<<

Direct Searches - Present and Future -

Carmen Carmona-Benitez Pennsylvania State University

BLV2017, Case Western Reserve University, May 16, 2017 Dark Matter Evidence

Motion of galaxies and galaxy clusters

spiral galaxies Bulk of luminous matter v ~ const • data – bulge, disk & halo

v ~ r–1/2 – bulge & disk bulge disk Coma cluster

Dark Energy Dark Matter Cosmological Evidence (CMB, BAO, Supernovae…)

BAO (SDSS)

Ordinary 〈T〉= 2.725 K Matter Gravitational Lensing (weak/strong)

Kochanski, Dell’Antonio, Tyson Bullet Cluster

Carmen Carmona 2 Dark Matter Detection

χ χ indirect ?

SM SM

Indirect Detection (DM annihilation) PAMELA, ANTARES, Fermi, IceCube, MAGIC, CTA, AMS, HESS, VERITAS…

Carmen Carmona 3 Dark Matter Detection

χ χ indirect ? production SM SM

Accelerator Searches (DM production) LHC

Carmen Carmona 4 Dark Matter Detection

χ χ indirect ? production SM SM

direct

Direct Detection Different Technologies / Targets: NaI, Ge, Si, Ar, Xe, and many more…

Carmen Carmona 5 Dark Matter Detection

χ χ indirect ? production SM SM

direct

Direct Detection Different Technologies / Targets: NaI, Ge, Si, Ar, Xe, and many more…

Carmen Carmona 6 Detecting WIMPs

• WIMPs scatter elastically off nuclei ✦ Expect recoils O(10 keV) ✦ Expect < 1 event/100 kg/year • Backgrounds ✦ Gammas and electrons - scatter off atomic electrons (ER) ✦ - also scatter off nuclei (NR) ✦ ! new enemy. ER, NR. Can’t be shielded against

Er

Er

Signal: Nuclear Recoil Background: Electron Recoil (calibrate with neutrons)

Carmen Carmona 7 Direct Detection Techniques

Discrimination is crucial! • Use technology detecting TeO2, Al2O3, LiF, C 3F8 two signals • Or if one single signal, it /Heat should provide significant 10 meV/ph discrimination 100% energy

CaWO4, BGO Ge, Si

Xe, Ar, Ne Scintillation Ge, CS2, CF4 NaI Xe, Ar ~1 keV/� ~10 eV/e few % energy 20% energy

Carmen Carmona 8 Direct Detection Techniques

CUORE, COUPP, PICASSO, PICO

TeO2, Al2O3, LiF, C 3F8 Representative experiments, Phonons/Heat not meant to be completed 10 meV/ph 100% energy

CRESST CaWO4, BGO SuperCDMS ROSEBUD Ge, Si EDELWEISS

Xe, Ar, Ne Scintillation Ge, CS2, CF4 NaI Xe, Ar Ionization ~1 keV/� ~10 eV/e CoGeNT DEAP-3600 LUX 20% energy CLEAN few % energy CDEX LZ Malbek XMASS XENON DAMA, KIMS DAMIC PandaX DMTPC DM-Ice ArDM SABRE DRIFT DarkSide Darwin Carmen Carmona 9 Past, Present and Future trending

Carmen Carmona 10 Past, Present and Future trending

Carmen Carmona 11 Past, Present and Future trending

Carmen Carmona 12 Past, Present and Future trending

Carmen Carmona 13 Status of Field of Direct WIMP Detection

LUX is world leading experiment at most WIMP masses, as of this talk

SUSY-cMSSM (1�)

Phys. Rev. Lett. 118, 021303 (2017)

Carmen Carmona 14 Where are we going?

Liq. Xe 2-phase Liq. Ar: 2-phase… DarkSide 1-phase… DEAP SuperCDMS Ge/Si CRESST CaWO4

LUX, Panda X II XENON 1T LZ/ XENON nT Liq. Xe 2-phase TPC

Carmen Carmona 15 And the Very Low Mass Picture!

CRESST II and CDMSlite world leading experiments at low mass!

