Multiple Electrophilic Aromatic Substitution Reactions of Phloroglucinol and Studies Towards the Total Synthesis of Hopeanol

Total Page:16

File Type:pdf, Size:1020Kb

Multiple Electrophilic Aromatic Substitution Reactions of Phloroglucinol and Studies Towards the Total Synthesis of Hopeanol Multiple Electrophilic Aromatic Substitution Reactions of Phloroglucinol and Studies Towards the Total Synthesis of Hopeanol by Matthew Kenneth Hiron Campbell Bachelor of Science, Simon Fraser University, 2006 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Chemistry © Matthew Kenneth Hiron Campbell 2011 SIMON FRASER UNIVERSITY Summer 2011 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for "Fair Dealing." Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. APPROVAL Name: Matthew Campbell Degree: Master of Science Title of Thesis: Multiple Electrophilic Aromatic Substitution Reactions of Phloroglucinol and Studies Towards The Total Synthesis of Hopeanol Examining Committee: Dr. Erika Plettner Chair Associate Professor, Department of Chemistry Dr. Peter D. Wilson Senior Supervisor Associate Professor, Department of Chemistry Dr. Charles J. Walsby Committee Member Associate Professor, Department of Chemistry Dr. Robert N. Young Committee Member Professor, Department of Chemistry Dr. Robert A. Britton Internal Examiner Assistant Professor, Department of Chemistry Date Defended/Approved: August 5,2011 11 Declaration of Partial Copyright Licence The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection (currently available to the public at the “Institutional Repository” link of the SFU Library website <www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing the content, to translate the thesis/project or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work. The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without the author’s written permission. Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence. While licensing SFU to permit the above uses, the author retains copyright in the thesis, project or extended essays, including the right to change the work for subsequent purposes, including editing and publishing the work in whole or in part, and licensing other parties, as the author may desire. The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive. Simon Fraser University Library Burnaby, BC, Canada Last revision: Spring 09 Abstract An investigation of the triple electrophilic aromatic substitution (EAS) reactions of phloroglucinol (1,3,5-trihydroxybenzene) has led to the preparation of both symmetrical triple Mannich bases and structurally-complex polycyclic adducts. This research was based on two synthetic approaches that were developed separately for the total synthesis of the polycyclic and C3-symmetric natural product xyloketal A. The first systematic study led to the synthesis of a series of functionalized C3-symmetric dendrimer cores. In the second study, polycyclic analogues of xyloketal A were prepared via the triple EAS reactions of phloroglucinol with various carbon-based electrophiles. In addition, a novel C2-symmetric polycyclic quinone was isolated from the reaction of phloroglucinol with (+)-p-mentha-2-ene-1,8-diol. In a separate study, the total synthesis of the natural product hopeanol was undertaken. This involved the preparation of a 1,2-diketone precursor which was tested with an array of acid promoters in an attempt to complete this synthesis in a single synthetic operation. iii Quotation “It makes you think of something solid, stable, well-linked. In fact it happens also in chemistry as in architecture that „beautiful‟ edifices, that is symmetrical and simple, are also the most sturdy: in short the same thing happens with molecules as with the cupolas of cathedrals or the arches of bridges. And it is also possible that the explanation is neither remote nor metaphysical... ever since man has built he has wanted to build at the smallest expense and in the most durable fashion, and the aesthetic enjoyment he experiences when contemplating his work comes afterward.” Primo Levi, on the structure of alloxan in The Periodic Table. Pg. 179 iv Acknowledgements First, I would like to thank my senior supervisor, Dr. Peter Wilson, for offering me the opportunity to pursue a graduate degree in his research group. I am very grateful for the advice, mentoring and training I received over the course of my studies. The other members of my supervisory committee, Dr. Charles Walsby and Dr. Robert Young are thanked for their suggestions and encouragement throughout my time as a graduate student. Also, I would like to thank Dr. Robert Britton for agreeing to be my internal examiner. I am extremely grateful to all of them for taking the time to read my thesis. Dr. Tim Storr, Dr. Charles Walsby and Ms. Caterina Ramogida are thanked for providing their time and equipment and for their help and guidance in carrying out the cyclic voltammetry and EPR experiments. Dr. Andrew Lewis (NMR), Mr. Colin Zhang (NMR), Mr. Hongwen Chen (MS), Mr. Simon Wong (MS), and Dr. Nag S. Kumar (HRMS) are gratefully acknowledged for their technical expertise