A History of Skylab. Includes Index

Total Page:16

File Type:pdf, Size:1020Kb

A History of Skylab. Includes Index DOCUMENT RESUME ED 252 380 .SE 045 297 AUTHOR Compton, W. David; Benson, Charles D. TITLE Living and Working in Space: A Historyof Skylab. INSTITUTION National Aeronautics and SpaceAdministration, Washington, D.C. REPORT NO NASA-SP-420R PUB DATE 83 NOTE 468p. AVAILABLE FROMSuperintendent of Documents, U.S. GovernmentPrinting Office, Washington, DC 20402. PUB TYPE Reports - Descriptive (141) --Books (010) EDRS PRICE MF01/PC19 Plus Postage. DESCRIPTORS Aerospace Education; *FederalPrograms; *Program Development; *Satellites (Aerospace);Science Education; *Science Experiments;*Science History; *Space Exploration; Space Sciences IDENTIFIERS National Aeronautics and SpaceAdministration; *Skylab ABSTRACT The history of the NationalAeronautics and Space Administration Skylab program isprovided in this three-part book. Part I(chapters 1 to 5) traces theorigins of the Skylab concept from its emergence in theperiod 1962-65 through its evolutioninto final form in 1969. Part II(chapters 6 to 13) focuses on theperiod from 1969-73, considering thedevelopment of the spacecraftmodules, the experiments theycarried, and the preparations to launchand operate them. Chapter 6focuses on the program leader:', theproblems they faced, and the tools theyused to manage Skylab. Chapters7 through 11 deal with the majorexperimental programs and the spacecraft components. Houston'spreparations for directing the missions and the launching of Skylab aretreated in chapters 12 and 13 respectively. Part III(chapters 14 to 19) deals with theSkylab launch accident (the meteoroidshield ripped away, leaving the workshop exposed to solar heat anddisabling its solar panels), Skylab missions, program results(including medical andsolar/earth observation findings), and the endof Skylab. A summary ofmissions, list of major contractors, list ofexperiments, and additional documentation are included inappendices. (JN) *********************************************************************** Reproductions supplied by EDRS arethe best that can be made from the original document. *********************************************************************** U S DEPARTMENT OF EDUCATION NATIONAL INSTITUTE OF EDUCATION I D A TIONAl RESUInit ES INFORMATION I /NW) (ERIC) has ben toptotitit011as titi owlet limn the person or OOpillO111011 onginatino It (NJ broom have been made to 'mound() LCSleptodui IronflodIlly Points oIVIOV% 01opinions ',GHIA in this duct, meet (10 1101 no. esSafily leptesent one Ial NIE positoull or pole. y 1... LIVING AND WORKING 'IN SPACE ./ A H4story of Skylab NA IR\lAl, AFRONAIrlICS AND SPACE AOM IN (STRATI ON J wN 4( Liu 2 I 3 1 Working Length Diameter Module Function Volume (m) (m) (cu m) Apollo Crow Ascent 10.5 3.9 10.4 Command Et Descent and Service Module Multiple Docking 5.3 3.1 32.3 Docking Telescope Adapter Et Earth. Resource Controls EI Displays Apollo Solar 4.1 Telescope Observation Mount 1 Airlock Power Control 5 4 3 1 17.3 Module EI Distribution & Fixed Envirth.mental Shroud Control t Misty Center Data System Extravehicular Activity Port Instrument Launch 0.9 6.6 Unit Vehicle Control Oibital Primary Living 14.7 66 210.2 Workshop Et Working Area Experiment Laboratory Stowage BEST tolOPY AVAILABLE 4 '-"r'''',..."