CRESST-II 2015

CDMSlite 2015

Eur. Phys. J. C (2016) 76: 25

Carmen Carmona 16 Dual Phase Noble Liquid TPC

• Excellent 3D imaging capability ✦ Z position from S1 - S2 timing ✦ XY positions from S2 light pattern (charge) • charge / light ratio => Signal vs Background discrimination

Gamma Calibration (137Cs) (light) (S2/S1) 10 log Charge/Light XENON10 Calibration (AmBe)

Recoil Energy (S1+S2) [keV]

Carmen Carmona 17 The LUX Detector @ SURF

• 370 kg LXe TPC (total), 250 kg active region (active volume: 48 cm height, 47 cm diameter) • Water tank shielding (300 tons of water; all external backgrounds subdominant) • Xenon continuously recirculated to maintain purity (~250 kg/day) • Cooling system based on thermosyphons NIM. A 704, 111-126 (2013) • 122 low background PMTs (Hamamatsu R8778; U/Th ~9/3 mBq/PMT) arXiv:1211.3788 • Ultra-low background Ti cryostats (<0.2 mBq/kg)

2.75 m

3.50 m

1.20 m

@ Sanford Underground Research Facility, SURF (South Dakota, USA) Carmen Carmona 18 ER calibration with Tritiated-Methane

0 • ER calibration using CH3T injection • ER source in 0.1-18 keV energy range 50

• Absolute calibration of Q� and L� for 100

ER down to ~1 keV s)

ee µ 60 150 55 NEST v0.98 (2013) at 105 V/cm 50 NEST v0.98 (2013) at 180 V/cm 200

45 drift time ( 40 250 35 Light 30 LUX: Tritium at 105 V/cm 300 25 LUX: Tritium at 180 V/cm Light Yield (Photons/keV) 20 0 100 200 300 400 500 600 2 15 radius squared (cm ) 10 601 2 5 10 20 5000 Energy (keV) Data 55 Tritium Beta 50 4000 45 3000 40 35 2000 30 Charge Count/(0.25 keV) 1000 25

20 0 ) Charge Yield (Electrons/keV)

15 σ 0 5 10 15 20 Charge Yield (e-/keV) Light Yield (ph/keV) Yield (ph/keV) Light Yield (e-/keV) Charge 4 Energy (KeV) 10 2 1 2 5 10 20 0 EnergyEnergy (keV) (keV) Phys.-2 Rev. D 93, 072009 (2016) -4

Frac Res. ( 0 5 10 15 20 Carmen Carmona Energy (keV) Feb, 201319 NR Calibration with a D-D Neutron Source

• Nuclear Recoil calibration using 2.45 MeV mono-energetic neutron beam Water from Tank D-D neutron generator • Neutrons are collimated by an air-filled pipe in the water tank Neutron Conduit

D-D neutron generator

Carmen Carmona 20 NR Calibration with a D-D Neutron Source

• Nuclear Recoil calibration using 2.45 MeV mono-energetic neutron beam Water from Tank D-D neutron generator • Neutrons are collimated by an air-filled pipe in the water tank Neutron Conduit

D-D neutron generator

“An Atomic Billiard Game”

NR1 ENR = En · µ · (1-cos(θ))/2

θ neutron

NR2

Carmen Carmona 21 NR Calibration with a D-D Neutron Source

• Nuclear Recoil calibration using 2.45 MeV mono-energetic neutron beam Water from Tank D-D neutron generator • Neutrons are collimated by an air-filled

- -e - pipe in the water tank e e- e e- θ - Neutron Conduit e e-

D-D neutron LXe generator

“An Atomic Billiard Game”

NR1 ENR = En · µ · (1-cos(θ))/2

θ neutron Drift time ( μ s)

NR2

y distance into LXe (cm) Carmen Carmona 22 LUX Absolute NR Calibration

• In-situ measurements! LUX analysis 1.1 keVnr cut-off ✦ S1 yield measured to 1.1 keV (assumes 0 yield below threshold via single scatters → conservative limits) ✦ S2 yield measured down to 0.7 keV via double scatters 10 S2 response • Fit to Lindhard model to get L(E): / keV)

5 (e y

Q 3

• Dedicated publication: arXiv:1608.05381 10

5 (ph / keV) y L 3 S1 response

1 1 10 100 Nuclear recoil energy (keV) 0.1 Efficiency Carmen Carmona 23 0.01

0.001 1 10 100 Nuclear recoil energy (keV) LUX WIMP Search Results

Data after analysis cuts in 332 live days run Limits on spin-independent WIMP-nucleon cross-section

SUSY-cMSSM (1�)

0.11 zeptobarns (at 50 GeV/c2)

Phys. Rev. Lett. 118, LUX world leading SI cross section limit 021303 (2017) • Combination of both science runs (95+332 live-days) • Total of 33,500 kg-days (~0.1 tonne-year)

Carmen Carmona 24 New Spin Dependent Exclusion Limits!