and support. My past and present colleagues, Mr. Jason Lamontagne, Mr. Brendan Whelan and in particular Mr. Patrick Chen, are thanked for the friendship and helpful discussions over the years. As well the Britton group past and present, especially, Mr. Jeffrey Mowat, Mr. Bal Kang and Mr. Labros Meimetis, are likewise thanked. Dr. Nabyl Merbouh is also thanked for his support over the course of my studies. v Table of Contents Approval .......................................................................................................................................... ii Abstract ........................................................................................................................................... iii Quotation ........................................................................................................................................ iv Acknowledgements .......................................................................................................................... v Table of Contents ............................................................................................................................ vi List of Tables .................................................................................................................................. ix List of Figures .................................................................................................................................. x List of Schemes .............................................................................................................................. xii List of Abbreviations .................................................................................................................... xvi Chapter 1: Introduction to Multiple Electrophilic Aromatic Substitution Reactions of Phloroglucinol and Studies Towards the Total Synthesis of Hopeanol ......................................................................................................... 1 1.1 Thesis Introduction ................................................................................................................. 1 1.2 Overview of the Electrophilic Aromatic Substitution Reaction ............................................. 2 1.3. Introduction to the Chemistry of Phloroglucinol [1,3,5-Trihydroxybenzene (9)] .................. 4 1.4 Overview of the Chemical Reactions of Phloroglucinol (9) ................................................... 7 1.4.1 The Triple Electrophilic Aromatic Substitution Reaction of Phloroglucinol (9) with Bromine ........................................................................................................ 7 1.4.2 Overview of the Xyloketal Family of Natural Products ............................................ 7 1.4.3 Brief Review of the Total Synthesis of Xyloketal A (15) and D (18) ..................... 10 1.4.4 Brief Review of Phenylboronic Acid-Mediated Triple Condensation Reaction of Phloroglucinol (9) ................................................................................ 18 1.4.5 Brief Review of the Total Synthesis of Xyloketal A (15) via a Triple Electrophilic Aromatic Substitution Reaction of Phloroglucinol (9) ....................... 21 1.4.6
Recommended publications
  • Philosophy of Science and Philosophy of Chemistry
    Philosophy of Science and Philosophy of Chemistry Jaap van Brakel Abstract: In this paper I assess the relation between philosophy of chemistry and (general) philosophy of science, focusing on those themes in the philoso- phy of chemistry that may bring about major revisions or extensions of cur- rent philosophy of science. Three themes can claim to make a unique contri- bution to philosophy of science: first, the variety of materials in the (natural and artificial) world; second, extending the world by making new stuff; and, third, specific features of the relations between chemistry and physics. Keywords : philosophy of science, philosophy of chemistry, interdiscourse relations, making stuff, variety of substances . 1. Introduction Chemistry is unique and distinguishes itself from all other sciences, with respect to three broad issues: • A (variety of) stuff perspective, requiring conceptual analysis of the notion of stuff or material (Sections 4 and 5). • A making stuff perspective: the transformation of stuff by chemical reaction or phase transition (Section 6). • The pivotal role of the relations between chemistry and physics in connection with the question how everything fits together (Section 7). All themes in the philosophy of chemistry can be classified in one of these three clusters or make contributions to general philosophy of science that, as yet , are not particularly different from similar contributions from other sci- ences (Section 3). I do not exclude the possibility of there being more than three clusters of philosophical issues unique to philosophy of chemistry, but I am not aware of any as yet. Moreover, highlighting the issues discussed in Sections 5-7 does not mean that issues reviewed in Section 3 are less im- portant in revising the philosophy of science.