., -Irr. tip V 0 NASA SP-4208 U.S. DEPARTMENT OF EDUCATION NATIONAL INSTITUTE OF EDUCATION EDUCATIONAL RESOURCES INFORMATION CENTER IERICI This document has been reproduced as ireceived horn the pt.10 or otganitation onginating it MIMI changes ilaVI, been made lo improve rept oduc lion (plata Points Of view or opinions stated 1 this dont need do 1101 .VSSMIN represent &Ube NIE pusitionInpokey LIVING AND WORKING IN SPACE A History of Skylab W. David Compton and Charles D. Benson The NASA History Series Scientific and Technical Information Branch ;983 National Aeronautics and Space Administration Washington, DC 6 NASA maintains an internal history program for two principal reasons. (1) Publication of official histories is one way in which NASA responds to the provision of the National Aeronautics and Space Act of 1958 that requires NASA to "provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof." (2) Thoughtful study of NASA history can help managers accom- plish the missions assigned to the agency. Understanding NASA's past aids in under- standing its present situation and illuminates possible future directions. One advantage of working on contemporary history is access to participants. During the research phase, the authors conducted numerous interviews. Subsequently they submit- ted parts of the manuscript to persons who had participated in or closely observed the events described. Readers were asked to point out errors of fact and questionable inter- pretations and to provide supporting evidence. The authors then made such changes as they believed justified. The opinions and conclusions set forth in this book are those of the authors; no official of the agency necessarily endorses those opinions or conclusions. Library of Congress cataloging in publication data Compton, W. David. Living and working in space: A history of Skylab. Includes Index. 1. Skylab Program. I. Benson, Charles D. II. Title. III. Series. IV. Series: NASA SP ; 4208. TL789.8.U6S5546 629.44'5 81-22424 AAC R2 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Contents PREFACE, Xi PART I. FROM CONCEPT THROUGH DECISION, 1962-1969, 1 I. WHAT TO Do FOR AN ENCORE: POST-APOLLO PLANS, 2 Directions for Manned Spaceflight, 7 Space Stations after 1962, 9 Sizing Up a Space Station, 11 Air Force Seeks Role in Space, 15 President Calls for NASA's Plans, 19 Mueller Opens Apollo Applications Program Office, 20 2. FROM SPENT STAGE TO ORBITAL CLUSTER, 1965-1966, 22 Early Proposals to Use Spent Stages, 23 Marshall Sponsors the Spent Stage, 26 Concept to Design: Bounding the Problem, 27 Concept to Design: Defining the Workshop, 30 The Cluster Concept, 36 3. APOLLO APPLICATIONS: "WEDNESDAY'S CHILD," 40 Initial Plans and Budgets, 40 Seeking New Justification, 43 AAP vs. MOL, 46 Center Roles and Missions, 48 Presidential Approval, 52 4. A SCIENCE PROGRAM FOR MANNED SPACEFLIGHT, 57 Science in Space to 1965, 57 Organizing for Manned Space Science, 59 Scientists and Man in Space, 63 Solar Observatories in Orbii, 69 Experiments for the Workshop, 76 More Advice from the Scientific Community, 79 CONTENTS 5. YEARS OF UNCERTAINTY, 1967-1969, 83 Impact of the Fire, 84 Problems with the Cluster Missions, 88 AAP under Internal Attack, 91 Shrinking Budgets and Shrinking Program, 99 The Wet Workshop Goes Dry, 104 Retrospect and Prospect, 111 PART II. DEVELOPMENT AND PREPARATIONS TO FLY, 1969-1973, 113 6. MANAGING THE DESIGN PHASE, 114 Moving Out of Apollo's Shadow, 114 A Second Skylab, 116 Management Tools, 118 The Problem of Changes, 125 The Problem of Reentry, 127 7. LIVING AND WORKING IN SPACE, 130 Habitability of Early Spacecraft, 130 Habitability of the Wet Workshop, 131 Contribution of Industrial Designers, 133 Habitability of the Dry Workshop, 135 The Food System, 140 Marshall Calls for a Reassessment, 144 8. THE MEDICAL EXPERIMENTS, 149 Defining the Experiments, 149 A Space Toilet, 152 Building the Medical Hardware, 159 A Simulation and What Came of It, 162 9. STUDYING THE SUN, 166 Solar Instruments, 166 Apollo Telescope Mount, 169 Mission Plans and Operating Procedures, 174 Technical Progress and Problems, 179 10. LATE ADDITIONS TO THE EXPERIMENTS, 182 Observing the Earth, 182 