1 Do Bats Use Olfactory Cues to Find Roosts?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
First Records of Nyctalus Noctula Social Calls in Portugal
Vespertilio 17: 37–44, 2014 ISSN 1213-6123 First records of Nyctalus noctula social calls in Portugal Paulo BARROS, Luís BRAZ, Hélia Marisa vale-Gonçalves & João Alexandre Cabral Laboratory of Applied Ecology, Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801, Vila Real, Portugal; [email protected] Abstract. The common noctule (Nyctalus noctula) is a large and fast flying Palaearctic migratory bat. The range of the species distribution extends in longitude from the Iberian Peninsula to Japan and in latitude from North Africa to the southern part of the Scandinavian countries. However, in the southern part of its distribution range, most of the potential maternity colonies are unknown or found only spo- radically. This note presents the first records of N. noctula social calls in Portugal. In fact, two types of N. noctula socials calls (C1 and D1) were recorded and identified at a site in the Sabor river valley in northern Portugal, which are usually associated with mating roosts. Therefore, these new data may contribute to improve and update the knowledge of the location of potential new mating, swarming and hibernation sites, as well as of the mating season length and behavioural patterns of this migratory species throughout its European range. Nyctalus noctula, social calls, bat swarming, Portugal Introduction The common noctule, Nyctalus noctula (Schreber, 1774), is a large and fast flying Palaearctic bat, with broad rounded ears, rufous-brown fur, which is slightly darker on the dorsum, and has long narrow wings covered with short hair on the underside of the membrane close to the body (Dietz et al. -
Bat Conservation 2021
Bat Conservation Global evidence for the effects of interventions 2021 Edition Anna Berthinussen, Olivia C. Richardson & John D. Altringham Conservation Evidence Series Synopses 2 © 2021 William J. Sutherland This document should be cited as: Berthinussen, A., Richardson O.C. and Altringham J.D. (2021) Bat Conservation: Global Evidence for the Effects of Interventions. Conservation Evidence Series Synopses. University of Cambridge, Cambridge, UK. Cover image: Leucistic lesser horseshoe bat Rhinolophus hipposideros hibernating in a former water mill, Wales, UK. Credit: Thomas Kitching Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/ 3 Contents Advisory Board.................................................................................... 11 About the authors ............................................................................... 12 Acknowledgements ............................................................................. 13 1. About this book ........................................................... 14 1.1 The Conservation Evidence project ................................................................................. 14 1.2 The purpose of Conservation Evidence synopses ............................................................ 14 1.3 Who this synopsis is for ................................................................................................... 15 1.4 Background ..................................................................................................................... -
BAT Gljano and ITS FER TILIZING VALUE
UNIVERSITY OF MISSOURI COLLEGE OF AGRICULTURE AGRICULTURAL EXPERIMENT STATION BULLETIN 180 BAT GlJANO AND ITS FER TILIZING VALUE l 'l ll '-~ lt•l' nf' 11 1on• 11111 11 a IIJ11II HII IId ltnl s 1111 a ,\ l l s:-t ttlll'l t' ll\' t' l't•lll ll g-. COLUMBIA, MISSOURI FEBRUARY, 1921 UNIVERSITY OF MISSOURI COLLEGE OF AGRICULTURE Agricultural Experiment Station BOARD OF CONTROL THE CURATORS OF THE UNIVERSITY OF MISSOURI EXECUTIVE BOARD OF THE UNIVERSITY H. J. BLANTON, JOHN H. BRADLEY, ]AS. E. GOODRICH, Paris Kennett Kansas City ADVISORY COUNCIL THE MISSOURI STA1"E BOARD OF AGRICULTURE OFFICERS OF THE STATION A. ROSS HILL. PH. D., LL. D., PRESIDENT OF