('MP') Is Working to Restore the Full Rare Earth Supply C

Total Page:16

File Type:pdf, Size:1020Kb

('MP') Is Working to Restore the Full Rare Earth Supply C Investment Profile About MP Materials Producer of rare earth elements in MP Materials’ (‘MP’) is working to restore the full rare earth supply concentrate Headquartered in Las Vegas, Nevada chain to the US. The company acquired the closed Mountain Pass mine Share price – 22 February 2021 US$40.92 in California in 2017. Mountain Pass is a high quality bastnaesite deposit Primary listing NYSE that was the leading source of rare earth minerals from 1952 until it was Fully diluted shares in issue 155.9m closed in the 1990s. Since the acquisition, MP has completed Stage 1 of Market Capitalization US$6.3bn 12-month low US$15.00 its business plan to recommission the mine. It now produces about 15% 12-month high US$46.84 of global supply of rare earth minerals in the form of concentrate. The Cash US$513m ~38,000t/yr of rare earth concentrate produced by MP is currently sold Debt US$6m to customers in China to be refined further. 1 Year Price Chart MP is now implementing a Stage 2 project that will see the company resume onsite processing of this rare earth oxide concentrate into NdPr oxide (Neodymium Praseodymium) from 2022 at an estimated capital cost of $170m. The company has been awarded $9.6m by the US Department of Defense to help optimize the Stage 2 projects’ processing of separated light rare earth elements. NdPr is the key ingredient in permanent magnets used in low carbon economy applications like electric vehicle motors and wind turbines. MP estimates an annual production rate of around 6,075t/yr of Board & management James Litinsky Chairman & CEO separated NdPr oxides (as part of ~20,000t/yr of total refined rare earth Michael Rosenthal COO oxides produced). Ryan Corbett CFO Sheila Bangalore CSO & Legal A potential Stage 3 project to “buy, build and/or JV” downstream and produce NdPr magnets themselves from 2025+ is being considered. Top Shareholders NdPr magnet demand is expected to more than double from 2020 to JHL Capital Group 2030i on the back of strong growth in electric vehicle production and QVT Financial James Litinsky investment in wind electricity generation – that has increased from just ii Fortress Acquisition Sponsor 6 billion kWh in 2000 to 300 billion kWh in 2019 . Alyeska Investment Group In November 2020, the company raised US$545m through a business Next Events combination with Fortress Value Acquisition Corp, a special purpose Q4 results announcement 18 March 2021 acquisition company, to fully fund this three-stage business plan. Stage 2 production commences by end-2022 MP prides itself its environmental sustainability and has invested to reduce the impact of its operations through action like its dry-stacked Peer Group tailing operations and near closed-loop milling and beneficiation Lynas Rare Element Resources processes that reduce freshwater requirements. Texas Mineral Resources Ucore Rare Earth Analyst View Analyst MP Materials is the only large-scale US resource of rare earth elements. Greg Maud +1 (303) 358-2566 The company is capitalizing on its unique position to develop as an integrated domestic rare earths producer and is well placed to secure a strong position in this growing market. Independent Investment Research 1 Strengths ! MP has a strong balance sheet with US$513m in cash and only $6m in debtiii. The company is cash flow positive todayiv and believes that it can fund all current projects through to final investment decision and into construction without needing to raise additional capital. ! The company is uniquely positioned with few competing non-Chinese rare earth element producers – and none at the same scale. The Mountain Pass resource is high grade (327,000 short tons of proven reserves at >8% ore grade) and has an expected life-of-mine of 24 years. The ore body also has relatively low levels of radioactive thorium and uranium contaminants. ! MP’s integrated site offers cost and efficiency benefits. Mountain Pass is the only producer globally with mining and processing operations co-located on the same site. ! The company has scaled up production to be able to achieve benefits of scale and lower unit costs. ! Some $1.7bn was sunk into the Mountain Pass’ development since 2010 - mostly by previous owners. This is a significant barrier to entry for potential new entrants. Weaknesses ! While the leadership team at MP has impressive credentials, in particular in investments and financial services, there is a lack of mining and operations experience. The team’s ability to develop and operate assets such as Mountain Pass is relatively unproven. ! Molycorp, the company that operated Mountain Pass from 2008 until it filed for Chapter 11 bankruptcy in June 2015, invested significantly to build a new ore processing plant believing that it could be competitive with Chinese producersv. Ultimately that technology did not live up to expectations which contributed significantly to Molycorp’s downfall. While MP is investing to modify that processing plant, the processing technology remains