Volunteers Concerned About Nightjars Citizen Scientists That Participate In

Total Page:16

File Type:pdf, Size:1020Kb

Volunteers Concerned About Nightjars Citizen Scientists That Participate In Volunteers Concerned about Nightjars Citizen scientists that participate in the thousands of programs worldwide are often not professionally trained biologists; however, they possess a desire to contribute their free time to something that they value. Whether uploading species lists into eBird, helping to actively clean and restore wetlands, or venturing into the eve to listen for nightjars, it is understood that a personal sense of fulfillment keeps people engaged in these programs. In particular, Nightjar Network surveyors deserve an even bigger pat on the back for their efforts. For one, conducting evening work can be a bit of a grind. Additionally, seeing the bird is half the fun; so conducting a bird survey where you will likely never see the bird my not seem as satisfying. We assume you all have your own reasons for embarking on your journey with us: Whether you are the rare night owl, you feel a certain fulfillment in the act of volunteering, or you just can’t get enough of birds in the daylight hours that you must grind through the night hours in the hopes of adding one of these awesome birds to your day list! We hope you value your participation and continued support of this program as much as we do. Eleven years of Nightjar Survey Data and What’s to Come 2018 closed out our 11th (!) year conducting nightjar surveys as part of the network. Since its establishment in 2007, over 3,000 survey routes have been conducted by 646 dedicated volunteers throughout the US (Figure 1). Volunteers have included a wide range of concerned citizens from agency biologists to retired school teachers to young students - people who enjoy experiencing the night sounds while contributing to what we know about this unusual group of birds. Across the network, over 27,000 nightjars have been detected including over 10,000 chuck-will’s-widows and 8,000 eastern whip- poor-wills (Figures 2 & 3). Composition of the nightjar community varies by region and habitat. North Carolina has consistently won the prize for participation, followed by Florida, Arizona, and Virginia (Figure 4). We are aiming to increase participation through upcoming improvements and the development of applications to simplify data submission so we can collectively bridge information gaps to monitor population trends. The 2019 survey period has begun and we are hopeful for your participation in the coming season! Thanks again for all you do! As always, feel free to contact us with questions or comments at [email protected]. The Nightjar Survey Network Team nightjars.org Number of Total Survey Routes Conducted per State (2007-2018) WY 81 WV 16 WA 26 VA 204 UT 72 TX 135 TN 90 SD 72 SC 53 PA 95 OR 101 ONTCAN 1 OK 17 OH 22 NV 90 NM 55 NE 28 ND 3 NC 445 MT 33 MS 78 STATE MO 77 MN 49 MI 16 ME 5 MD 64 LA 4 KY 66 KS 39 IN 16 IL 7 ID 92 IA 16 GA 86 FL 277 CO 49 CA 127 BRTCAN 1 AZ 274 AR 125 AL 34 0 50 100 150 200 250 300 350 400 450 500 NUMBER OF ROUTES SURVEYED Figure 1. Total number of routes surveyed per state since 2007. Total Birds Detected Common Paraque 90 Chuck-will's-widow 10985 Buff-collared Nightjar 2 Antillean Nightjar 3 Mexican Whip-poor-will 113 SPECIES Lesser Nighthawk 2171 Eastern Whip-poor-will 7860 Common Poorwill 2302 Common Nighthawk 4190 0 2000 4000 6000 8000 10000 12000 NUMBER DETECTED Figure 2. Total number of birds detected by species, all years (2007-2018), including all states. Figure NUMBER OF BIRDS (SPECIES) 1000 1500 2000 2500 3000 3500 4000 4500 5000 3 500 . Nightjar species detected per state. state. per detected species . Nightjar 0 AL AR AZ BRTCAN CA CO NUMBER OF EACH SPECIES DETECTED PER STATE (2007 FL GA IA ID IL IN KS KY LA MD ME MI MN STATE MO MS MT NC NE NM NV OH OK Mexican Whip-poor-willMexican Nighthawk Lesser Eastern Whip-poor-will Poorwill Common PaurauqueCommon NighthawkCommon Chuck-will's-widow Nightjar Buff-collared NighthawkAntillian ONTCAN OR PA - SC 2018) SD TN TX UT VA WA WV WY Figure 4. Number of current Nightjar Route Surveyors per State. .
