40. Chickadee
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Violet-Green Swallow
Breeding Habitat Use Profile Habitats Used in Arizona Primary: Montane Riparian Secondary: Montane Forests, locally Upper Sonoran Desert Key Habitat Parameters Plant Composition Most montane forest types, often with some element of riparian, wetland, open water or 8 other moist habitat types Plant Density and Unknown Size Violet-green Swallow, photo by ©George Andrejko Microhabitat Snags, live trees, or cliffs for nesting, mesic Features areas with high insect productivity for forag- Conservation Profile ing 8; in wooded landscapes, often noted foraging and nesting near forest clearings Species Concerns and edges. Climate Change (Droughts) Increasing Fire Frequency Landscape Largely unknown, but must include some Timber Harvesting Practices old-growth forests or cliffs Conservation Status Lists Elevation Range in Arizona USFWS 1 No 3,200 – 10,500 feet, locally to 1,200 feet 9 AZGFD 2 No Density Estimate DoD 3 No Territory Size: Unknown BLM 4 No Density: Unknown, sometimes occurs in loose colonies 8 PIF Watch List 5b No PIF Regional Concern 5a No Migratory Bird Treaty Act Natural History Profile Covered Seasonal Distribution in Arizona PIF Breeding Population Size Estimates 6 Breeding April – early August, desert nesting may Arizona 710,000 ◑ begin in March 9 Global 7,200,000 ◑ Migration February – April; August – mid-October 9 9.93% Percent in Arizona Winter Rare, very small numbers 5b PIF Population Goal Nest and Nesting Habits Maintain 8 Type of Nest Cavity or crevice Trends in Arizona Nest Substrate Tree, rock, or cliff; also artificial -
And Mountain Chickadee (Poecile Gambeli) Call Notes
Journal of Comparative Psychology Copyright 2006 by the American Psychological Association 2006, Vol. 120, No. 2, 147–153 0735-7036/06/$12.00 DOI: 10.1037/0735-7036.120.2.147 Statistical Classification of Black-Capped (Poecile Atricapillus) and Mountain Chickadee (Poecile Gambeli) Call Notes Michael R. W. Dawson, Laurie L. Bloomfield, Isabelle Charrier, and Christopher B. Sturdy University of Alberta Both black-capped (Poecile atricapillus) and mountain chickadees (Poecile gambeli) produce a chick- a-dee call that consists of several distinct note types. In some regions, these 2 species live sympatrically, and it has been shown that 1 species will respond weakly to songs of the other. This suggests that chickadee song, and potentially other of their vocalizations, contains species-specific information. We tested the possibility that call notes were acoustically sufficient for species identification. Black-capped and mountain non-D notes were summarized as a set of 9 features and then analyzed by linear discriminant analysis. Linear discriminant analysis was able to use these notes to identify species with 100% accuracy. We repeated this approach, but with black-capped and mountain D notes that were summarized as a set of 4 features. Linear discriminant analysis was able to use these notes to identify species with 94% accuracy. This demonstrates that any of the note types in these chickadee calls possesses sufficient information for species classification. Keywords: songbirds, vocalizations, classification, bioacoustics Songbirds are a -
Ecological Relations of Sympatric Black-Capped and Mountain Chickadees in Southwestern Alberta’
The Condor90~875-884 0 The Cooper Ornithological Society 1988 ECOLOGICAL RELATIONS OF SYMPATRIC BLACK-CAPPED AND MOUNTAIN CHICKADEES IN SOUTHWESTERN ALBERTA’ BRAD G. HILL AND M. Ross LEIN~ Division of Ecology(Behavioral Ecology Group), Department of BiologicalSciences, University of Calgary, Calgary, Alberta T2N lN4, Canada Abstract. In an attempt to determine the factors permitting sympatry of Black-capped Chickadees (Parus atricapillus) and Mountain Chickadees (P. gambeli) in southwestern Alberta, we examined nest-site utilization and foraging behavior during the summers of 1982 to 1984. Characteristicsof both the nest tree itself, and the surroundinghabitat, differed significantlybetween nest sitesofthe two species.Patterns of reuseofnest sitesand behavioral observationssuggested that some interspecific competition for nest sites may occur, but is probably not important. Foraging behavior differed significantly between the two species, suggestingthat Black-cappedand Mountain chickadeesdo not compete for food during the breedingseason. Differences in habitat use