    [Show full text]
  • Peptide Chemistry up to Its Present State
    Appendix In this Appendix biographical sketches are compiled of many scientists who have made notable contributions to the development of peptide chemistry up to its present state. We have tried to consider names mainly connected with important events during the earlier periods of peptide history, but could not include all authors mentioned in the text of this book. This is particularly true for the more recent decades when the number of peptide chemists and biologists increased to such an extent that their enumeration would have gone beyond the scope of this Appendix. 250 Appendix Plate 8. Emil Abderhalden (1877-1950), Photo Plate 9. S. Akabori Leopoldina, Halle J Plate 10. Ernst Bayer Plate 11. Karel Blaha (1926-1988) Appendix 251 Plate 12. Max Brenner Plate 13. Hans Brockmann (1903-1988) Plate 14. Victor Bruckner (1900- 1980) Plate 15. Pehr V. Edman (1916- 1977) 252 Appendix Plate 16. Lyman C. Craig (1906-1974) Plate 17. Vittorio Erspamer Plate 18. Joseph S. Fruton, Biochemist and Historian Appendix 253 Plate 19. Rolf Geiger (1923-1988) Plate 20. Wolfgang Konig Plate 21. Dorothy Hodgkins Plate. 22. Franz Hofmeister (1850-1922), (Fischer, biograph. Lexikon) 254 Appendix Plate 23. The picture shows the late Professor 1.E. Jorpes (r.j and Professor V. Mutt during their favorite pastime in the archipelago on the Baltic near Stockholm Plate 24. Ephraim Katchalski (Katzir) Plate 25. Abraham Patchornik Appendix 255 Plate 26. P.G. Katsoyannis Plate 27. George W. Kenner (1922-1978) Plate 28. Edger Lederer (1908- 1988) Plate 29. Hennann Leuchs (1879-1945) 256 Appendix Plate 30. Choh Hao Li (1913-1987) Plate 31.
    [Show full text]
  • Subject Index
    455 Subject Index Aminohydroxylation, 364 a-Aminoketone, 281 4-Aminophenol, 18 A Aminothiophene, 158 Abnormal Claisen rearrangement, 1 a-Aminothiophenols, 184 Acrolein, 378 Ammonium ylide, 383 2-(Acylamino)-toluenes, 245 Angeli-Rimini hydroxamic acid Acylation, 100, 145, 200 synthesis, 9 Acyl azides, 98 ~-Anomer, 225 Acylium ion, 145, 149, 175, 177 Anomeric center, 211 a-Acyloxycarboxamides, 298 Anomeric effect, 135 a-Acyloxyketones, 17 ANRORC mechanism, 10 a-Acyloxythioethers, 327 Anthracenes, 51 Acyl transfer, 17, 42, 228, 298, 305, Anti-Markovnikov addition, 219 327,345 Amdt-Eistert homologation, 11 AIBN, 22, 23, 415 Aryl-acetylene, 66 Alder ene reaction, 2 Arylation, 253 Alder's endo rule, Ill 0-Aryliminoethers, 67 Aldol condensation, 3, 14, 26, 34, 2-Arylindoles, 38 69, 130, 147, 172, 305, Aryl migration, 31 340,396,412 Autoxidation, 69, 115, 118 Aldosylamine, 8 Auwers reaction, 13 Alkyl migration, 16, 132, 315, 443 Axial, 347 Alkylation, 144, 145 Azalactone, I 00 N-Aikylation, 162 Azides, 125, 330 Alkylidene carbene, 151 Azirine, 6, 7, 281 Allan-Robinson reaction, 4, 228 Azulene, 310 Allene, 119 1t-Allyl complex, 414 B Allylation, 213, 414 Baeyer-Drewson Allylstannane, 213 indigo synthesis, 14 Allylsilanes, 349 Baeyer-Villiger oxidation, 16, 53 Alper carbonylation, 6 Baker-Venkataraman Alpine-borane®, 262 rearrangement, 17 Aluminum phenolate, 149 Balz-Schiemann reaction, 354 Amadori rearrangement, 8 Bamberger rearrangement, 18 Amide acetal, 74 Bamford-Stevens reaction, 19 Amides, 28, 67,276,339, 356 Bargellini reaction, 20 Amidine,
    [Show full text]
  • Heterocyclic Chemistrychemistry