unproven at a commercial scale. Opportunities ! MP is delivering into a growing market, which expected to grow strongly on the back of increasing demand in electric vehicles, wind turbines and mobile devices. ! The company is moving downstream as part of their Stage 2 project to produce separated rare earth products, including NdPr oxide, cerium and lanthanum from 2022. MP is also considering a later (2025 or beyond) Stage 3 project that could see the company start to produce NdPr magnets. Moving downstream will allow MP to capture a larger portion of the value chain, reduce input cost volatility and enhance stability of margin. ! Being able to offer a fully domestic source of rare earth oxides, and ultimately magnets themselves, will position the company well to serve the domestic US market that has grown increasingly wary of China as the single source of supply. ! Sustainability is increasingly becoming a competitive differentiator. MP has invested to ensure that their mining and processing operations operate to high standard of sustainability, including: o Closed-loop flotation process that allows the company to recycle 95% of water used o Single-site integrated operation enabling safe disposal of mineral byproducts at point of origin o Low-impact dry-stacked tailings ! The US government’s strategy to ensure safe and reliable supplies of critical minerals has resulted in the Department of Defense announcing contract and agreements with several rare-earth element producers, including MPvi. The company signed a $9.6m Technology Investment Agreement with the Department of Defense to support its Stage 2 capabilities and is likely to receive ongoing support as the US government seeks to reduce reliance on imported critical minerals. Independent Investment Research 2 Threats ! Mountain Pass has a checkered history. After decades of being the leading supplier of rare earth elements globally, production the operation closed in 2002 on the back of increased competition from Chinese suppliers. The operation was recapitalized, and mining operations started again in 2012 under Molycorp Minerals – only to file for Chapter 11 bankruptcy three years later. MP’s leadership team has its work cut out to ensure that Mountain Pass’ operations can be competitive against established Chinese producers. ! Under the current Stage 1 operations, the company produces rare earth concentrate that is sent to China to be processed further. Until such time as the processing operations in Stage 2 are commissioned, MP will be reliant on these companies to refine their product as well as being exposed to national trade policies. Until May 2020 China charged an import tariff (up to 25%) on imported rare earth elements. China has since dropped this tariff, but the company will remain exposed to this risk until its downstream processing facilities are operational. With its dominant position in processed rare earth minerals, China has the potential to be able to restrict exports (as it did to Japan in 2010) and manipulate prices. Independent Investment Research 3 Disclaimer The information, reports, financial models, forecasts, strategies, audio broadcasts and other media (referred to as “Content” throughout this Notice), provided has been prepared and issued by IIR services LLC trading as Independent Investment Research “IIR”. IIR is a Colorado registered investment adviser CRD 299837 and it offers research to retail and wholesale clients. Users of Content should not act on any Content without first seeking professional advice. While written Content has been prepared with reasonable care from sources which IIR believes are reliable, no responsibility or liability is accepted by IIR, for any errors or omissions or misstatements however caused. Any opinions, forecasts or recommendations reflect IIR’s judgment and assumptions at the date of publication or broadcast and may change without notice. Content is not and should not be construed as an offer to sell or the solicitation of an offer to purchase or subscribe for any securities. We are not aware that any user intends to rely on the Content provided or of the manner in which a user intends to use it. In preparing the Content it is not possible to take into consideration the investment objectives, financial situation or particular needs of any individual user. Access to Content does not create a client relationship between IIR and the user. Users seeking investment advice must obtain individual financial advice to determine whether recommendations are appropriate to their investment objectives, personal financial situation or particular needs, before acting on any Content. Any Content is not for public circulation or reproduction, whether in whole or in part, and is not to be disclosed to any person other than the intended user, without the prior written consent of IIR. General IIR, its officers, employees, consultants and its related entities have not and will not receive, whether directly or indirectly: any commission; fee; benefit; or advantage, whether pecuniary or otherwise, in connection with providing Content other than fees received for producing research.