by the two speciesapparently provide ecological segregation,and their coexistenceon our study area is due to the mosaic nature of the habitat. Key words: Parusatricapillus; Parus gambeli; interspecificcompetition; nest-site selection: foraging behavior;habitat selection. INTRODUCTION son than at other times, but neither speciesuses The ranges of speciesof North American chick- special song perches(Dixon and Stefanski 1970, adees (Paridae) are rarely sympatric with those pers. observ.). Instead, both species sing while of congeners,while in Europe up to six species moving and engagingin other activities, such as often coexist (Sturman 1968, Lack 1969). Lack foraging. (1969) suggestedthat widespreadcoexistence does Competition for roost sitesduring the breeding not occur among North American parids because season is also unlikely. -
Bird Houses for Cavity Nesting Songbirds – SW Oregon – Guidelines
Lee Webb, Wildlife Biologist 22 March 2002 Bird Houses for Cavity Nesting Songbirds – SW Oregon – Guidelines Nest Box Placement 1. Face box away from afternoon sun, nor should the prevailing wind blow into the opening. 2. Correct height, but not so high the box can’t be checked or cleaned (see Table below). 3. Generally, nest boxes placed on the bare portion of a tree trunk or on a pole in the open have a better chance of being occupied than do boxes surrounded by vegetation. 4. The top of the box should not tip to the rear (backwards). Young birds might not be able to get out! 5. Boxes do not need perches, which serve predators better than residents of the boxes. 6. Well-spaced-out boxes will receive more use than those clustered together. (Avoid inter- and intra-species territorial conflicts.) If possible, place boxes so that one cannot be seen from another. 7. Black-capped chickadee (conifer), White-breasted Nuthatch (conifer), Oak Titmouse (hardwood), and Ash-throated Flycatcher (hardwood) seem to favor nest boxes placed up into the lowest live limbs of the preferred tree type, a short distance (perhaps 1 to 3 feet) out from the bole, preferably not in densely vegetative limbs, but somewhat open. (Dennis Vroman) Song birds which use standard “square” nest boxes with an entrance hole of 1½" SW Oregon (Siskiyou National Forest and surrounding areas) Likely Possible (these species tend to prefer natural “tree-like” cavities) Western Bluebird Black-capped Chickadee* Mountain Bluebird (at high elevation) Chestnut-backed Chickadee* (higher elevation) Tree Swallow Mountain Chickadee* (at high elevation) Violet-green Swallow White-breasted Nuthatch* (valleys, foothills) House Finch (sometimes nest in bird houses) Red-breasted Nuthatch* (higher elevation) House Wren* Oak Titmouse* (valleys, foothills) Bewick’s Wren* Bold = most common nest box users in interior (Rogue/Illinois) valleys. -
Vertebrate Diversity Benefiting from Carrion Provided by Pumas And
Biological Conservation 215 (2017) 123–131 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Short communication Vertebrate diversity benefiting from carrion provided by pumas and other subordinate, apex felids MARK L. Mark Elbroch⁎, Connor O'Malley, Michelle Peziol, Howard B. Quigley Panthera, 8 West 40th Street, 18th Floor, New York, NY 10018, USA ARTICLE INFO ABSTRACT Keywords: Carrion promotes biodiversity and ecosystem stability, and large carnivores provide this resource throughout the Biodiversity year. In particular, apex felids subordinate to other carnivores contribute more carrion to ecological commu- Carnivores nities than other predators. We measured vertebrate scavenger diversity at puma (Puma concolor) kills in the Food webs Greater Yellowstone Ecosystem, and utilized a model-comparison approach to determine what variables influ- Scavenging enced scavenger diversity (Shannon's H) at carcasses. We documented the highest vertebrate scavenger diversity of any study to date (39 birds and mammals). Scavengers represented 10.9% of local birds and 28.3% of local mammals, emphasizing the diversity of food-web vectors supported by pumas, and the positive contributions of pumas and potentially other subordinate, apex felids to ecological stability. Scavenger diversity at carcasses was most influenced by the length of time the carcass was sampled, and the biological variables, temperature and prey weight. Nevertheless, diversity was relatively consistent across carcasses. We also identified six additional stalk- and-ambush carnivores weighing > 20 kg, that feed on prey larger than themselves, and are subordinate to other predators. Together with pumas, these seven felids may provide distinctive ecological functions through their disproportionate production of carrion and subsequent contributions to biodiversity. -