    HeterocyclicHeterocyclic ChemistryChemistry Professor J. Stephen Clark Room C4-04 Email: [email protected] 2011 –2012 1 http://www.chem.gla.ac.uk/staff/stephenc/UndergraduateTeaching.html Recommended Reading • Heterocyclic Chemistry – J. A. Joule, K. Mills and G. F. Smith • Heterocyclic Chemistry (Oxford Primer Series) – T. Gilchrist • Aromatic Heterocyclic Chemistry – D. T. Davies 2 Course Summary Introduction • Definition of terms and classification of heterocycles • Functional group chemistry: imines, enamines, acetals, enols, and sulfur-containing groups Intermediates used for the construction of aromatic heterocycles • Synthesis of aromatic heterocycles • Carbon–heteroatom bond formation and choice of oxidation state • Examples of commonly used strategies for heterocycle synthesis Pyridines • General properties, electronic structure • Synthesis of pyridines • Electrophilic substitution of pyridines • Nucleophilic substitution of pyridines • Metallation of pyridines Pyridine derivatives • Structure and reactivity of oxy-pyridines, alkyl pyridines, pyridinium salts, and pyridine N-oxides Quinolines and isoquinolines • General properties and reactivity compared to pyridine • Electrophilic and nucleophilic substitution quinolines and isoquinolines 3 • General methods used for the synthesis of quinolines and isoquinolines Course Summary (cont) Five-membered aromatic heterocycles • General properties, structure and reactivity of pyrroles, furans and thiophenes • Methods and strategies for the synthesis of five-membered heteroaromatics
    [Show full text]
  • Lecture 1: Strategies and Tactics in Organic Synthesis
    Massachusetts Institute of Technology Organic Chemistry 5.511 October 3, 2007 Prof. Rick L. Danheiser Lecture 1: Strategies and Tactics in Organic Synthesis Retrosynthetic Analysis The key to the design of efficient syntheses ". the grand thing is to be able to reason backwards. That is a very useful accomplishment, and a very easy "The end is where we start from...." one, but people do not practice it much." T. S. Eliot, in "The Four Quartets" Sherlock Holmes, in "A Study in Scarlet" Strategy Tactics overall plan to achieve the means by which plan ultimate synthetic target is implemented intellectual experimental retrosynthetic planning synthetic execution TRANSFORMS REACTIONS Target Precursor Precursor Target Definitions Retron Structural unit that signals the application of a particular strategy algorithm during retrosynthetic analysis. Transform Imaginary retrosynthetic operation transforming a target molecule into a precursor molecule in a manner such that bond(s) can be reformed (or cleaved) by known or reasonable synthetic reactions. Strategy Algorithm Step-by-step instructions for performing a retrosynthetic operation. "...even in the earliest stages of the process of simplification of a synthetic problem, the chemist must make use of a particular form of analysis which depends on the interplay between structural features that exist in the target molecule and the types of reactions or synthetic operations available from organic chemistry for the modification or assemblage of structural units. The synthetic chemist has learned by experience to recognize within a target molecule certain units which can be synthesized, modified, or joined by known or conceivable synthetic operations...it is convenient to have a term for such units; the term "synthon" is suggested.