Earth-Resource Experiments, 185 Selecting the Investigators, 191 Flight Planning and Instrument Development, 192 Student Experiments, 194 vi 9 .; coNTENTs 11. PUTTING THE PIECES TOGETHER, 197 More Work for Contractors, 197 Test Program, 199 Module Development: Airlock and Docking Adapter, 200 Trainers and Mockups, 206 Module Development: The Workshop, 207 Reentry Reexamined, 212 12. PREPARATIONS FOR FLIGHT, 213 Defining Center Responsibilities, 213 Operations Planning in Houston, 215 Huntsville Organizes for Mission Support, 217 Test Pilot vs. Scientist- Astronaut. 218 Crew Training, 221 13. LAUNCHING SKYLAB, 231 Selecting the Launch Complex, 231 The Milkstool, 235 Preparing a Launch Plan, 237 Facility Modifications, 238 Handling the Experiments, 240 Relations with Huntsville, 241 Problems of New Hardware, 243 From Certification Review to Liftoff, 247 PART III. THE MISSIONS AND RESULTS, 1973-1979, 251 14. SAVING SKYLAB, 253 The Accident, 253 Maneuvering for Minimum Heat, Maximum Power, 257 Assessing the Heat's Effect, 258 Devising a Sunshade, 259 Plans to Increase Skylab's Power, 268 Launch and Docking, 269 Accomplishing the Repair, 271 Investigation Board, 276 15. THE FIRST MISSION, 279 Private Communications, 279 Physical Fitness in Space, 283 Flight Planning: The Astronauts' View, 287 Fight Planning: The Investigators' View, 288 The Long-Awaited Solar Flare, 290 Critique of the First Mission, 291 vii CONTENTS 16. THE SECOND MISSION, 295 Motion Sickness, 295 A Rescue Mission? 298 Deploying the Twin-Pole Sunshade, 300 Solar Viewing, 302 Earth-Resource and Corollary Experiments, 303 More Mechanical Problems, 306 A Routine Day in Space, 307 A Team of Overachievers, 310 17. THE LAST MISSION, 312 Changes to the Mission, 312 An Error in Judgment, 314 Activation, 316 Getting to Work, 319 First Month's Accomplishments, 323 A Comet for Christmas, 324 Carr Calls for an Assessment, 326 Around the World for 84 Days, 330 Coming Back, 334 18. RESULTS, 339 Medical Findings, 339 Solar Observations, 342 Earth Observations,
Recommended publications
  • History of Rocket Technology
    CHAPTER 1 History of Rockets 1. 1. INTRODUCTION Action-Reaction Principle Take any technology and you always find that its practical demonstration had been realized much before the theory was established. However, you may note that the fast and effective refinement of a technology begins only after its theory, explaining the underlying basic principles, has been established. The action-reaction principle that is fundamental to jet propulsion, which includes airbreathing- as well as rocket-propulsion, was theoretically explained only in 1687 by the English scientist Sir Isaac Newton by his famous publication “Philosophiae Naturalis Principia Mathematica (“Mathematical Principles of Natural Philosophy”). But, approximately 2100 years before this, Archytas, a Greek philosopher, mathematician, astronomer, statesman, and strategist, had demonstrated the action-reaction principle by his toy pigeon in the city of Tarentum, Fig. 1. 1. Archytas suspended on a wire his wooden pigeon that contained hot steam at an elevated pressure in its belly cavity. The other end of the wire was hooked on to the top of a tall pole. On releasing a plug, a jet of steam escaped through a hole from the rear of the pigeon to produce a thrust that made the toy pigeon fly in circles around the pole. Thus Archytas mystified and amused the citizens of Tarentum by his flying toy- pigeon and demonstrated the fundamental principle of propulsion: “every force has an equal and opposite reaction”. The second recorded-demonstration of the action-reaction principle was in the first century B.C. Hero of Alexandria, a Greek mathematician 1 and scientist, constructed a device known as aeolipile.