THE UNIVERSITY F. B. MUMFORD, M. S., DIRECTOR STATION STAFF FEBRUARY, 1921 AGRICULTURAL CHEMISTRY RURAL LIFE C. R. Moui.TON, Ph. D. 0. R. JouNSON, A. M. L. D. HAIGH, Ph. D. S. D. GROMER, A. M. w. s. RITCHIE, A. M. R. C. HALT,, A. M. E. E. VANATTA, M. S? BEN H. FRAME, B. S. in Agr. R. M. SMITH A. M. FORESTRY T. E. FRIEDMANN, B. s. A. R. HALL, B. S. in Agr. FREDERICK D UNLAP, F. E. E. G. S!EVEKING, B. S. in Agr. G. W. YoRK, B. S. in Agr. HORTICULTURE c. F. AHMANN, .!J... B. V. R. GARDNER, M. S. A. H . D. HooKER, ]R., Ph. D. AGRICULTURAL ENGINEERING J. T. RosA, ]R., M. S .. J. C. WooLEY, B .S. F. c. BRADFORD, M. s. MACK M. ]ONES, B. s. H. G. SWAR'rwou·r, B. S. in Agr. -
Lista Patron Mamiferos
NOMBRE EN ESPANOL NOMBRE CIENTIFICO NOMBRE EN INGLES ZARIGÜEYAS DIDELPHIDAE OPOSSUMS Zarigüeya Neotropical Didelphis marsupialis Common Opossum Zarigüeya Norteamericana Didelphis virginiana Virginia Opossum Zarigüeya Ocelada Philander opossum Gray Four-eyed Opossum Zarigüeya Acuática Chironectes minimus Water Opossum Zarigüeya Café Metachirus nudicaudatus Brown Four-eyed Opossum Zarigüeya Mexicana Marmosa mexicana Mexican Mouse Opossum Zarigüeya de la Mosquitia Micoureus alstoni Alston´s Mouse Opossum Zarigüeya Lanuda Caluromys derbianus Central American Woolly Opossum OSOS HORMIGUEROS MYRMECOPHAGIDAE ANTEATERS Hormiguero Gigante Myrmecophaga tridactyla Giant Anteater Tamandua Norteño Tamandua mexicana Northern Tamandua Hormiguero Sedoso Cyclopes didactylus Silky Anteater PEREZOSOS BRADYPODIDAE SLOTHS Perezoso Bigarfiado Choloepus hoffmanni Hoffmann’s Two-toed Sloth Perezoso Trigarfiado Bradypus variegatus Brown-throated Three-toed Sloth ARMADILLOS DASYPODIDAE ARMADILLOS Armadillo Centroamericano Cabassous centralis Northern Naked-tailed Armadillo Armadillo Común Dasypus novemcinctus Nine-banded Armadillo MUSARAÑAS SORICIDAE SHREWS Musaraña Americana Común Cryptotis parva Least Shrew MURCIELAGOS SAQUEROS EMBALLONURIDAE SAC-WINGED BATS Murciélago Narigudo Rhynchonycteris naso Proboscis Bat Bilistado Café Saccopteryx bilineata Greater White-lined Bat Bilistado Negruzco Saccopteryx leptura Lesser White-lined Bat Saquero Pelialborotado Centronycteris centralis Shaggy Bat Cariperro Mayor Peropteryx kappleri Greater Doglike Bat Cariperro Menor -
Bat and Bridges Technical Bulletin (Hitchhiker Guide to Bat Roosts), California Department of Transportation, Sacramento CA
Ct BBaatt aanndd BBrriiddggeess TTeecchhnniiccaall BBuulllleettiinn Hitch Hikers Guide to Bat Roosts Excerpts by California Department of Transportation In Cooperation with the California Department of Fish and Game December 2003 Citation: Erickson, Gregg A., et al. Bat and Bridges Technical Bulletin (Hitchhiker Guide to Bat Roosts), California Department of Transportation, Sacramento CA. 2002. Note: this document is a revised and abridged edition of Erickson, Gregg A., Pierson Elizabeth D., et al. Microchiropteran Bridge Utilization (Hitchhiker Guide to Bat Roosts), California Department of Transportation, Sacramento CA, 2000. Corresponding Author Gregg A. Erickson Office of Biological Studies & Technical Assistance 1120 N Street, MS27 Sacramento CA 95814 (916) 654-6296 (916) 753-7757 FAX email: [email protected] Acknowledgements This information contained in this report was made possible by the support of the California Department of Transportation, the California Department of Fish & Game, Dr. Elizabeth Pierson, Dr. William Rainey, Dr. Pat Brown, and experts in structural engineering and bat biology. Disclaimer: This document does not represent the policies or opinions of the California Department of Transportation. It is provided for informational purposes only. - 1 - Preface When species are cryptic and difficult to detect, their ecological significance may not be appreciated. They may be overlooked in the environmental assessment process and effects of our activities may not be adequately evaluated. This is especially true for species that are small, nocturnal, or do not announce themselves with bright colors or distinctive vocalizations--such is the case for the Microchiroptera. Similarly, the results of actions we take are not always apparent or well understood. Often, Microchiropteran response is subtle or occurs in a timeframe that makes detection difficult. -