Neutron Cross-section LUX world leading Proton Cross-section Odd-neutron nuclei: 129Xe (29.5%), 131Xe (23.7%) PICO-60 world leading

1 37 0 36 10 10 10 10

DAMA ] ] 2

2 38 2 10 10 1 XENON100 37 10 10 LUX WS2013

3 XENON100 39 10 LUX WS2013 10 LUX WS2013+WS2014–16 PandaX-II PandaX-II 2 38 10 10 LUX WS2013+WS2014–16 ¯ 4 40 bb) 10 10 PICO-2L IceCube ( 3 39 MSSM (Strege et al, 2014) 10 ) 10 W 10 5 10 41 + W ¯ SuperK ( tt) ) t¯ ATLAS: 4 t 40 = 1 10 IceCube ( 10 6 gq = 0.25,gc MSSM (GAMBIT, 2017) 42 10 10 WIMP–proton cross section [pb]

WIMP–neutron cross section [pb] WIMP–proton cross section [cm -41 2 WIMP–neutron cross section [cm -40 2 1.6x10 cm IceCube5x10 ( cm 2 CMS: gq = 0.25,gc = 1 (at 35 GeV/c ) PICO-60 (at 35 GeV/c2) 7 43 5 41 10 10 10 10 101 102 103 104 105 101 102 103 104 105 WIMP Mass [GeV/c2] WIMP Mass [GeV/c2]

• An improvement of a factor of six compared with the LUX results from the 2013 run.

Dedicated publication: arXiv:1705.03380

Carmen Carmona 25 Sensitivity to and ALPs

LUX world leading! KSVZ Solar Axions Galactic ALPs DFSZ -10 10−9 10 Solar ν Si(Li) EDELWEISS DFSZ 10-11 CoGeNT XMASS CDMS Solar ν EDELWEISS Ae −11 XENON100 Ae -12 g 10 g 10 MJD XENON100

LUX 2013 (this work) 10-13 KSVZ Red giant LUX 2013 (this work)

−13 10 -14 −5 −4 −3 −2 −1 10 10 10 10 10 10 1 2 1 10 mA [keV/c ] 2 mA [keV/c ]

-12 -13 LUX 2013 excludes gAE > 3.5x10 (90% CL) LUX 2013 excludes gAE > 4.2x10 (90% CL) 2 • mA > 0.12 eV/c (DFSZ model) across the range 1-16 keV/c2 in ALP mass 2 • mA > 36.6 eV/c (KSVZ model) Dedicated publication: arXiv:1704.02297

Carmen Carmona 26 LUX-ZEPLIN (LZ) Experiment @ SURF

• 10 T of LXe, 7 T active, Technical Design Report: ~5.6 T fiducial arXiv:1703.09144 • O(100) times more sensitive than present LUX results • Turning on by 2020! Existing water tank

See Talk from Gadolinium-loaded liquid scintillator veto Luiz de Viveiros Today, May 16, at 4pm! 7 tonne Outer LXe TPC detector PMTs

• 3-component veto system: LUX ✦ Water tank from LUX ✦ Gd-loaded scintillator Cathode high voltage 7 tonne active volume ✦ Instrumented LXe Skin connection liquid XeTPC. 10 tonnes total

Carmen Carmona 27 LZ Projected Sensitivity - Spin Independent (LZ 5.6 T, 1000 live days)

Approaches coherent scattering background! -3 10-39 LZ 90%CL Median (Baseline) Zeplin-III (2011) -40 -4 LZ 90%CL Median (Goal) XENON100 (2016) 10 PandaX (2016) CMSSM (1σ) -41 -5 LUX WS2013+WS2014-16 10 CMSSM (2σ) -6 10-42 -7 10-43 ]

-44 2 ) [pb] -8 10 SI p σ [cm (

-45 SI p

10 -9

10 σ log -10 10-46 -11 10-47 -12 10-48 1 event -N coherent ν significance -49 -13 scattering 3σ 10 1000 tonne-years -14 10-50 10 102 103 WIMP mass [GeV/c2] LZ Baseline �(40 GeV)=2.3e-48 cm2 2 Carmen Carmona LZ Goal �(40 GeV)=1.1e-48 cm 28 XENON1T/XENONnT @ LNGS

• XENON1T currently running at LNGS ✦ 2 T active LXe (largest LXe TPC built) ✦ Analysis of first science data on-going (~35 live-days). Expecting first results very soon! • The design allows a rapid upgrade to XENONnT - Projected turning on by 2019 ✦ Only inner vessel with TPC will be replaced ✦ Xenon mass up to 7 T (similar to LZ) ✦ Similar sensitivity to LZ