Recommended publications
  • Preliminary Estimates of the Quantities of Rare-Earth Elements Contained in Selected Products and in Imports of Semimanufactured Products to the United States, 2010
    Preliminary Estimates of the Quantities of Rare-Earth Elements Contained in Selected Products and in Imports of Semimanufactured Products to the United States, 2010 By Donald I. Bleiwas and Joseph Gambogi Open-File Report 2013–1072 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order other USGS information products, visit http://store.usgs.gov Suggested citation: Bleiwas, D.I., and Gambogi, Joseph, 2013, Preliminary estimates of the quantities of rare-earth elements contained in selected products and in imports of semimanufactured products to the United States, 2010: U.S. Geological Survey Open–File Report 2013–1072, 14 p., http://pubs.usgs.gov/of/2013/1072/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Cover. Left: Aerial photograph of Molycorp, Inc.’s Mountain Pass rare-earth oxide mining and processing facilities in Mountain Pass, California.
    [Show full text]
  • Transmittal of Draft EIR for Molycorp Mountain Pass Mine Expansion, for Review and Comment
    COUNTY OF SAN BERNARDINO PLANNING DEPARTMENT I,regular-! I PUBLIC WORKS GROUP -- W&- Sw1. NENNO lorth Arrowhead Avenue * San Bernardino, CA 924154182 * (909) 3874131 VALERY PILMER Director of Planning December 9, 1996No. 909) 3873223 IY RESPONSIBLE AND TRUSTEE AGENCIES INTERESTED ORGANIZATIONS AND INDIVIDUALS RE: NOTICE OF AVAILABILITY FOR THE DRAFT EIR ON THE MOLYCORP MOUNTAIN PASS MINE EXPANSION Dear Reader/Reviewer: Enclosed for your review and comment is the Draft EIR for the Molycorp Mountain Pass Mine Expansion. The purpose of the document is to identify and describe the probable environmental impacts that would result from the proposed expansion of Molycorp's existing mine and processing plant complex located at Mountain Pass, California. Mountain Pass is within the unincorporated portion San Bernardino County along Interstate 15 approximately 30 miles northeast of Baker and approximately 14 miles southwest of the Nevada stateline. The proposed quarry and waste rock areas would add 696 acres of disturbance to the existing mine site, resulting in a total disturbed area of approximately 1,044 acres. sag_> This document has been prepared to meet the State requirements of the California Environmental Quality Act. The Draft EIR has been prepared under the supervision of the County of San Bernardino Planning Department. The public comment period will end on January 27, 1997. Written comments should be addressed to: County of San Bemnardino- Planning Dgparnn 385 N. Arrowhead Avenue, Third Floor San Bernardino, CA 92415-0182 Attn: Randy Scott Sincerely, Randy Scottjlanning Manager, San Berardo County Planning Department ~-! - nLA ,;;K Scr.'Eperviscs .,* 1:,. 3 - -, I- . 1 12 4~ ..!A','V34-' TUrCCI Vi~i D;s~ri:n, BARBA~RA CPANM FURtOPAN .
    [Show full text]
  • Producers Case Study the Changing
    Producers Case Study The Changing Geography of Rare Earth Element Production Introduction The locations where rare earth elements are produced changed repeatedly throughout the 1900s and early 2000s. This variation suggests that production is not determined primarily by the geographic location of rare earth ores. Instead, the location of mines and separation plants is driven by a combination of market prices, government policies, and the actions of producers and manufacturers. As a result where and how rare earth elements are produced could change in the future. Initial Rare Earth Metal Production Although a mineral containing rare earth elements was identified in Sweden in 1788, it took more than 100 years for the first significant industrial product to be made using the rare earths. In the 1890s chemist Carl Auer von Welsbach developed a mantle made of a mixture of 99% thorium and 1% cerium for use with gas streetlights. More than five billion mantles were sold worldwide through the 1930s. Welsbach also developed mischmetal, a mixture of rare earth elements cerium, lanthanum, neodymium, and praseodymium. When alloyed with iron, mischmetal produced a metal that sparked when struck. It was widely used in pocket cigarette lighters as well as automobile ignition switches. The Welsbach Company mined rare earth deposits located in coastal sands in Brazil, India, and North Carolina. India’s coastal sands are also rich in the radioactive element thorium, which is not a rare earth element. India banned the export of these sands in 1948 to preserve its thorium supply for a potential nuclear energy program. At that time the price of rare earth metals spiked until newly established mining locations briefly made South Africa the world’s leading exporter of rare earth ores in the 1950s.