    [Show full text]
  • [2.2]Paracyclophanes- Structure and Reactivity Studies Von Der
    Syntheses of Functionalised [2.2]Paracyclophanes- Structure and Reactivity Studies Von der Gemeinsamen Naturwissenschaftlichen Fakultät der Technischen Universität Carolo Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr.rer.nat.) genehmigte D i s s e r t a t i o n von Swaminathan Vijay Narayanan aus Chennai (Madras) / India 1. Referent: Prof. Dr. Dr. h. c. Henning Hopf 2. Referentin: Prof. Dr. Monika Mazik eingereicht am: 20. Jan 2005 mündliche Prüfung (Disputation) am: 29. März 2005 Druckjahr 2005 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Gemeinsamen Naturwissenschaft-lichen Fakultät, vertreten durch die Mentorin oder den Mentor/die Betreuerin oder den Betreuer der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen K. El Shaieb, V. Narayanan, H. Hopf, I. Dix, A. Fischer, P. G. Jones, L. Ernst & K. Ibrom.: 4,15-Diamino[2.2]paracyclophane as a starting material for pseudo-geminally substituted [2.2]paracyclophanes. Eur. J. Org. Chem.: 567-577 (2003). Die vorliegende Arbeit wurde in der Zeit von Oktober 2001 bis Januar 2004 am Institut für Organische Chemie der Technischen Universität Braunschweig unter der Leitung von Prof. Dr. Dr. h.c. Henning Hopf angefertigt. It is my great pleasure to express my sincere gratitude to Prof. Dr. Henning Hopf for his support, encouragement and guidance throughout this research work. I thank him a lot for his invaluable ideas and remarks which made this study very interesting. I admire deep from my heart his energetic way of working and his brilliant ideas which made possible this research work to cover a vast area.
    [Show full text]
  • Retrosynthetic Analysis and Synthetic Planning
    Retrosynthetic Analysis and Synthetic Planning Vancomycin is an antibiotic used against bacteria that cause 2:24 PM food poisoning. 1 Life’s Perspectives Planning a Journey to the Unknown 2:24 PM 2 Retrosynthetic Analysis Definition Retrosynthetic analysis (retrosynthesis) is a technique for planning a synthesis, especially of complex organic molecules, whereby the complex target molecule (TM) is reduced into a sequence of progressively simpler structures along a pathway which ultimately leads to the identification of a simple or commercially available starting material (SM) from which a chemical synthesis can then be developed. Retrosynthetic analysis is based on known reactions (e.g the Wittig reaction, oxidation, reduction etc). The synthetic plan generated from the retrosynthetic analysis will be the roadmap to guide the synthesis of the target molecule. 2:24 PM 3 Synthetic Planning Definition Synthesis is a construction process that involves converting simple or commercially available molecules into complex molecules using specific reagents associated with known reactions in the retrosynthetic scheme. Syntheses can be grouped into two broad categories: (i) Linear syntheses 2:24 PM (ii)Convergent syntheses 4 Linear Synthesis Definition In linear synthesis, the target molecule is synthesized through a series of linear transformations. Since the overall yield of the synthesis is based on the single longest route to the target molecule, by being long, a linear synthesis suffers a lower overall yield. The linear synthesis is fraught with failure for its lack of flexibility leading to potential large losses in the material already invested in the synthesis at the time of failure. 2:24 PM 5 Convergent Synthesis Definition In convergent synthesis, key fragments of the target molecule are synthesized separately or independently and then brought together at a later stage in the synthesis to make the target molecule.