    [Show full text]
  • USGS Open-File Report 2005-1190, Table 1
    TABLE 1 GEOLOGIC FIELD-TRAINING OF NASA ASTRONAUTS BETWEEN JANUARY 1963 AND NOVEMBER 1972 The following is a year-by-year listing of the astronaut geologic field training trips planned and led by personnel from the U.S. Geological Survey’s Branches of Astrogeology and Surface Planetary Exploration, in collaboration with the Geology Group at the Manned Spacecraft Center, Houston, Texas at the request of NASA between January 1963 and November 1972. Regional geologic experts from the U.S. Geological Survey and other governmental organizations and universities s also played vital roles in these exercises. [The early training (between 1963 and 1967) involved a rather large contingent of astronauts from NASA groups 1, 2, and 3. For another listing of the astronaut geologic training trips and exercises, including all attending and the general purposed of the exercise, the reader is referred to the following website containing a contribution by William Phinney (Phinney, book submitted to NASA/JSC; also http://www.hq.nasa.gov/office/pao/History/alsj/ap-geotrips.pdf).] 1963 16-18 January 1963: Meteor Crater and San Francisco Volcanic Field near Flagstaff, Arizona (9 astronauts). Among the nine astronaut trainees in Flagstaff for that initial astronaut geologic training exercise was Neil Armstrong--who would become the first man to step foot on the Moon during the historic Apollo 11 mission in July 1969! The other astronauts present included Frank Borman (Apollo 8), Charles "Pete" Conrad (Apollo 12), James Lovell (Apollo 8 and the near-tragic Apollo 13), James McDivitt, Elliot See (killed later in a plane crash), Thomas Stafford (Apollo 10), Edward White (later killed in the tragic Apollo 1 fire at Cape Canaveral), and John Young (Apollo 16).
    [Show full text]
  • PEANUTS and SPACE FOUNDATION Apollo and Beyond
    Reproducible Master PEANUTS and SPACE FOUNDATION Apollo and Beyond GRADE 4 – 5 OBJECTIVES PAGE 1 Students will: ö Read Snoopy, First Beagle on the Moon! and Shoot for the Moon, Snoopy! ö Learn facts about the Apollo Moon missions. ö Use this information to complete a fill-in-the-blank fact worksheet. ö Create mission objectives for a brand new mission to the moon. SUGGESTED GRADE LEVELS 4 – 5 SUBJECT AREAS Space Science, History TIMELINE 30 – 45 minutes NEXT GENERATION SCIENCE STANDARDS ö 5-ESS1 ESS1.B Earth and the Solar System ö 3-5-ETS1 ETS1.B Developing Possible Solutions 21st CENTURY ESSENTIAL SKILLS Collaboration and Teamwork, Communication, Information Literacy, Flexibility, Leadership, Initiative, Organizing Concepts, Obtaining/Evaluating/Communicating Ideas BACKGROUND ö According to NASA.gov, NASA has proudly shared an association with Charles M. Schulz and his American icon Snoopy since Apollo missions began in the 1960s. Schulz created comic strips depicting Snoopy on the Moon, capturing public excitement about America’s achievements in space. In May 1969, Apollo 10 astronauts traveled to the Moon for a final trial run before the lunar landings took place on later missions. Because that mission required the lunar module to skim within 50,000 feet of the Moon’s surface and “snoop around” to determine the landing site for Apollo 11, the crew named the lunar module Snoopy. The command module was named Charlie Brown, after Snoopy’s loyal owner. These books are a united effort between Peanuts Worldwide, NASA and Simon & Schuster to generate interest in space among today’s younger children.
