Novae a Theoretical and Observational Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
II Publications, Presentations
II Publications, Presentations 1. Refereed Publications Izumi, K., Kotake, K., Nakamura, K., Nishida, E., Obuchi, Y., Ohishi, N., Okada, N., Suzuki, R., Takahashi, R., Torii, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Y., Ueda, A., Yamazaki, T.: 2010, DECIGO and DECIGO Search for Gravitational-wave Inspiral Signals Associated with pathfinder, Class. Quantum Grav., 27, 084010. Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Aoki, K.: 2010, Broad Balmer-Line Absorption in SDSS Science Run, ApJ, 715, 1453-1461. J172341.10+555340.5, PASJ, 62, 1333. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, All- Aoki, K., Oyabu, S., Dunn, J. P., Arav, N., Edmonds, D., Korista sky search for gravitational-wave bursts in the first joint LIGO- K. T., Matsuhara, H., Toba, Y.: 2011, Outflow in Overlooked GEO-Virgo run, Phys. Rev. D, 81, 102001. Luminous Quasar: Subaru Observations of AKARI J1757+5907, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, PASJ, 63, S457. Search for gravitational waves from compact binary coalescence Aoki, W., Beers, T. C., Honda, S., Carollo, D.: 2010, Extreme in LIGO and Virgo data from S5 and VSR1, Phys. Rev. D, 82, Enhancements of r-process Elements in the Cool Metal-poor 102001. Main-sequence Star SDSS J2357-0052, ApJ, 723, L201-L206. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arai, A., et al. including Yamashita, T., Okita, K., Yanagisawa, TOPICAL REVIEW: Predictions for the rates of compact K.: 2010, Optical and Near-Infrared Photometry of Nova V2362 binary coalescences observable by ground-based gravitational- Cyg: Rebrightening Event and Dust Formation, PASJ, 62, wave detectors, Class. -
FY08 Technical Papers by GSMTPO Staff
AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................ -
The Impact of the Astro2010 Recommendations on Variable Star Science
The Impact of the Astro2010 Recommendations on Variable Star Science Corresponding Authors Lucianne M. Walkowicz Department of Astronomy, University of California Berkeley [email protected] phone: (510) 642–6931 Andrew C. Becker Department of Astronomy, University of Washington [email protected] phone: (206) 685–0542 Authors Scott F. Anderson, Department of Astronomy, University of Washington Joshua S. Bloom, Department of Astronomy, University of California Berkeley Leonid Georgiev, Universidad Autonoma de Mexico Josh Grindlay, Harvard–Smithsonian Center for Astrophysics Steve Howell, National Optical Astronomy Observatory Knox Long, Space Telescope Science Institute Anjum Mukadam, Department of Astronomy, University of Washington Andrej Prsa,ˇ Villanova University Joshua Pepper, Villanova University Arne Rau, California Institute of Technology Branimir Sesar, Department of Astronomy, University of Washington Nicole Silvestri, Department of Astronomy, University of Washington Nathan Smith, Department of Astronomy, University of California Berkeley Keivan Stassun, Vanderbilt University Paula Szkody, Department of Astronomy, University of Washington Science Frontier Panels: Stars and Stellar Evolution (SSE) February 16, 2009 Abstract The next decade of survey astronomy has the potential to transform our knowledge of variable stars. Stellar variability underpins our knowledge of the cosmological distance ladder, and provides direct tests of stellar formation and evolution theory. Variable stars can also be used to probe the fundamental physics of gravity and degenerate material in ways that are otherwise impossible in the laboratory. The computational and engineering advances of the past decade have made large–scale, time–domain surveys an immediate reality. Some surveys proposed for the next decade promise to gather more data than in the prior cumulative history of astronomy. -
Whole Earth Telescope Observations of AM Canum Venaticorum – Discoseismology at Last