    [Show full text]
  • 12.1 One-Step Syntheses
    12.1 One‐Step Syntheses 12.1 One‐Step Syntheses • When building a HOME, you must have the right tools, • You may be able to solve one‐step syntheses by but you also need to know HOW to use the tools. matching the reaction pattern with an example in the • When building a MOLECULE (designing a synthesis), a textbook. lot of tools are available. Where are they? – To add Br–Br across a C=C double bond, an alkene is generally treated with Br / CCl in the dark. • To optimize your synthesis, you must understand HOW 2 4 the tools work. WHY? • How do you solve such syntheses without the textbook and without having to memorize each set of reagents? • What tools (reagents and conditions) are needed for – Learning to use any tool requires PRACTICE. the synthesis below? – Its also helpful to know mechanisms. WHY? Copyright 2012 John Wiley & Sons, Inc. 12 -1 Klein, Organic Chemistry 1e Copyright 2012 John Wiley & Sons, Inc. 12 -2 Klein, Organic Chemistry 1e 12.2 Functional Group 12.1 One‐Step Syntheses Transformations • Solving one‐step syntheses: • Let’s review some synthetic tools we have learned so 1. Analyze the structures of the reactant and product. far. 2. Assess HOW the functional groups have changed. • In Chapter 9, we learned how to shift the position of a 3. Use the reactions and mechanisms you have learned to halide. determine appropriate reagents and conditions. 4. Check your answer by working out the mechanism. • Solve the synthesis. • The regiochemical considerations in this process are • Practice with CONCEPTUAL CHECKPOINTs vital to making the correct product.
    [Show full text]
  • The Origins of Nucleotides.Pdf
    1956 SYNPACTS The Origins of Nucleotides TheMatthew Origins of Nucleotides W. Powner,*a John D. Sutherland,b Jack W. Szostaka a Howard Hughes Medical Institute, and Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA Fax +1(617)6433328; E-mail: [email protected] b MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK Received 18 April 2011 This paper is dedicated to the memory of Leslie Orgel, a greatly missed colleague and a true pioneer of prebiotic chemistry Abstract: The origins of life represent one of the most fundamental chemical questions being addressed by modern science. One of the longstanding mysteries of this field is what series of chemical reac- tions could lead to the molecular biologists dream; a pool of homo- chiral nucleotides? Here we summarize those results we consider to be historically important and outline our recently published re- search aimed at understanding the chemoselective origins of the canonical ribonucleotides. 1 Introduction 1.1 Nucleotides: What’s the Problem? 2 Synthesis of Activated Pyrimidines Matthew W. Powner (left) obtained his MChem in chemistry at the 2.1 Pyrimidine Elaboration by Cyanovinylation University of Manchester, and also his PhD in organic chemistry wor- 2.2 Photochemical Epimerization and Cytidine to Uridine king with Prof. John. D. Sutherland. He continued his research at Conversion Manchester as an EPSRC PhD plus fellow, before moving to the la- 2.3 Urea-Mediated Phosphoryl Transfer and Intramolecular boratory of Prof. Jack Szostak as postdoctoral fellow at Harvard Me- Rearrangement dical School and Massachusetts General Hospital.
    [Show full text]
  • A Retrosynthetic Analysis Algorithm Implementation Ian A
    Watson et al. J Cheminform (2019) 11:1 https://doi.org/10.1186/s13321-018-0323-6 Journal of Cheminformatics SOFTWARE Open Access A retrosynthetic analysis algorithm implementation Ian A. Watson, Jibo Wang and Christos A. Nicolaou* Abstract The need for synthetic route design arises frequently in discovery-oriented chemistry organizations. While traditionally fnding solutions to this problem has been the domain of human experts, several computational approaches, aided by the algorithmic advances and the availability of large reaction collections, have recently been reported. Herein we present our own implementation of a retrosynthetic analysis method and demonstrate its capabilities in an attempt to identify synthetic routes for a collection of approved drugs. Our results indicate that the method, leveraging on reaction transformation rules learned from a large patent reaction dataset, can identify multiple theoretically feasible synthetic routes and, thus, support research chemist everyday eforts. Keywords: Retrosynthetic analysis, Chemical synthesis, Synthetic route design, Reaction informatics Introduction In a typical RA scenario, given a target chemical struc- Research needs for chemical synthesis predictability, ture, the process initiates a recursive decomposition loop synthetic route planning and reaction optimization has using available synthetic knowledge. In each step, the motivated the development of several computational input chemical structure is broken into fragments which tools in recent years [3, 15, 19]. Traditionally, these tools are complemented with functional groups necessary for implement methods based on precedent reaction look-up the reaction to take place. Te virtual reactants, referred or retrosynthetic analysis solutions [8]. Te former relies to as synthons in the remainder of this manuscript, can on the presence of a collection of reactions and attempts then be matched against a database of available building to match the query structure to a known reaction prod- blocks.