Recommended publications
  • Life History Account for Lesser Nighthawk
    California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group LESSER NIGHTHAWK Chordeiles acutipennis Family: CAPRIMULGIDAE Order: CAPRIMULGIFORMES Class: AVES B275 Written by: M. Green Reviewed by: L. Mewaldt Edited by: D. Winkler, R. Duke DISTRIBUTION, ABUNDANCE, AND SEASONALITY An uncommon summer resident in arid lowlands, primarily in desert scrub, desert succulent shrub, desert wash, and alkali desert scrub habitats. Also forages over grasslands, desert riparian, and other habitats with high densities of flying insects. Occurs north in the Sacramento Valley to Tehama Co. (Grinnell and Miller 1944) and southern Shasta Co., and to lower Mono Co. east of the Sierra Nevada (McCaskie et al. 1979). More common in desert areas of southeastern California. Casual in winter mostly in southeastern deserts. Transients sometimes noted on the Channel Islands in spring and summer, and rare in spring on Farallon Islands (DeSante and Ainley 1980). SPECIFIC HABITAT REQUIREMENTS Feeding: Feeds on insects, which it hawks on long, low flights over open areas. Also makes short flights from the ground in the manner of a common poorwill (Bent 1940). Cover: Nests and roosts on bare sand and gravel surfaces; desert floor, along washes; sometimes uses levees and dikes for nesting. Forages over grasslands, open riparian areas, agricultural lands, and similar open habitats where insects thrive. Reproduction: Nests in the open on gravelly or sandy substrate. Also uses dikes and levees for nesting. Water: May drink while skimming over water surface (Bent 1940). Pattern: Undisturbed gravel or sand surface for roosting and nesting; open lowlands, riparian areas, agricultural fields, or other insect-rich areas for foraging.
    [Show full text]
  • The Coastal Scrub and Chaparral Bird Conservation Plan
    The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California A Project of California Partners in Flight and PRBO Conservation Science The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California Version 2.0 2004 Conservation Plan Authors Grant Ballard, PRBO Conservation Science Mary K. Chase, PRBO Conservation Science Tom Gardali, PRBO Conservation Science Geoffrey R. Geupel, PRBO Conservation Science Tonya Haff, PRBO Conservation Science (Currently at Museum of Natural History Collections, Environmental Studies Dept., University of CA) Aaron Holmes, PRBO Conservation Science Diana Humple, PRBO Conservation Science John C. Lovio, Naval Facilities Engineering Command, U.S. Navy (Currently at TAIC, San Diego) Mike Lynes, PRBO Conservation Science (Currently at Hastings University) Sandy Scoggin, PRBO Conservation Science (Currently at San Francisco Bay Joint Venture) Christopher Solek, Cal Poly Ponoma (Currently at UC Berkeley) Diana Stralberg, PRBO Conservation Science Species Account Authors Completed Accounts Mountain Quail - Kirsten Winter, Cleveland National Forest. Greater Roadrunner - Pete Famolaro, Sweetwater Authority Water District. Coastal Cactus Wren - Laszlo Szijj and Chris Solek, Cal Poly Pomona. Wrentit - Geoff Geupel, Grant Ballard, and Mary K. Chase, PRBO Conservation Science. Gray Vireo - Kirsten Winter, Cleveland National Forest. Black-chinned Sparrow - Kirsten Winter, Cleveland National Forest. Costa's Hummingbird (coastal) - Kirsten Winter, Cleveland National Forest. Sage Sparrow - Barbara A. Carlson, UC-Riverside Reserve System, and Mary K. Chase. California Gnatcatcher - Patrick Mock, URS Consultants (San Diego). Accounts in Progress Rufous-crowned Sparrow - Scott Morrison, The Nature Conservancy (San Diego).