Common Vampire Bat Attacks on Humans in a Village of the Amazon Region of Brazil
NOTA RESEARCH NOTE 1531 Common vampire bat attacks on humans in a village of the Amazon region of Brazil Agressões de morcegos hematófagos a pessoas em um povoado da região amazônica do Brasil Maria Cristina Schneider 1 Joan Aron 2 Carlos Santos-Burgoa 3 Wilson Uieda 4 Sílvia Ruiz-Velazco 5 1 Pan American Health Abstract Many people in Amazonian communities have reported bat bites in the last decade. Organization. Bites by vampire bats can potentially transmit rabies to humans. The objective of this study was 525 23rd Street NW, Washington, DC to analyze factors associated with bat biting in one of these communities. A cross-sectional sur- 20037-2895, U.S.A. vey was conducted in a village of gold miners in the Amazonian region of Brazil (160 inhabi- 2 Science Communication tants). Bats were captured near people’s houses and sent to a lab. Of 129 people interviewed, 41% Studies. 5457 Marsh Hawk Way, Columbia, had been attacked by a bat at least once, with 92% of the bites located on the lower limbs. A lo- MD 21045, U.S.A. gistic regression found that adults were bitten around four times more often than children (OR = 3 Instituto de Salud 3.75, CI 95%: 1.46-9.62, p = 0.036). Males were bitten more frequently than females (OR = 2.08, CI Ambiente y Trabajo. Cerrada del Convento 48-A, 95%: 0.90-4.76, p = 0.067). Nine Desmodus rotundus and three frugivorous bats were captured Tlalpan, DF 14420, México. and tested negative for rabies. The study suggests that, in an area of gold miners, common vam- 4 Departamento de Zoologia, pire bats are more likely to attack adults and males. -
Pacific Remote Islands Marine National Grade Level Monument (PRIMNM) Through the Lens of Seabird Guano
Pacific Marine National Monuments Pacific Remote Island Marine National Monument: Guano and Nutrient Cycling Source: NOAA Early Guano Advertising Poster Source: Activity Summary Duke Advertising Ephemera Collection This lesson introduces students to the Pacific Remote Islands Marine National Monument (PRIMNM) through the lens of seabird guano. Students will orient Grade Level themselves using a mapping exercise to locate the islands within the PRIMNM. 7-12 Once oriented they explore nutrient flow through ecosystems by developing a food web for the sooty tern and use that to trace the movement of nutrients from Timeframe source (the ocean) to sink (islands). This concept will be further reinforced and 2.5 – 3 hours extended with a physical simulation exercise that introduces the variability of climate as a control on guano development. Students then use climate data from Materials their mapping exercise to make inferences about which islands within the Large blank paper PRIMNM are likely to have the best developed guano resources. Finally they use Colored pencils source data on seabird populations in the past to calculate rates of guano Sooty tern food web cards development to determine the sustainability of this resource. Sooty tern simulation cards Learning Objectives “Nutrients” paper/cotton balls Students will be able to: Containers for holding nutrients Explore the geography of the PRIMNM Understand the relationship between food webs and nutrient flows If you need assistance with this U.S. Department of Commerce | National -
Information Synthesis on the Potential for Bat Interactions with Offshore Wind Facilities