Plots from J. Naganoma's talk at XeSAT 2017

Carmen Carmona 29 Further in future: Darwin @ LNGS

• The Ultimate WIMP Detector! 200 T×y: σ < 2.5 x 10–49 cm2 @ 40 GeV/c • 50 T LXe, 40 T in the TPC, 30 T fiducial mass 39 85 • Extremely low intrinsic contamination of Ar, Kr and Rn required. • If achieved, the main background is from neutrinos • Timescale: Start after XENONnT (Operated by 2026)

• Primary goal ✦ Study WIMPs, and discover WIMPs 50 T • Secondary goals ✦ Solar pp neutrinos 8 ✦ Solar B - CNNS ✦ ✦ 0v2β decay ✦ ALPs and more… Plots from A. Colijn’s talk at IDM 2016

Carmen Carmona 30 PandaX @ CJPL • PandaX-II: 500 kg LXe TPC (2014-2018) ✦ First low background run concluded June 2016 with 33000 kg-day exposure • 2.5x10-46 cm2 @ 40 GeV/c2 ✦ Currently taking science data ER median • Future: PandaX-xT: multi-ton (~4 T) NR median ✦ Projected sensitivity ~10-47 cm2 ✦ Commissioning 2019-2020 • Eventual goal: G3 dark matter detector (~30T) in CJPL to “neutrino floor” sensitivity

Plots from J. Liu’s talk at Pheno 2017 PRL 117, 121303 (2016) Carmen Carmona 31 DEAP-3600 @ SNOLAB Single-phase liquid (no E-field) • 3.6 T of LAr, ~1 T fiducial • High 39Ar background when using natAr (~1 Bq/kg) • Excellent discrimination using pulse shape. Prediction: ~1010 ER suppression

• Higher energy threshold compared with Xe Threshold detectors • Collecting data since late 2016 • Projected sensitivity 10-46 cm2 @ 100 GeV/c2

Plots from M. Kuzniak’s talk at IDM 2016

Carmen Carmona 32 DarkSide-50 @ LNGS

Two-phase argon: 153 kg underground argon (UAr), 50 kg fiducial

• Pioneered the use of UAr • Demonstrated UAr <1400 times atmospheric 39Ar content • Demonstrates that large low-background UAr TPC is feasible Plots from M. Boulay's talk at Cosmic Visions 2017

Carmen Carmona 33 DarkSide-20k @ LNGS, and Beyond

(New) Argon Collaboration Researches from ✦ DarkSide multi-100-T ✦ DEAP DS-20K ✦ ArDM (Argo/DEAP-nT) ✦ MiniCLEAN

DS-20k: Two-phase argon TPC • 20 T of low-radioactivity Ar: Underground and isotopic depletion • TPC scaled-up from DS-50 • First large-scale use of SiPMs for light readout

Plots from M. Boulay's talk at Cosmic Visions 2017

Carmen Carmona 34 SuperCDMS - Cryogenics Dark Matter Detectors

• Solid-state Ge and Si detectors operated at cryogenic (< 50 mK) temperatures, able to detect ionization and signals from dark matter nuclear recoil scattering c • CDMSlite: larger bias e- boosts phonon signals c Luke Phonons from drifting charges => ΔV low energy thresholds, Recoil Phonons excellent resolution, but h+ no discrimination

Credit: D. Bauer Carmen Carmona 35 SuperCDMS - Cryogenic Dark Matter Search Results

• Light (low-mass) particle dark matter searches are a new frontier DAMIC ✦ Well motivated by “dark sector” theoretical models ✦ New experimental techniques CDMSlite provide better energy resolution and lower energy thresholds • CDMSlite - Low Ionization LUX Threshold Experiment at Soudan ��-�� ��-�

��������� ✦ 2 �������� World-leading limits in the 2-5 GeV/c -�� ������ -� ] �� �� ] � �� �� ��

�� �� �� [ �� [ mass range -�� �� -� �� �� �� ��

�� ���� ���� • SuperCDMS - Next generation ��-�� ��-�

(G2) experiment under design for ��-�� ��-�

SNOLAB ��-�� ��-� ������� ����� ������� ������� ����� ������� - - -�� SuperCDMS SNOLAB -� ✦ Push towards the neutrino floor in the �� �� � �� ν ��� ���� 2 ���� -�� -� 0.5-10 GeV/c mass range �� �� �� ν ��-�� Credit: D. Bauer ��� � � �� ���� ���� [���/��] Carmen Carmona 36 CRESST @ LNGS - Low Mass Record!