    [Show full text]
  • 98-100 OB Vol 16#2 Aug1998.Pdf
    98 Photo Quiz Bob Curry Rather few of our birds sit length­ groups. Two species of nighthawks wise along branches as this bird is in the genus Chordeiles have doing. What we have is a dark and occurred in Ontario: the Common light bird with mottled, intricate Nighthawk, which unfortunately is plumage. It displays no legs and far less common than it once was, feet, a tiny somewhat hooked bill, a and the Lesser Nighthawk, which large-headed and no-necked occurred once at Point Pelee associ­ appearance, and rather long, point­ ated with a late April push of tropi­ ed wings. Moreover, it is sleeping! cal air. The other three are true Our only birds which combine nightjars, although two genera are these features are the Caprimulgi­ involved. Alas, the Whip-poor-will dae or nightjars. It is surprising to also is heard by fewer than it once consider that in a north temperate was in Ontario, but is nonetheless a eastern jurisdiction such as is widespread breeding inhabitant of Ontario, five species of goatsuckers southern and central Ontario. The have been recorded. Poorwill, a western species, has These may be divided into two occurred accidentally on the shore ONTARIO BIRDS AUGUST 1998 99 of James Bay, and the Chuck-will's­ and light buffy spots, whereas the widow, a denizen of the hot, humid somewhat less cryptic nighthawks southeastern U.S., has occurred in have plain black primaries. The summer (and bred) at a few wide­ underparts on nighthawks are spread locations, but remains an strongly barred blackish on white extremely rare bird, being recorded or pale buff.
    [Show full text]
  • Artificial Water Catchments Influence Wildlife Distribution in the Mojave
    The Journal of Wildlife Management; DOI: 10.1002/jwmg.21654 Research Article Artificial Water Catchments Influence Wildlife Distribution in the Mojave Desert LINDSEY N. RICH,1,2 Department of Environmental Science, Policy, and Management, University of California- Berkeley, 130 Mulford Hall 3114, Berkeley, CA 94720, USA STEVEN R. BEISSINGER, Department of Environmental Science, Policy, and Management, University of California- Berkeley, 130 Mulford Hall 3114, Berkeley, CA 94720, USA JUSTIN S. BRASHARES, Department of Environmental Science, Policy, and Management, University of California- Berkeley, 130 Mulford Hall 3114, Berkeley, CA 94720, USA BRETT J. FURNAS, Wildlife Investigations Laboratory, California Department of Fish and Wildlife, Rancho Cordova, CA 95670, USA ABSTRACT Water often limits the distribution and productivity of wildlife in arid environments. Consequently, resource managers have constructed artificial water catchments (AWCs) in deserts of the southwestern United States, assuming that additional free water benefits wildlife. We tested this assumption by using data from acoustic and camera trap surveys to determine whether AWCs influenced the distributions of terrestrial mammals (>0.5 kg), birds, and bats in the Mojave Desert, California, USA. We sampled 200 sites in 2016–2017 using camera traps and acoustic recording units, 52 of which had AWCs. We identified detections to the species-level, and modeled occupancy for each of the 44 species of wildlife photographed or recorded. Artificial water catchments explained spatial variation in occupancy for 8 terrestrial mammals, 4 bats, and 18 bird species. Occupancy of 18 species was strongly and positively associated with AWCs, whereas 1 species (i.e., horned lark [Eremophila alpestris]) was negatively associated. Access to an AWC had a larger influence on species’ distributions than precipitation and slope and was nearly as influential as temperature.
    [Show full text]
  • Common Nighthawk Chordeiles Minor
    COSEWIC Assessment and Status Report on the Common Nighthawk Chordeiles minor in Canada SPECIAL CONCERN 2018 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2018. COSEWIC assessment and status report on the Common Nighthawk Chordeiles minor in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 50 pp. (http://www.registrelep-sararegistry.gc.ca/default.asp?lang=en&n=24F7211B-1). Previous report(s): COSEWIC 2007. COSEWIC assessment and status report on the Common Nighthawk Chordeiles minor in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 25 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC would like to acknowledge Andrew Gregg Horn for writing the status report on Common Nighthawk, Chordeiles minor, prepared under contract with Environment and Climate Change Canada. This report was overseen and edited by Richard Elliot, Co-chair of the COSEWIC Birds Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment and Climate Change Canada Ottawa, ON K1A 0H3 Tel.: 819-938-4125 Fax: 819-938-3984 E-mail: [email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur L’engoulevent d’Amérique (Chordeiles minor) au Canada. Cover illustration/photo: Common Nighthawk, copyright by Ronnie d'Entremont. Her Majesty the Queen in Right of Canada, 2018. Catalogue No. CW69-14/515-2018E-PDF ISBN 978-0-660-27850-6 COSEWIC Assessment Summary Assessment Summary – April 2018 Common name Common Nighthawk Scientific name Chordeiles minor Status Special Concern Reason for designation This aerial insectivore is a widespread breeding bird across southern and boreal Canada.