Life in Cold Book
The Avian Enigma: “Hibernation” by Common Poorwills (Phalaenoptilus nuttalli) CHRISTOPHER P. WOODS AND R. MARK BRIGHAM University of Regina, Department of Biology, Regina, Saskatchewan, Canada Abstract. Common Poorwills, small nocturnal insectivorous birds found across western North America, are seemingly unique because of their alleged ability to remain torpid for extended periods during winter. We used temperature- sensitive radio transmitters to assess patterns of torpor use at sites in the Sonoran desert of southern Arizona. Poorwills used torpor extensively whenever ambient temperature (Ta) dropped below 10° C, and there was little evidence for ther- moregulation when Ta was above 5° C. During the winter months (December through February), birds remained entirely inactive on 72% of bird-nights, and continuously inactive periods of 10 days or longer were common. The extent of inactivity is similar behaviorally to that of hibernating small mammals. Roost selection, however, facilitated routine passive solar warming, and inactive birds exhibited a regular pattern of arousal on sunny days, followed by reentry into torpor at sunset. We argue that daily arousals are likely an adaptation to the circumstances that characterize surface dormancy. We hypothesize that the re- lationship between Ta and availability of flying insects at night, in combination with unique ecological aspects of arid regions, contributed to the evolution of multiday torpor use by poorwills. Introduction Amongst birds, species in 29 families representing 11 orders have been reported capable of a variety of heterothermic responses (reviewed by McKechnie and Lovegrove 2002). Most birds known to use true torpor are small-bodied special- ized foragers, and hummingbirds are the best studied of these (McNab 2002). -
Interspecific Interactions Between Mountain and Black-Capped
INTERSPECIFIC INTERACTIONS BETWEEN MOUNTAIN AND BLACK- CAPPED CHICKADEES WITHIN A CONTACT ZONE by Angélique Grava BSc, Université Jean-Monnet, France, 2004 MSc, Université Jean-Monnet, France, 2006 DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in NATURAL RESOURCES AND ENVIRONMENTAL STUDIES UNIVERSITY OF NORTHERN BRITISH COLUMBIA April 2012 © Angélique Grava, 2012 ABSTRACT Hybridization occurs at least occasionally in more than 9% of bird species. Within the Paridae (chickadees and titmice), hybridization is documented both among the Old World species and North American species. Europe has a larger number of sympatric tit species than does North America, but appears to have less hybridization. These overlapping species may have developed isolating mechanisms to decrease hybridization and as a result maintain distinct species. In North America, little research has focused on potential hybridization between the two closely related species that occasionally occur in sympatry and anecdotal evidence suggests they occasionally hybridize: black-capped (Poecile atricapillus) and mountain (P. gambelli) chickadees. My PhD research focuses on the interspecific relationships and potential hybridization between black-capped chickadees and mountain chickadees at the John Prince Research Forest (JPRF) in northern British Columbia. I focused my work on behavioural mechanisms that may reinforce species isolation and genetic analysis to determine the amount of intermixing that is occurring between species. Through nuclear and mitochondrial DNA analyses, I found evidence of hybridization. All but one of these hybrids were phenotypically mountain chickadees that had black-capped DNA in their genome. Further, all hybrids that were found amongst nestlings occurred in mountain chickadee nests showing genetic patterns indicating extra-pair copulations between female mountain chickadees and males black-capped chickadees. -
Volunteers Concerned About Nightjars Citizen Scientists That Participate In