    [Show full text]
  • PEENEMUENDE, NATIONAL SOCIALISM, and the V-2 MISSILE, 1924-1945 Michael
    ABSTRACT Title of Dissertation: ENGINEERING CONSENT: PEENEMUENDE, NATIONAL SOCIALISM, AND THE V-2 MISSILE, 1924-1945 Michael Brian Petersen, Doctor of Philosophy, 2005 Dissertation Directed By: Professor Jeffrey Herf Departmen t of History This dissertation is the story of the German scientists and engineers who developed, tested, and produced the V-2 missile, the world’s first liquid -fueled ballistic missile. It examines the social, political, and cultural roots of the prog ram in the Weimar Republic, the professional world of the Peenemünde missile base, and the results of the specialists’ decision to use concentration camp slave labor to produce the missile. Previous studies of this subject have been the domain of either of sensationalistic journalists or the unabashed admirers of the German missile pioneers. Only rarely have historians ventured into this area of inquiry, fruitfully examining the history of the German missile program from the top down while noting its admi nistrative battles and technical development. However, this work has been done at the expense of a detailed examination of the mid and lower -level employees who formed the backbone of the research and production effort. This work addresses that shortcomi ng by investigating the daily lives of these employees and the social, cultural, and political environment in which they existed. It focuses on the key questions of dedication, motivation, and criminality in the Nazi regime by asking “How did Nazi authori ties in charge of the missile program enlist the support of their employees in their effort?” “How did their work translate into political consent for the regime?” “How did these employees come to view slave labor as a viable option for completing their work?” This study is informed by traditions in European intellectual and social history while borrowing from different methods of sociology and anthropology.
    [Show full text]
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]
  • Apollo 13 Mission Review
    APOLLO 13 MISSION REVIEW HEAR& BEFORE THE COMMITTEE ON AERONAUTICAL AND SPACE SCIENCES UNITED STATES SENATE NINETY-FIRST CONGRESS SECOR’D SESSION JUR’E 30, 1970 Printed for the use of the Committee on Aeronautical and Space Sciences U.S. GOVERNMENT PRINTING OFFICE 47476 0 WASHINGTON : 1970 COMMITTEE ON AEROKAUTICAL AND SPACE SCIENCES CLINTON P. ANDERSON, New Mexico, Chairman RICHARD B. RUSSELL, Georgia MARGARET CHASE SMITH, Maine WARREN G. MAGNUSON, Washington CARL T. CURTIS, Nebraska STUART SYMINGTON, bfissouri MARK 0. HATFIELD, Oregon JOHN STENNIS, Mississippi BARRY GOLDWATER, Arizona STEPHEN M.YOUNG, Ohio WILLIAM B. SAXBE, Ohio THOJfAS J. DODD, Connecticut RALPH T. SMITH, Illinois HOWARD W. CANNON, Nevada SPESSARD L. HOLLAND, Florida J4MES J. GEHRIG,Stad Director EVERARDH. SMITH, Jr., Professional staffMember Dr. GLENP. WILSOS,Professional #tad Member CRAIGVOORHEES, Professional Staff Nember WILLIAMPARKER, Professional Staff Member SAMBOUCHARD, Assistant Chief Clerk DONALDH. BRESNAS,Research Assistant (11) CONTENTS Tuesday, June 30, 1970 : Page Opening statement by the chairman, Senator Clinton P. Anderson-__- 1 Review Board Findings, Determinations and Recommendations-----_ 2 Testimony of- Dr. Thomas 0. Paine, Administrator of NASA, accompanied by Edgar M. Cortright, Director, Langley Research Center and Chairman of the dpollo 13 Review Board ; Dr. Charles D. Har- rington, Chairman, Aerospace Safety Advisory Panel ; Dr. Dale D. Myers, Associate Administrator for Manned Space Flight, and Dr. Rocco A. Petrone, hpollo Director -___________ 21, 30 Edgar 11. Cortright, Chairman, hpollo 13 Review Board-------- 21,27 Dr. Dale D. Mvers. Associate Administrator for Manned SDace 68 69 105 109 LIST OF ILLUSTRATIOSS 1. Internal coinponents of oxygen tank So. 2 ---_____-_________________ 22 2.