    [Show full text]
  • Colorado Birds the Colorado Field Ornithologists’ Quarterly
    Vol. 50 No. 2 Spring 2016 Colorado Birds The Colorado Field Ornithologists’ Quarterly Boreal Owls in Rocky Hungry Birds Key In on Defects Lesser Nighthawks in Colorado Colorado Field Ornithologists PO Box 929, Indian Hills, Colorado 80454 cfobirds.org Colorado Birds (USPS 0446-190) (ISSN 1094-0030) is published quarterly by the Col- orado Field Ornithologists, P.O. Box 929, Indian Hills, CO 80454. Subscriptions are obtained through annual membership dues. Nonprofit postage paid at Louisville, CO. POSTMASTER: Send address changes to Colorado Birds, P.O. Box 929, Indian Hills, CO 80454. Officers and Directors of Colorado Field Ornithologists: Dates indicate end of cur- rent term. An asterisk indicates eligibility for re-election. Terms expire at the annual convention. Officers: President: Doug Faulkner, Arvada, 2017*, [email protected]; Vice Presi- dent: David Gillilan, Littleton, 2017*, [email protected]; Secretary: Larry Modesitt, Greenwood Village, 2017, [email protected]; Treasurer: Michael Kiessig, Indian Hills, 2017*, [email protected] Past President: Bill Kaempfer, Boulder, 2016, [email protected] Directors: Christy Carello, Golden, 2016*; Lisa Edwards, Palmer Lake, 2017; Ted Floyd, Lafayette, 2017; Mike Henwood, Grand Junction, 2018; Christian Nunes, Longmont, 2016*; Chris Owens, Denver, 2018* Colorado Bird Records Committee: Dates indicate end of current term. An asterisk indicates eligibility to serve another term. Terms expire 12/31. Chair: Mark Peterson, Colorado Springs, 2018*, [email protected] Committee Members: John Drummond, Colorado Springs, 2016; Peter Gent, Boul- der, 2017*; Tony Leukering, Largo, Florida, 2018; Dan Maynard, Denver, 2017*; Bill Schmoker, Longmont, 2016; Kathy Mihm Dunning, Denver, 2018* Past Committee Member: Bill Maynard Colorado Birds Quarterly: Editor: Scott W.
    [Show full text]
  • Life in Cold Book
    The Avian Enigma: “Hibernation” by Common Poorwills (Phalaenoptilus nuttalli) CHRISTOPHER P. WOODS AND R. MARK BRIGHAM University of Regina, Department of Biology, Regina, Saskatchewan, Canada Abstract. Common Poorwills, small nocturnal insectivorous birds found across western North America, are seemingly unique because of their alleged ability to remain torpid for extended periods during winter. We used temperature- sensitive radio transmitters to assess patterns of torpor use at sites in the Sonoran desert of southern Arizona. Poorwills used torpor extensively whenever ambient temperature (Ta) dropped below 10° C, and there was little evidence for ther- moregulation when Ta was above 5° C. During the winter months (December through February), birds remained entirely inactive on 72% of bird-nights, and continuously inactive periods of 10 days or longer were common. The extent of inactivity is similar behaviorally to that of hibernating small mammals. Roost selection, however, facilitated routine passive solar warming, and inactive birds exhibited a regular pattern of arousal on sunny days, followed by reentry into torpor at sunset. We argue that daily arousals are likely an adaptation to the circumstances that characterize surface dormancy. We hypothesize that the re- lationship between Ta and availability of flying insects at night, in combination with unique ecological aspects of arid regions, contributed to the evolution of multiday torpor use by poorwills. Introduction Amongst birds, species in 29 families representing 11 orders have been reported capable of a variety of heterothermic responses (reviewed by McKechnie and Lovegrove 2002). Most birds known to use true torpor are small-bodied special- ized foragers, and hummingbirds are the best studied of these (McNab 2002).