Volunteers Concerned about Nightjars Citizen scientists that participate in the thousands of programs worldwide are often not professionally trained biologists; however, they possess a desire to contribute their free time to something that they value. Whether uploading species lists into eBird, helping to actively clean and restore wetlands, or venturing into the eve to listen for nightjars, it is understood that a personal sense of fulfillment keeps people engaged in these programs. In particular, Nightjar Network surveyors deserve an even bigger pat on the back for their efforts. For one, conducting evening work can be a bit of a grind. Additionally, seeing the bird is half the fun; so conducting a bird survey where you will likely never see the bird my not seem as satisfying. We assume you all have your own reasons for embarking on your journey with us: Whether you are the rare night owl, you feel a certain fulfillment in the act of volunteering, or you just can’t get enough of birds in the daylight hours that you must grind through the night hours in the hopes of adding one of these awesome birds to your day list! We hope you value your participation and continued support of this program as much as we do. Eleven years of Nightjar Survey Data and What’s to Come 2018 closed out our 11th (!) year conducting nightjar surveys as part of the network. Since its establishment in 2007, over 3,000 survey routes have been conducted by 646 dedicated volunteers throughout the US (Figure 1). Volunteers have included a wide range of concerned citizens from agency biologists to retired school teachers to young students - people who enjoy experiencing the night sounds while contributing to what we know about this unusual group of birds. -
California Bird Species of Special Concern
California Bird Species of Special Concern A Ranked Assessment of Species, Subspecies, and Distinct Populations of Birds of Immediate Conservation Concern in California W. DAVID SHUFORD AND THOMAS GARDALI, EDITORS WITH THE ASSISTANCE OF THE PROJECT MANAGER Lyann A. Comrack IN COLLABORATION WITH THE BIRD SPECIES OF SPECIAL CONCERN TECHNICAL ADVISORY COMMITTEE Edward C. Beedy, Bruce E. Deuel, Richard A. Erickson, Sam D. Fitton, Kimball L. Garrett, Kevin Hunting, Tim Manolis, Michael A. Patten, W. David Shuford, John Sterling, Philip Unitt, Brian J. Walton Studies of Western Birds No. 1 Published by Western Field Ornithologists Camarillo, California and California Department of Fish and Game Sacramento, California WITH SUPPORT FROM Audubon California, BonTerra Consulting, EDAW, H. T. Harvey & Associates, Jones & Stokes, LSA Associates, The Nature Conservancy, PRBO Conservation Science, SWCA Environmental Consultants Studies of Western Birds No. 1 Studies of Western Birds, a monograph series of Western Field Ornithologists, publishes original scholarly contributions to field ornithology from both professionals and amateurs that are too long for inclusion in Western Birds. The region of interest is the Rocky Mountain and Pacific states and provinces, including Alaska and Hawaii, western Texas, northwestern Mexico, and the northeastern Pacific Ocean. Subject matter may include studies of distribution and abundance, population dynamics, other aspects of ecology, geographic variation, systematics, life history, migration, behavior, and conservation. Submit manuscripts to the editor, Kenneth P. Able, Bob’s Creek Ranch, 535-000 Little Valley Rd., McArthur, CA 96056; we highly recommend discussing potential submissions with the editor prior to manuscript preparation (email: [email protected]). Studies of Western Birds No. -
Zoologische Verhandelingen
Systematic notes on Asian birds. 41. Territorial songs and species-level taxonomy of nightjars of the Caprimulgus macrurus complex, with the description of a new species G. Sangster & F.G. Rozendaal Sangster, G. & F.G. Rozendaal. Systematic notes on Asian birds. 41. Territorial songs and species-level taxonomy of nightjars of the Caprimulgus macrurus complex, with the description of a new species. Zool. Verh. Leiden 350, 26.xi.2004: 7-00.