    [Show full text]
  • Space Biology Research and Biosensor Technologies: Past, Present, and Future †
    biosensors Perspective Space Biology Research and Biosensor Technologies: Past, Present, and Future † Ada Kanapskyte 1,2, Elizabeth M. Hawkins 1,3,4, Lauren C. Liddell 5,6, Shilpa R. Bhardwaj 5,7, Diana Gentry 5 and Sergio R. Santa Maria 5,8,* 1 Space Life Sciences Training Program, NASA Ames Research Center, Moffett Field, CA 94035, USA; [email protected] (A.K.); [email protected] (E.M.H.) 2 Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, USA 3 KBR Wyle, Moffett Field, CA 94035, USA 4 Mammoth Biosciences, Inc., South San Francisco, CA 94080, USA 5 NASA Ames Research Center, Moffett Field, CA 94035, USA; [email protected] (L.C.L.); [email protected] (S.R.B.); [email protected] (D.G.) 6 Logyx, LLC, Mountain View, CA 94043, USA 7 The Bionetics Corporation, Yorktown, VA 23693, USA 8 COSMIAC Research Institute, University of New Mexico, Albuquerque, NM 87131, USA * Correspondence: [email protected]; Tel.: +1-650-604-1411 † Presented at the 1st International Electronic Conference on Biosensors, 2–17 November 2020; Available online: https://iecb2020.sciforum.net/. Abstract: In light of future missions beyond low Earth orbit (LEO) and the potential establishment of bases on the Moon and Mars, the effects of the deep space environment on biology need to be examined in order to develop protective countermeasures. Although many biological experiments have been performed in space since the 1960s, most have occurred in LEO and for only short periods of time. These LEO missions have studied many biological phenomena in a variety of model organisms, and have utilized a broad range of technologies.
    [Show full text]
  • SKYLAB: a PROGRESS REPORT Abstract. the Skylab Apollo
    SKYLAB: A PROGRESS REPORT R. M. MacQUEEN High Altitude Observatory, National Center for Atmospheric Research*, Boulder, Colo., U.S.A. (Presented by G. Newkirk) Abstract. The Skylab Apollo Telescope. Mount contains six principal instruments spanning the X-ray to visible wavelength range. These experiments include an exter­ nally occulted white light coronagraph from the High Altitude Observatory which observes the outer solar corona from 1.5 to 6.0 radii from Sun center, in broadband (3500-7000 A) white light with approximately 10" spatial resolution. An X-ray spectrographic telescope of the American Science and Engineering, Inc. employs six filters and an objective grating to observe a 48' field of view in the wavelength range 3.5-6.0 A, with approximately 3" spatial resolution. A scanning ultraviolet poly- chromator, spectroheliometer of the Harvard College Observatory is capable of observing 1.2 A spectral resolution from 300-1350 A with a 7 detector array. The field of view of the instrument is determined by its operational mode and ranges from 5' x 5' to 5" x 5". An X-ray telescope from the Marshall Space Flight Center employs five metal filters to observe the 5-33 A spectral region with 2.5" spatial resolution over the 40' field of view. The Naval Research Laboratory has supplied two instruments: the first, an XUV spectroheliograph, covers wavelength regions 150-335 A and 321-625 A, with somewhat better than 5" spatial resolution and a spectral resolution of 0.13 A (for a 10" feature). The second instrument, a slit spectrograph, covers the spectral range 970-3940 A in two bands, 970-1970 and 1940-3940, and has 0.5 and 0.1 A spectral resolution respectively, with a 2" x 60" slit.
