-crew responsibilities. Nursery Technician: Millards Garden Center. Sonora, CA. 1990-1991. Responsibilities: customer sales, greenhouse repair, plant material inventory, maintenance of nursery stock plants, and consulting for customers.
    [Show full text]