    [Show full text]
  • Zoologische Verhandelingen
    Systematic notes on Asian birds. 41. Territorial songs and species-level taxonomy of nightjars of the Caprimulgus macrurus complex, with the description of a new species G. Sangster & F.G. Rozendaal Sangster, G. & F.G. Rozendaal. Systematic notes on Asian birds. 41. Territorial songs and species-level taxonomy of nightjars of the Caprimulgus macrurus complex, with the description of a new species. Zool. Verh. Leiden 350, 26.xi.2004: 7-00.— ISSN 0024-1652/ISBN 90-73239-95-8. George Sangster, Stevenshof 17, 2312 GM Leiden, The Netherlands. (e-mail: [email protected]). Frank G. Rozendaal, Akker 113, 3732 XC De Bilt, The Netherlands. (e-mail: [email protected]). Key words: Caprimulgus macrurus; species limits; taxonomy; geographic variation; vocalizations. The Large-tailed Nightjar Caprimulgus macrurus Horsfield, 1821, complex, as currently recognized, comprises 12 taxa which are grouped into four species based on their territorial songs. However, species limits are based on very small samples of a limited number of taxa in the complex. To further document species limits in the complex, we analysed 109 sound recordings representing all recognized taxa. Principal components analysis suggests the existence of six vocally distinct groups within the complex. Discriminant function analysis assigned 98-100% of individuals correctly to their group. Each of these groups differs diagnosably from all other groups by up to eight vocal characters, and each group is recognizable by ear. We propose to treat these six groups as species based on multiple differences in territorial songs, the lack of intermediate vocal types, the concordance of the geographic distribution of vocal types and morphology-based taxonomic boundaries and the sympatry of two groups in northeastern peninsular India without signs of intergradation.
    [Show full text]
  • Bird Communities of Gambel Oak: a Descriptive Analysis
    United States Department of Agriculture Bird Communities Forest Service Rocky Mountain of Gambel Oak: A Research Station General Technical Report RMRS-GTR-48 Descriptive Analysis March 2000 Andreas Leidolf Michael L. Wolfe Rosemary L. Pendleton Abstract Leidolf, Andreas; Wolfe, Michael L.; Pendleton, Rosemary L. 2000. Bird communities of gambel oak: a descriptive analysis. Gen. Tech. Rep. RMRS-GTR-48. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 30 p. Gambel oak (Quercus gambelii Nutt.) covers 3.75 million hectares (9.3 million acres) of the western United States. This report synthesizes current knowledge on the composition, structure, and habitat relationships of gambel oak avian communities. It lists life history attributes of 183 bird species documented from gambel oak habitats of the western United States. Structural habitat attributes important to bird-habitat relationships are identified, based on 12 independent studies. This report also highlights species of special concern, provides recommendations for monitoring, and gives suggestions for management and future research. Keywords: Avian ecology, bird-habitat relationships, neotropical migrant, oakbrush, oak woodlands, scrub oak, Quercus gambelii, Western United States The Authors ______________________________________ Andreas Leidolf is a Graduate Research Assistant in the Department of Fisheries and Wildlife at Utah State University (USU). He received a B.S. degree in Forestry/Wildlife Management from Mississippi State University in 1995. He is currently completing his M.S. degree in Fisheries and Wildlife ecology at USU. Michael L. Wolfe is a Professor in the Department of Fisheries and Wildlife at USU. He received a B.S. degree in Wildlife Management at Cornell University in 1963 and his doctorate in Forestry/Wildlife Management at the University of Göttingen, Germany, in 1967.