    [Show full text]
  • Celebrate Apollo
    National Aeronautics and Space Administration Celebrate Apollo Exploring The Moon, Discovering Earth “…We go into space because whatever mankind must undertake, free men must fully share. … I believe that this nation should commit itself to achieving the goal before this decade is out, of landing a man on the moon and returning him safely to Earth. No single space project in this period will be more exciting, or more impressive to mankind, or more important for the long-range exploration of space; and none will be so difficult or expensive to accomplish …” President John F. Kennedy May 25, 1961 Celebrate Apollo Exploring The Moon, Discovering Earth Less than five months into his new administration, on May 25, 1961, President John F. Kennedy, announced the dramatic and ambitious goal of sending an American safely to the moon before the end of the decade. Coming just three weeks after Mercury astronaut Alan Shepard became the first American in space, Kennedy’s bold challenge that historic spring day set the nation on a journey unparalleled in human history. Just eight years later, on July 20, 1969, Apollo 11 commander Neil Armstrong stepped out of the lunar module, taking “one small step” in the Sea of Tranquility, thus achieving “one giant leap for mankind,” and demonstrating to the world that the collective will of the nation was strong enough to overcome any obstacle. It was an achievement that would be repeated five other times between 1969 and 1972. By the time the Apollo 17 mission ended, 12 astronauts had explored the surface of the moon, and the collective contributions of hundreds of thousands of engineers, scientists, astronauts and employees of NASA served to inspire our nation and the world.
    [Show full text]
  • VII Congress
    Association of Space Explorers 7th Planetary Congress Berlin, Germany 1991 Commemorative Poster Signature Key Viktor Afanasyev Vladimir Aksyonov Alexander Alexandrov (Bul.) Soyuz TM-11 Soyuz 22, Soyuz T-2 Soyuz TM-5 Joe Allen Alexander Balandin John-David Bartoe STS 5, STS 51A Soyuz TM-9 STS 51F Patrick Baudry Gerald Carr Robert Cenker STS 51G Skylab IV 7 STS 61C Jean-Loup Chretien Charles Conrad, Jr. Samuel Durrance Soyuz T-6, Soyuz TM-7 Gemini 5, Gemini 11 STS 35 Apollo 12, Skylab II Lev Dyomin John Fabian Bertalan Farkas Soyuz 15 STS 7, STS 51G Soyuz 36 Reinhard Furrer Drew Gaffney Viktor Gorbatko STS 61A STS 40 Soyuz 7, Soyuz 24, Soyuz 37 Georgi Grechko Miroslaw Hermaszewski Alexander Ivanchenkov Soyuz 17, Soyuz 26 Soyuz 30 Soyuz 29, Soyuz T-6 Soyuz T-14 Georgi Ivanov Yevgeni Khrunov Vladimir Kovolyonok Soyuz 33 Soyuz 5 Soyuz 25, Soyuz 29, Soyuz T-4 Alexei Leonov Don Lind James Lovell, Jr. Voskhod 2, Apollo-Soyuz STS 51B Gemini 7, Gemini 12 Apollo 8, Apollo 13 Vladimir Lyakhov Oleg Makarov Gennadi Manakov Soyuz 32, Soyuz T-9 Soyuz 12, Soyuz 27, Soyuz T-3 Soyuz TM-10 Soyuz TM-6 Musa Manarov Jon McBride Bruce McCandless II Soyuz TM-4, Soyuz TM-11 STS 41G STS 41B, STS 31 Ernst Messerschmid William Nelson Wubbo Ockels STS 61A STS 61C STS 61A Donald Peterson Leonid Popov Dumitru Prunariu STS 6 Soyuz 35, Soyuz 40, Soyuz T-7 Soyuz 40 Vladimir Remek Stuart Roosa Rusty Schweickart Soyuz 28 Apollo 14 Apollo 9 Vitali Sevastyonov Thomas Stafford Gennadi Strekalov Soyuz 9, Soyuz 18 Gemini 6, Gemini 9, Apollo 10 Soyuz T-3, Soyuz T-8 Apollo-Soyuz Soyuz TM-11 Valentina Tereshkova Lodewijk van den Berg Igor Volk Vostok 6 STS 51B Soyuz T-12 Charles Walker Donald Williams Boris Yegorov STS 41D, STS 51D, STS 61B STS 51D, STS 34 Voskhod 1 Vyacheslav Zhudov Soyuz 23 This poster commemorates the 7th Planetary Congress of the Association of Space Explorers (ASE).