    [Show full text]
  • Alkynes and Their Reactions Naming Alkynes • Alkynes Are Named in the Same General Way That Alkenes Are Named
    Alkynes and Their Reactions Naming Alkynes • Alkynes are named in the same general way that alkenes are named. • In the IUPAC system, change the –ane ending of the parent alkane name to the suffix –yne. • Choose the longest continuous chain that contains both atoms of the triple bond and number the chain to give the triple bond the lower number. • Compounds with two triple bonds are named as diynes, those with three are named as triynes and so forth. • Compounds with both a double and triple bond are named as enynes. • The chain is numbered to give the first site of unsaturation (either C=C or C≡C) the lower number. Chapter 11 Preparation of Alkynes Preparation of Alkynes from Alkenes • Alkynes are prepared by elimination reactions. • Since vicinal dihalides are readily made from alkenes, one can convert an alkene • A strong base removes two equivalents of HX from a vicinal to the corresponding alkyne in a or geminal dihalide to yield an alkyne through two successive E2 two-step process involving: elimination reactions. • Halogenation of an alkene. • Double dehydrohalogenation of the resulting vicinal dihalide. • IMPORTANT NOTE: Synthesis of a terminal alkyne by dehydrohalogenation requires 3 equivalents of the base, due to the acidity of the terminal alkyne H H Br 3 equiv. NaNH2 HX Br H2O Terminal Alkynes – Reaction as an Acid Reactions of Alkynide Ions with Alkyl Halides • Terminal alkynes are readily converted to alkynide (acetylide) ions with strong • Acetylide anions are strong nucleophiles and react with unhindered alkyl halides to bases such as NaNH2 and NaH. yield products of nucleophilic substitution.
    [Show full text]
  • Directed Evolution of Enzymes Using Ultrahigh-Throughput Screening
    Research Collection Doctoral Thesis Directed Evolution of Enzymes using Ultrahigh-Throughput Screening Author(s): Debon, Aaron Publication Date: 2021 Permanent Link: https://doi.org/10.3929/ethz-b-000502194 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 27208 DIRECTED EVOLUTION OF ENZYMES USING ULTRAHIGH-THROUGHPUT SCREENING A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by AARON DEBON MSc Interdisciplinary Sciences, ETH Zürich born on 15.11.1990 citizen of Einsiedeln, Schwyz accepted on the recommendation of Prof. Dr. Donald Hilvert, examiner Prof. Dr. Andrew deMello, co-examiner 2021 Don’t play the butter notes. - Miles Davis Acknowledgements First, I would like to speak my deepest gratitude to my supervisor Prof. Don Hilvert for taking me in as his PhD student. His enthusiasm for science is a true inspiration and without his support and guidance none of this would have been possible. Additionally, I want to thank him for his excellent sportsmanship in the Schmutzli party. His ability ability not to laugh I will never forget. Along this line, I also want to thank Prof. Peter Kast, not only for being Don’s Schmutzli nemesis, but also for helpful inputs concerning everything microbiology. I’m grateful to Prof. Andrew deMello for refereeing this thesis and also the time I was able to spend working in his lab as a student. Furthermore, I want to thank Anita Meier-Lüssi and Antonella Toth for their help with administrative tasks and Leyla Hernandez for all her work in the lab.
    [Show full text]