Astron. Astrophys. 332, 939–957 (1998) ASTRONOMY AND ASTROPHYSICS Whole Earth Telescope observations of AM Canum Venaticorum – discoseismology at last J.-E. Solheim1;14, J.L. Provencal2;15, P.A. Bradley2;16, G. Vauclair3, M.A. Barstow4, S.O. Kepler5, G. Fontaine6, A.D. Grauer7, D.E. Winget2, T.M.K. Marar8, E.M. Leibowitz9, P.-I. Emanuelsen1, M. Chevreton10, N. Dolez3, A. Kanaan5, P. Bergeron6, C.F. Claver2;17, J.C. Clemens2;18, S.J. Kleinman2, B.P. Hine12, S. Seetha8, B.N. Ashoka8, T. Mazeh9, A.E. Sansom4;19, R.W. Tweedy4, E.G. Meistasˇ 11;13, A. Bruvold1, and C.M. Massacand1 1 Nordlysobservatoriet, Institutt for Fysikk, Universitetet i Tromsø, N-9037 Tromsø, Norway 2 McDonald Observatory and Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA 3 Observatoire Midi–Pyrenees, 14 Avenue E. Belin, F-31400 Toulouse, France 4 Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK 5 Instituto de Fisica, Universidade Federal do Rio Grande do Sul, 91500-970 Porto Alegre - RS, Brazil 6 Department de Physique, Universite´ de Montreal,´ C.P. 6128, Succ A., Montreal,´ PQ H3C 3J7, Canada 7 Department of Physics and Astronomy, University of Arkansas, 2801 S. University Ave, Little Rock, AR 72204, USA 8 Technical Physics Division, ISRO Satelite Centre, Airport Rd, Bangalore, 560 017 India 9 University of Tel Aviv, Department of Physics and Astronomy, Ramat Aviv, Tel Aviv 69978, Israel 10 Observatoire de Paris-Meudon, F-92195 Meudon Principal Cedex, France 11 Institute of Material Research and Applied Sciences, Vilnius University, Ciurlionio 29, Vilnius 2009, Lithuania 12 NASA Ames Research Center, M.S. -
1000 Cataclysmic Variables from the Catalina Real-Time Transient Survey
MNRAS 443, 3174–3207 (2014) doi:10.1093/mnras/stu1377 1000 cataclysmic variables from the Catalina Real-time Transient Survey E. Breedt,1‹ B. T. Gansicke,¨ 1 A. J. Drake,2 P. Rodr´ıguez-Gil,3,4 S. G. Parsons,5 T. R. Marsh,1 P. Szkody,6 M. R. Schreiber5 and S. G. Djorgovski2 1Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 2California Institute of Technology, 1200 E. California Blvd, CA 91225, USA 3Instituto de Astrof´ısica de Canarias, V´ıa Lactea´ s/n, La Laguna, E-38205, Santa Cruz de Tenerife, Spain 4Departamento de Astrof´ısica, Universidad de La Laguna, La Laguna, E-38206, Santa Cruz de Tenerife, Spain 5Instituto de F´ısica y Astronom´ıa, Universidad de Valpara´ıso, Avenida Gran Bretana 1111, 2360102 Valpara´ıso, Chile 6Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580, USA Downloaded from Accepted 2014 July 6. Received 2014 July 5; in original form 2014 May 13 ABSTRACT Over six years of operation, the Catalina Real-time Transient Survey (CRTS) has identified http://mnras.oxfordjournals.org/ 1043 cataclysmic variable (CV) candidates – the largest sample of CVs from a single survey to date. Here, we provide spectroscopic identification of 85 systems fainter than g ≥ 19, including three AM Canum Venaticorum binaries, one helium-enriched CV, one polar and one new eclipsing CV. We analyse the outburst properties of the full sample and show that it contains a large fraction of low-accretion-rate CVs with long outburst recurrence times. We argue that most of the high-accretion-rate dwarf novae in the survey footprint have already been found and that future CRTS discoveries will be mostly low-accretion-rate systems. -
Variable Star Classification and Light Curves Manual
Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme. -
SAS-2019 the Symposium on Telescope Science
Proceedings for the 38th Annual Conference of the Society for Astronomical Sciences SAS-2019 The Symposium on Telescope Science Joint Meeting with the Center for Backyard Astrophysics Editors: Robert K. Buchheim Robert M. Gill Wayne Green John C. Martin John Menke Robert Stephens May, 2019 Ontario, CA i Disclaimer The acceptance of a paper for the SAS Proceedings does not imply nor should it be inferred as an endorsement by the Society for Astronomical Sciences of any product, service, method, or results mentioned in the paper. The opinions expressed are those of the authors and may not reflect those of the Society for Astronomical Sciences, its members, or symposium Sponsors Published by the Society for Astronomical Sciences, Inc. Rancho Cucamonga, CA First printing: May 