_______________ OCS Study BOEM 2013-01163 Information Synthesis on the Potential for Bat Interactions with Offshore Wind Facilities Final Report U.S. Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs www.boem.gov OCS Study BOEM 2013-01163 Information Synthesis on the Potential for Bat Interactions with Offshore Wind Facilities Final Report Authors Steven K. Pelletier Kristian S. Omland Kristen S. Watrous Trevor S. Peterson Prepared under BOEM Contract M11PD00212 by Stantec Consulting Services Inc. 30 Park Drive Topsham, ME 04086 Published by U.S. Department of the Interior Bureau of Ocean Energy Management Herndon, VA Office of Renewable Energy Programs June 2013 DISCLAIMER This report was prepared under contract between the Bureau of Ocean Energy Management (BOEM) and Stantec Consulting Services Inc. This report has been technically reviewed by BOEM, and it has been approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of BOEM, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. It is, however, exempt from review and compliance with BOEM editorial standards. REPORT AVAILABILITY The report may be downloaded from the boem.gov website through the Environmental Studies Program Information System (ESPIS). You will be able to obtain this report from BOEM or the National Technical Information Service. U.S. Department of the Interior U.S. Department of Commerce Bureau of Ocean Energy Management National Technical Information Service Office of Renewable Energy Programs 5285 Port Royal Road 381 Elden Street, HM-1328 Springfield, Virginia 22161 Herndon, VA 20170 Phone: (703) 605-6040 Fax: (703) 605-6900 Email: [email protected] CITATION Pelletier, S.K., K. -
EU Action Plan for the Conservation of All Bat Species in the European Union
Action Plan for the Conservation of All Bat Species in the European Union 2018 – 2024 October 2018 Action Plan for the Conservation of All Bat Species in the European Union 2018 - 2024 EDITORS: BAROVA Sylvia (European Commission) & STREIT Andreas (UNEP/EUROBATS) COMPILERS: MARCHAIS Guillaume & THAURONT Marc (Ecosphère, France/The N2K Group) CONTRIBUTORS (in alphabetical order): BOYAN Petrov * (Bat Research & Conservation Centre, Bulgaria) DEKKER Jasja (Animal ecologist, Netherlands) ECOSPHERE: JUNG Lise, LOUTFI Emilie, NUNINGER Lise & ROUÉ Sébastien GAZARYAN Suren (EUROBATS) HAMIDOVIĆ Daniela (State Institute for Nature Protection, Croatia) JUSTE Javier (Spanish association for the study and conservation of bats, Spain) KADLEČÍK Ján (Štátna ochrana prírody Slovenskej republiky, Slovakia) KYHERÖINEN Eeva-Maria (Finnish Museum of Natural History, Finland) HANMER Julia (Bat Conservation Trust, United Kingdom) LEIVITS Meelis (Environmental Agency of the Ministry of Environment, Estonia) MARNELl Ferdia (National Parks & Wildlife Service, Ireland) PETERMANN Ruth (Federal Agency for Nature Conservation, Germany) PETERSONS Gunărs (Latvia University of Agriculture, Latvia) PRESETNIK Primož (Centre for Cartography of Fauna and Flora, Slovenia) RAINHO Ana (Institute for the Nature and Forest Conservation, Portugal) REITER Guido (Foundation for the protection of our bats in Switzerland) RODRIGUES Luisa (Institute for the Nature and Forest Conservation, Portugal) RUSSO Danilo (University of Napoli Frederico II, Italy) SCHEMBRI -
BATS of the Golfo Dulce Region, Costa Rica
MURCIÉLAGOS de la región del Golfo Dulce, Puntarenas, Costa Rica BATS of the Golfo Dulce Region, Costa Rica 1 Elène Haave-Audet1,2, Gloriana Chaverri3,4, Doris Audet2, Manuel Sánchez1, Andrew Whitworth1 1Osa Conservation, 2University of Alberta, 3Universidad de Costa Rica, 4Smithsonian Tropical Research Institute Photos: Doris Audet (DA), Joxerra Aihartza (JA), Gloriana Chaverri (GC), Sébastien Puechmaille (SP), Manuel Sánchez (MS). Map: Hellen Solís, Universidad de Costa Rica © Elène Haave-Audet [[email protected]] and other authors. Thanks to: Osa Conservation and the Bobolink Foundation. [fieldguides.fieldmuseum.org] [1209] version 1 11/2019 The Golfo Dulce region is comprised of old and secondary growth seasonally wet tropical forest. This guide includes representative species from all families encountered in the lowlands (< 400 masl), where ca. 75 species possibly occur. Species checklist for the region was compiled based on bat captures by the authors and from: Lista y distribución de murciélagos de Costa Rica. Rodríguez & Wilson (1999); The mammals of Central America and Southeast Mexico. Reid (2012). Taxonomy according to Simmons (2005). La región del Golfo Dulce está compuesta de bosque estacionalmente húmedo primario y secundario. Esta guía incluye especies representativas de las familias presentes en las tierras bajas de la región (< de 400 m.s.n.m), donde se puede encontrar c. 75 especies. La lista de especies fue preparada con base en capturas de los autores y desde: Lista y distribución de murciélagos de Costa Rica. Rodríguez -