    [Show full text]
  • Ublic Affairs Office Eorge C. Marshall Space Flight Center Tional
    ublic Affairs Office March 1, 1968 eorge C. Marshall Space Flight Center tional Aeronautics and Space Administration arshall Space Flight Center, Alabama Phone: 876-1102, 876 -1959 APOLLO TELESCOPE MOUNT \ -- Fact Sheet -- The Apollo Telescope Mount (ATM) is being developed to give space scientists a look at the sun's activity unencumbered by the fogging effects of the earth's atmosphere. The National Aeronautics and Space Administration plans to launch the first of its manned solar observatories, ATM-A, in 1971. The space agency is joined by the scientific community and industry in developing the highly sophisticated satellite. Five principal investigators, all experts in astronomy and solar physics, have designed five experiments for the first ATM flight. The eight instruments used in these five ATM experiments will obtain measurements of the sun in the extreme ultreme ultraviolet and X-ray portions of the electromagnetic spectrum which cannot penetrate the earth's atmosphere and obtain pictures of the sun's corona in the white light portion of the spectrum. Dr. George E. Mueller, NASA Associate Administrator for Manned Space Flight, has said the ATM "provides a new great capability for a variety of solar and stellar scientific experiments" to be performed above the atmosphere, where the sun and stars can be clearly observed without being obscured by the earth's AAP CLUSTER -- The Apollo Telescope Mount, shown at top, is one of the principal payloads in the first Apollo Applications flights. Other main elements are the Saturn I workshop, bottom, the airlock/multiple docking adapter and Apollo spacecraft. -2 - atmosphere. The first ATM, one of the early Apollo Applications missions, is a forerunner of more advanced manned solar and stellar observatories which will provide an increased data gathering capability for astronomers.
    [Show full text]
  • Spaceport News John F
    Aug. 9, 2013 Vol. 53, No. 16 Spaceport News John F. Kennedy Space Center - America’s gateway to the universe MAVEN arrives, Mars next stop Astronauts By Steven Siceloff Spaceport News gather for AVEN’s approach to Mars studies will be Skylab’s Mquite different from that taken by recent probes dispatched to the Red Planet. 40th gala Instead of rolling about on the By Bob Granath surface looking for clues to Spaceport News the planet’s hidden heritage, MAVEN will orbit high above n July 27, the Astronaut the surface so it can sample the Scholarship Foundation upper atmosphere for signs of Ohosted a dinner at the what changed over the eons and Kennedy Space Center’s Apollo/ why. Saturn V Facility celebrating the The mission will be the first 40th anniversary of Skylab. The of its kind and calls for instru- gala featured many of the astro- ments that can pinpoint trace nauts who flew the missions to amounts of chemicals high America’s first space station. above Mars. The results are Six Skylab astronauts partici- expected to let scientists test pated in a panel discussion dur- theories that the sun’s energy ing the event, and spoke about slowly eroded nitrogen, carbon living and conducting ground- dioxide and water from the Mar- breaking scientific experiments tian atmosphere to leave it the aboard the orbiting outpost. dry, desolate world seen today. Launched unpiloted on May “Scientists believe the planet 14, 1973, Skylab was a complex CLICK ON PHOTO NASA/Tim Jacobs orbiting scientific laboratory. has evolved significantly over NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft rests on a processing the past 4.5 billion years,” said stand inside Kennedy’s Payload Hazardous Servicing Facility Aug.
    [Show full text]