2019 Photo Credits: Front Cover: NGC 2024 (Flame Nebula) and B33 (Horsehead Nebula) Alson Wong, Center for Solar System Studies Back Cover: SA-200 Grism spectrum of Wolf-Rayet star HD214419 Forrest Sims, Desert Celestial Observatory ii TABLE OF CONTENTS PREFACE v SYMPOSIUM SPONSORS vi SYMPOSIUM SCHEDULE viii PRESENTATION PAPERS Robert D. Stephens, Brian D. Warner THE SEARCH FOR VERY WIDE BINARY ASTEROIDS 1 Tom Polakis LESSONS LEARNED DURING THREE YEARS OF ASTEROID PHOTOMETRY 7 David Boyd SUDDEN CHANGE IN THE ORBITAL PERIOD OF HS 2325+8205 15 Tom Kaye EXOPLANET DETECTION USING BRUTE FORCE TECHNIQUES 21 Joe Patterson, et al FORTY YEARS OF AM CANUM VENATICORIUM 25 Robert Denny ASCOM – NOT JUST FOR WINDOWS ANY MORE 31 Kalee Tock HIGH ALTITUDE BALLOONING 33 William Rust MINIMIZING DISTORTION IN TIME EXPOSED CELESTIAL IMAGES 43 James Synge PROJECT PANOPTES 49 Steve Conard, et al THE USE OF FIXED OBSERVATORIES FOR FAINT HIGH VALUE OCCULTATIONS 51 John Martin, Logan Kimball UPDATE ON THE M31 AND M33 LUMINOUS STARS SURVEY 53 John Morris CURRENT STATUS OF “VISUAL” COMET PHOTOMETRY 55 Joe Patterson, et al ASASSN-18EY = MAXIJ1820+070 = “MAXIE”: KING OF THE BLACK HOLE 61 SUPERHUMPS Richard Berry IMAGING THE MOON AT THERMAL INFRARED WAVELENGTHS 67 iii Jerrold L. -
Pos(HTRA-IV)023 , 1 , 9 , B.T
ULTRACAM observations of SDS 0926+3624: the first known eclipsing AM CVn star PoS(HTRA-IV)023 C.M. Copperwheat∗ Department of Physics, University of Warwick, Coventry, CV4 7AL, UK E-mail: [email protected] T.R. Marsh1, S.P. Littlefair2, V.S. Dhillon2, G. Ramsay3, A.J. Drake4, B.T. Gänsicke1, P.J. Groot5, P. Hakala6, D. Koester7, G. Nelemans5, G. Roelofs8, J. Southworth9, D. Steeghs1 and S. Tulloch2 1 Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 2 Department of Physics and Astronomy, University of Sheffield, S3 7RH, UK 3 Armagh Observatory, College Hill, Armagh, BT61 9DG, UK 4 California Institute of Technology, 1200 E. California Blvd., CA 91225, USA 5 Department of Astrophysics, IMAPP, Radboud University Nijmegen, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands 6 Finnish Centre for Astronomy with ESO, Tuorla Observatory, Väisäläntie 20, FIN-21500 Piikkiö, University of Turku, Finland 7 Institut für Theoretische Physik und Astrophysik, Universität Kiel, 24098 Kiel, Germany 8 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 9 Astrophysics Group, Keele University, Newcastle-under-Lyme, ST5 5BG, UK The AM Canum Venaticorum (AM CVn) stars are ultracompact binaries with the lowest periods of any binary subclass, and consist of a white dwarf accreting material from a donor star that is it- self fully or partially degenerate. These objects offer new insight into the formation and evolution of binary systems, and are predicted to be among the strongest gravitational wave sources in the sky. To date, the only known eclipsing source of this type is the 28 min binary SDSS 0926+3624. -
Gaia Data Release 2 Special Issue
A&A 623, A110 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833304 & © ESO 2019 Astrophysics Gaia Data Release 2 Special issue Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram?,?? Gaia Collaboration, L. Eyer1, L. Rimoldini2, M. Audard1, R. I. Anderson3,1, K. Nienartowicz2, F. Glass1, O. Marchal4, M. Grenon1, N. Mowlavi1, B. Holl1, G. Clementini5, C. Aerts6,7, T. Mazeh8, D. W. Evans9, L. Szabados10, A. G. A. Brown11, A. Vallenari12, T. Prusti13, J. H. J. de Bruijne13, C. Babusiaux4,14, C. A. L. Bailer-Jones15, M. Biermann16, F. Jansen17, C. Jordi18, S. A. Klioner19, U. Lammers20, L. Lindegren21, X. Luri18, F. Mignard22, C. Panem23, D. Pourbaix24,25, S. Randich26, P. Sartoretti4, H. I. Siddiqui27, C. Soubiran28, F. van Leeuwen9, N. A. Walton9, F. Arenou4, U. Bastian16, M. Cropper29, R. Drimmel30, D. Katz4, M. G. Lattanzi30, J. Bakker20, C. Cacciari5, J. Castañeda18, L. Chaoul23, N. Cheek31, F. De Angeli9, C. Fabricius18, R. Guerra20, E. Masana18, R. Messineo32, P. Panuzzo4, J. Portell18, M. Riello9, G. M. Seabroke29, P. Tanga22, F. Thévenin22, G. Gracia-Abril33,16, G. Comoretto27, M. Garcia-Reinaldos20, D. Teyssier27, M. Altmann16,34, R. Andrae15, I. Bellas-Velidis35, K. Benson29, J. Berthier36, R. Blomme37, P. Burgess9, G. Busso9, B. Carry22,36, A. Cellino30, M. Clotet18, O. Creevey22, M. Davidson38, J. De Ridder6, L. Delchambre39, A. Dell’Oro26, C. Ducourant28, J. Fernández-Hernández40, M. Fouesneau15, Y. Frémat37, L. Galluccio22, M. García-Torres41, J. González-Núñez31,42, J. J. González-Vidal18, E. Gosset39,25, L. P. Guy2,43, J.-L. Halbwachs44, N. C. Hambly38, D. -
Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis, -
Two Peculiar Fast Transients in a Strongly Lensed Host Galaxy
Two Peculiar Fast Transients in a Strongly Lensed Host Galaxy S. A. Rodney1, I. Balestra2, M. Bradacˇ3, G. Brammer4, T. Broadhurst5,6, G. B. Caminha7, G. Chiriv`ı8, J. M. Diego9, A. V. Filippenko10, R. J. Foley11, O. Graur12,13,14, C. Grillo15,16, S. Hemmati17, J. Hjorth16, A. Hoag3, M. Jauzac18,19,20, S. W. Jha21, R. Kawamata22, P. L. Kelly10, C. McCully23,24, B. Mobasher25, A. Molino26,27, M. Oguri28,29,30, J. Richard31, A. G. Riess32,4, P. Rosati7, K. B. Schmidt24,33, J. Selsing16, K. Sharon34, L.-G. Strolger4, S. H. Suyu8,35,36, T. Treu37,38, B. J. Weiner39, L. L. R. Williams40 & A. Zitrin41 A massive galaxy cluster can serve as a magnifying glass for distant stellar populations, with strong gravitational lensing exposing details in the lensed background galaxies that would otherwise be undetectable. The MACS J0416.1-2403 cluster (hereafter MACS0416) is one of the most efficient lenses in the sky, and in 2014 it was observed with high-cadence imaging from the Hubble Space Telescope (HST). Here we describe two unusual transient events that appeared behind MACS0416 in a strongly lensed galaxy at redshift z = 1:0054 0:0002. These transients—designated HFF14Spo-NW and HFF14Spo-SE and collectively nicknamed± “Spock”—were faster and fainter than any supernova (SN), but significantly more luminous 41 1 than a classical nova. They reached peak luminosities of 10 erg s− (M < 14 mag) ∼ AB − in .5 rest-frame days, then faded below detectability in roughly the same time span. Models of the cluster lens suggest that these events may be spatially coincident at the source plane, but are most likely not temporally coincident. -
N95- 27078 13 Discussion on Selected Symbiotic Stars
N95- 27078 13 DISCUSSION ON SELECTED SYMBIOTIC STARS R. Viotti and M. Hack I. INTRODUCTION made of its variations" (Mayall, 1969). This pessimistic remark should be consid- Because of its large variety of aspects, the ered as a note of caution for those involved in symbiotic phenomenon is not very suitable for the interpretation of the observations. In the a statistical treatment. It is also not clear following, we shall discuss a number of indi- whether symbiotic stars really represent a vidual symbiotic stars for which the amount of homogeneous group of astrophysical objects or observational data is large enough to draw a a collection of objects of different natures but rather complete picture of their general behav- showing similar phenomena. However, as al- ior and to make consistent models. We shall ready discussed in the introduction to the sym- especially illustrate the necessary steps toward biotic stars, in this monograph we are espe- an empirical model and take the discussion of cially interested in the symbiotic phenomenon, the individual objects as a useful occasion to i.e., in those physical processes occurring in describe different techniques of diagnosis. the atmosphere of each individual object and in their time dependence. Such a research can be I1. Z ANDROMEDAE AND THE DIAGNOS- performed through the detailed analysis of TICS OF THE SYMBIOTIC STARS individual objects. This study should be done for a time long enough to cover all the different II.A. INTRODUCTION phases of their activity, in all the spectral ranges. Since the typical time scale of the symbiotic phenomena is up to several years and Z And has been considered as the prototype decades, this represents a problem since, for of the symbiotic stars, from its light history and instance, making astronomy outside the visual the spectral variation during outburst.