Factors Affecting the Distribution of Pipistrellus Pipistrellus and Pipistrellus Pygmaeus in the Lothians Region, Scotland
BaTML Publications www.batml.org.uk Factors affecting the distribution of Pipistrellus pipistrellus and Pipistrellus pygmaeus in the Lothians region, Scotland Author: Sarah Clear* Dated: 1st November 2005 *Correspondence details: email: [email protected] Abstract Until recently it was believed that Bandit pipistrelle (Pipistrellus pipistrellus) and Soprano pipistrelle (P. pygmaeus) were one species, as such relatively little is known regarding factors that affect their distribution in the UK. The BATS and The Millennium Link project (BaTML) has been surveying different sites on the Union and Forth & Clyde Canals to assess use of these canals by bats. They found a higher incidence of Soprano pipistrelle relative to Bandit pipistrelle than expected. This paper reports on a study which aimed to determine whether the relative abundances of the two species of pipistrelle in woodland and parkland sites, away from the canal, are similar to the abundances found in the Union Canal area, and to determine what factors are affecting their distribution. Four noncanal sites were surveyed between July and September 2004. The data collected from these surveys was compared with four canal sites previously surveyed by BaTML. The results showed that Soprano pipistrelle was more numerous than Bandit pipistrelle at all of the noncanal sites, indicating a higher abundance of Soprano pipistrelle in the Lothian region. Key words: Bandit, pipistrelle, Soprano, bats, BaTML, Union, Forth & Clyde, canals, bat Introduction selection (Barlow, 1997; Russ & Montgomery, 2002) showing a greater preference for habitats Until recently it was believed that there was only a with water (Russo & Jones, 2003). Bandit single species of pipistrelle bat resident in Britain. -
The Cause and Effect of Bat Wing Tears in Common Pipistrelle Bats (Pipistrellus Pipistrellus)
The Cause and Effect of Bat Wing Tears in Common Pipistrelle Bats (Pipistrellus pipistrellus) R O Khayat PhD 2019 The Cause and Effect of Bat Wing Tears in Common Pipistrelle Bats (Pipistrellus pipistrellus) Rana Osama S Khayat A thesis submitted in partial fulfilment of the requirements of Manchester Metropolitan University for the degree of Doctor of Philosophy Department of Natural Sciences Manchester Metropolitan University 2019 i Abstract Bats represent a quarter of all mammalian species and play vital roles in many ecosystems. They are also are the only mammals capable of powered flight and have large, light, thin wings to enable flight. However, bats face many threats, including collisions with man-made structures, fungal infections and predator attacks, all of which can cause severe wing injuries. Hundreds of bats are admitted annually for care to treat torn and injured wings. This thesis aims to investigate the causes and effects of bat wing tears. In a series of studies, this thesis will: i) characterise wing tears in P. pipistrellus and other bat species in the UK; ii) explore the anatomy of the wing in P. pipistrellus, and see if knowledge of the anatomy is sufficient to understand wing tear placement and healing rates; iii) present a novel method for analysing flight from high-speed video data to assess the effect of tears on flight; and iv) develop a systematic forensic method to identify the presence of cat DNA on wing tears. Results from Chapter 2 indicate that most tears occurred in the Plagiopatagium wing section (section P), which is closest to the body.