    [Show full text]
  • Compendium of Avian Ecology
    Compendium of Avian Ecology ZOL 360 Brian M. Napoletano All images taken from the USGS Patuxent Wildlife Research Center. http://www.mbr-pwrc.usgs.gov/id/framlst/infocenter.html Taxonomic information based on the A.O.U. Check List of North American Birds, 7th Edition, 1998. Ecological Information obtained from multiple sources, including The Sibley Guide to Birds, Stokes Field Guide to Birds. Nest and other images scanned from the ZOL 360 Coursepack. Neither the images nor the information herein be copied or reproduced for commercial purposes without the prior consent of the original copyright holders. Full Species Names Common Loon Wood Duck Gaviiformes Anseriformes Gaviidae Anatidae Gavia immer Anatinae Anatini Horned Grebe Aix sponsa Podicipediformes Mallard Podicipedidae Anseriformes Podiceps auritus Anatidae Double-crested Cormorant Anatinae Pelecaniformes Anatini Phalacrocoracidae Anas platyrhynchos Phalacrocorax auritus Blue-Winged Teal Anseriformes Tundra Swan Anatidae Anseriformes Anatinae Anserinae Anatini Cygnini Anas discors Cygnus columbianus Canvasback Anseriformes Snow Goose Anatidae Anseriformes Anatinae Anserinae Aythyini Anserini Aythya valisineria Chen caerulescens Common Goldeneye Canada Goose Anseriformes Anseriformes Anatidae Anserinae Anatinae Anserini Aythyini Branta canadensis Bucephala clangula Red-Breasted Merganser Caspian Tern Anseriformes Charadriiformes Anatidae Scolopaci Anatinae Laridae Aythyini Sterninae Mergus serrator Sterna caspia Hooded Merganser Anseriformes Black Tern Anatidae Charadriiformes Anatinae
    [Show full text]
  • Bird List of San Bernardino Ranch in Agua Prieta, Sonora, Mexico
    Bird List of San Bernardino Ranch in Agua Prieta, Sonora, Mexico Melinda Cárdenas-García and Mónica C. Olguín-Villa Universidad de Sonora, Hermosillo, Sonora, Mexico Abstract—Interest and investigation of birds has been increasing over the last decades due to the loss of their habitats, and declination and fragmentation of their populations. San Bernardino Ranch is located in the desert grassland region of northeastern Sonora, México. Over the last decade, restoration efforts have tried to address the effects of long deteriorating economic activities, like agriculture and livestock, that used to take place there. The generation of annual lists of the wildlife (flora and fauna) will be important information as we monitor the progress of restoration of this area. As part of our professional training, during the summer and winter (2011-2012) a taxonomic list of bird species of the ranch was made. During this season, a total of 85 species and 65 genera, distributed over 30 families were found. We found that five species are on a risk category in NOM-059-ECOL-2010 and 76 species are included in the Red List of the International Union for Conservation of Nature (IUCN). It will be important to continue this type of study in places that are at- tempting restoration and conservation techniques. We have observed a huge change, because of restoration activities, in the lands in the San Bernardino Ranch. Introduction migratory (Villaseñor-Gómez et al., 2010). Twenty-eight of those species are considered at risk on a global scale, and are included in Birds represent one of the most remarkable elements of our en- the Red List of the International Union for Conservation of Nature vironment, because they’re easy to observe and it’s possible to find (IUCN).
    [Show full text]
  • BIRDS of the TRANS-PECOS a Field Checklist
    TEXAS PARKS AND WILDLIFE BIRDS of the TRANS-PECOS a field checklist Black-throated Sparrow by Kelly B. Bryan Birds of the Trans-Pecos: a field checklist the chihuahuan desert Traditionally thought of as a treeless desert wasteland, a land of nothing more than cacti, tumbleweeds, jackrabbits and rattlesnakes – West Texas is far from it. The Chihuahuan Desert region of the state, better known as the Trans-Pecos of Texas (Fig. 1), is arguably the most diverse region in Texas. A variety of habitats ranging from, but not limited to, sanddunes, desert-scrub, arid canyons, oak-juniper woodlands, lush riparian woodlands, plateau grasslands, cienegas (desert springs), pinyon-juniper woodlands, pine-oak woodlands and montane evergreen forests contribute to a diverse and complex avifauna. As much as any other factor, elevation influences and dictates habitat and thus, bird occurrence. Elevations range from the highest point in Texas at 8,749 ft. (Guadalupe Peak) to under 1,000 ft. (below Del Rio). Amazingly, 106 peaks in the region are over 7,000 ft. in elevation; 20 are over 8,000 ft. high. These montane islands contain some of the most unique components of Texas’ avifauna. As a rule, human population in the region is relatively low and habitat quality remains good to excellent; habitat types that have been altered the most in modern times include riparian corridors and cienegas. Figure 1: Coverage area is indicated by the shaded area. This checklist covers all of the area west of the Pecos River and a corridor to the east of the Pecos River that contains areas of Chihuahuan Desert habitat types.
    [Show full text]