• CaWO4 crystal, at ~10 mK (phonons & photons) • ~300 eVnr energy threshold (CRESST II) ✦ Exposure 52 kg live-days (Lise, 300 g) • CRESST III ✦ Lower mass (24 g) ✦ Started commissioning in 2016

✦ Threshold ~50 eVnr

Lowest threshold! EPJ C, 76, 25 (2016)

Carmen Carmona Plots from P. Gorla’s talk at IDM 2016 37 CRESST @ LNGS - Low Mass Record!

• CaWO4 crystal, at ~10 mK (phonons & photons) • ~300 eVnr energy threshold (CRESST II) ✦ Exposure 52 kg live-days (Lise, 300 g) • CRESST III ✦ Lower mass (24 g) ✦ Started commissioning in 2016

✦ Threshold ~50 eVnr

CRESST III - Phase I

Carmen Carmona Plots from P. Gorla’s talk at IDM 2016 38 CRESST @ LNGS - Low Mass Record!

• CaWO4 crystal, at ~10 mK (phonons & photons) • ~300 eVnr energy threshold (CRESST II) ✦ Exposure 52 kg live-days (Lise, 300 g) • CRESST III ✦ Lower mass (24 g) ✦ Started commissioning in 2016

✦ Threshold ~50 eVnr

CRESST III - Phase II

Carmen Carmona Plots from P. Gorla’s talk at IDM 2016 39 Bubble Chamber Detectors

• Use cameras to search for bubbles from keV scale energy deposition

• Listen to a bubble to C. Amole et al., arXiv:1702.07666 discriminate between

alpha decays and log(AP) nuclear recoils using acoustic power

-2 Gamma Rejection by Chamber 10 Various PICO Detectors PICO-0.1 10-3 U Chicago COUPP-1L C3F8 10-4 Queen's COUPP-4 PICO-2L 10-5 CF3I • Electron recoils deposit energy PICO-60 non-locally and do not nucleate 10-6 -7 bubbles 10 10-8 • Neutrons preferentially -9 10 PICO-60 multiple scatter, producing Probability of Nucleation 10-10

multiple bubbles simultaneously 10-11

10-12 0 2 4 6 8 10 12 Credit: D. Baxter Threshold (keV)

Carmen Carmona 40 PICO-60 - SD WIMP-proton coupling

] C. Amole et al., arXiv:1702.07666 2 10-37

10-38

10-39 IceCube SuperK

10-40

PICO-60 C F 3 8 C3F8 10-41 SD WIMP-proton cross section [cm 101 102 103 WIMP mass [GeV/c2] • PICO-60 - Blind analysis, 0 events observed, x17 improvement to set world best limit on spin-dependent proton coupling Credit: D. Baxter Carmen Carmona 41 Exciting progress ahead of us! Approaching neutrino floor! 10-38 EDELWEISS DAMIC

DAMA/I ]

2 CDMSlite 10-40 CRESST-II CRESST-III DAMA/Na

EDELWEISS 2017 DAMIC-100

SuperCDMS (Si) 10-42 CRESST-III (1txd) CRESST-II SuperCDMS (Ge) SuperCDMS

DarkSide-50

-44 XENON100 10 Ge (0.1txy) PandaX

LUX

10-46 DEAP-3600 XENON1T

DarkSide-20k LZ / XENONnT

10-48 DEAP-50t Darwin WIMP-nucleon cross section [cm

10-50 1 10 102 103 WIMP mass [GeV/c2]

Carmen Carmona 42 Exciting progress ahead of us! Approaching neutrino floor! 10-38 EDELWEISS DAMIC

DAMA/I ]

2 CDMSlite 10-40 CRESST-II CRESST-III DAMA/Na

EDELWEISS 2017 DAMIC-100

SuperCDMS (Si) 10-42 CRESST-III (1txd) CRESST-II SuperCDMS (Ge) SuperCDMS

DarkSide-50

-44 XENON100 10 Ge (0.1txy) PandaX

LUX

10-46 DEAP-3600 XENON1T

DarkSide-20k LZ / XENONnT

10-48 DEAP-50t Darwin WIMP-nucleon cross section [cm

10-50 1 10 102 103 WIMP mass [GeV/c2]

Carmen Carmona 43 Tank Yo! “For a long period of time there was much speculation and controversy about where the so-called “missing matter” of the Universe had got to. All over the Galaxy the science departments of all the major universities were acquiring more and more elaborate equipment to probe and search the hearts of distant galaxies, and then the very center and the very edges of the whole Universe, but when eventually it was tracked down it turned out in fact to be all the stuff which the equipment had been packed in.”

Excerpt From: Douglas Adams - “Mostly Harmless” (HHGTTG 5)

Dark Matter could be just around the corner!

Could be the next big discovery after gravitational waves!

Carmen Carmona 44