— ISSN 0024-1652/ISBN 90-73239-95-8. George Sangster, Stevenshof 17, 2312 GM Leiden, The Netherlands. (e-mail: [email protected]). Frank G. Rozendaal, Akker 113, 3732 XC De Bilt, The Netherlands. (e-mail: [email protected]). Key words: Caprimulgus macrurus; species limits; taxonomy; geographic variation; vocalizations. The Large-tailed Nightjar Caprimulgus macrurus Horsfield, 1821, complex, as currently recognized, comprises 12 taxa which are grouped into four species based on their territorial songs. However, species limits are based on very small samples of a limited number of taxa in the complex. To further document species limits in the complex, we analysed 109 sound recordings representing all recognized taxa. Principal components analysis suggests the existence of six vocally distinct groups within the complex. Discriminant function analysis assigned 98-100% of individuals correctly to their group. Each of these groups differs diagnosably from all other groups by up to eight vocal characters, and each group is recognizable by ear. We propose to treat these six groups as species based on multiple differences in territorial songs, the lack of intermediate vocal types, the concordance of the geographic distribution of vocal types and morphology-based taxonomic boundaries and the sympatry of two groups in northeastern peninsular India without signs of intergradation. -
Bird Communities of Gambel Oak: a Descriptive Analysis
United States Department of Agriculture Bird Communities Forest Service Rocky Mountain of Gambel Oak: A Research Station General Technical Report RMRS-GTR-48 Descriptive Analysis March 2000 Andreas Leidolf Michael L. Wolfe Rosemary L. Pendleton Abstract Leidolf, Andreas; Wolfe, Michael L.; Pendleton, Rosemary L. 2000. Bird communities of gambel oak: a descriptive analysis. Gen. Tech. Rep. RMRS-GTR-48. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 30 p. Gambel oak (Quercus gambelii Nutt.) covers 3.75 million hectares (9.3 million acres) of the western United States. This report synthesizes current knowledge on the composition, structure, and habitat relationships of gambel oak avian communities. It lists life history attributes of 183 bird species documented from gambel oak habitats of the western United States. Structural habitat attributes important to bird-habitat relationships are identified, based on 12 independent studies. This report also highlights species of special concern, provides recommendations for monitoring, and gives suggestions for management and future research. Keywords: Avian ecology, bird-habitat relationships, neotropical migrant, oakbrush, oak woodlands, scrub oak, Quercus gambelii, Western United States The Authors ______________________________________ Andreas Leidolf is a Graduate Research Assistant in the Department of Fisheries and Wildlife at Utah State University (USU). He received a B.S. degree in Forestry/Wildlife Management from Mississippi State University in 1995. He is currently completing his M.S. degree in Fisheries and Wildlife ecology at USU. Michael L. Wolfe is a Professor in the Department of Fisheries and Wildlife at USU. He received a B.S. degree in Wildlife Management at Cornell University in 1963 and his doctorate in Forestry/Wildlife Management at the University of Göttingen, Germany, in 1967. -
Print Version of the State of the Birds 2010
The State of the Birds 2010 Report on Climate Change United States of America In this 2010 State of the Birds report, we consider one of the greatest environmental challenges of our time, climate change. How will the impacts of climate change influence our bird populations and their habitats? Accelerated climate change as a result of human activities is altering the natural world as we know it, diminishing the quality of our environment. This report calls attention to the collective efforts needed to protect nature’s resources for the benefit of people and wildlife. Contents Foreword . .3 Forests. .20 Summary . .4 Bird's-Eye.View . .22 Oceans. .6 Stressors . .25 Coasts. .8 Waterfowl. .26 Arctic .. .. .. .10 Gamebirds.. .27 Islands. .12 Our.Approach. .28 Aridlands. .14 North.Shifts. .29 Wetlands. .16 Addressing. Grasslands. .18 Uncertainty . ..30 Laysan Albatross Chick by Brad Bortner Acknowledgments. ..30 2 This report contains information about birds and their habitats, gives examples of what could happen due to climate change, and Foreword outlines suggested solutions and efforts needed to help address Birds are telling us an important these issues. By following the conservation actions in this State of story about climate change the Birds Climate Change report, together we can help ensure that future generations will enjoy the birds we are working to protect The first State of the Birds report in 2009 revealed troubling today. declines of bird populations in the United States during the last North American Bird Conservation Initiative, U.S. Committee 40 years—a warning signal of the failing health of our ecosystems.