    [Show full text]
  • Critical Materials and US Import Reliance
    Testimony Critical Materials and U.S. Import Reliance Recent Developments and Recommended Actions Richard Silberglitt CT-485 Testimony presented before House Natural Resources Committee, Subcommittee on Energy and Mineral Resources on December 12, 2017. For more information on this publication, visit www.rand.org/pubs/testimonies/CT485.html Testimonies RAND testimonies record testimony presented or submitted by RAND associates to federal, state, or local legislative committees; government-appointed commissions and panels; and private review and oversight bodies. Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2017 RAND Corporation is a registered trademark. Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions.html. www.rand.org Critical Materials and U.S. Import Reliance: Recent Developments and Recommended Actions Testimony of Richard Silberglitt1 The RAND Corporation2 Before the Committee on Natural Resources Subcommittee on Energy and Mineral Resources United States House of Representatives December 12, 2017 hank you Chairman Gosar, Ranking Member Lowenthal, and distinguished members of the Subcommittee for inviting me to testify today. My testimony is based on the results of a 2013 study conducted by the RAND Corporation at the request of the National T 3 Intelligence Council, taking into account relevant developments and data since the publication of that report.
    [Show full text]
  • Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective
    The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective Gd Pr Ce Sm La Nd Scientific Investigations Report 2010–5220 U.S. Department of the Interior U.S. Geological Survey Cover photo: Powders of six rare earth elements oxides. Photograph by Peggy Greb, Agricultural Research Center of United States Department of Agriculture. The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective By Keith R. Long, Bradley S. Van Gosen, Nora K. Foley, and Daniel Cordier Scientific Investigations Report 2010–5220 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This report has not been reviewed for stratigraphic nomenclature. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Suggested citation: Long, K.R., Van Gosen, B.S., Foley, N.K., and Cordier, Daniel, 2010, The principal rare earth elements deposits of the United States—A summary of domestic deposits and a global perspective: U.S.
    [Show full text]
  • Regulation of Source Material
    STATE OF CALIFORNIA--HEALTH AND HUMAN SERVICES AGENCY GRAY DAVIS, Governor DEPARTMENT OF HEALTH SERVICES RADIOLOGIC HEALTH BRANCH P.O. BOX 942732, MS-178 SACRAMENTO, CA 94234-7320 (916) 445-0931 August 30, 2001 t-4 Mr. Paul Lohaus U.S. Nuclear Regulatory Commission Office of State and Tribal Programs _ -o Washington, D.C. 20555 SUBJECT: REGULATION OF SOURCE MATERIAL Dear Mr. Lohaus: The State of California, Department of Health Services, Radiologic Health Branch (RHB) has recently been working to license Molycorp, Inc.'s operations in Mountain Pass, CA, as they relate to the possession and use of source material. Molycorp mines and processes rare-earth ores containing less than 0.05% source material at their facility, producing refined rare-earth compounds containing greater than 0.05% source material that are purchased by others for further processing or for incorporation into finished commercial products. Several issues have arisen related to the regulation of source material at this facility. We are contacting you for an interpretation of NRC regulations as they would apply to this material. Our questions relate primarily to issues concerning those exemptions contained in 10 CFR 40.13 for source material that is less than 0.05% by weight uranium or thorium and for rare-earth metals and compounds, mixtures and products containing not more than 0.25% by weight uranium and thorium. Our concerns involve both the regulation of active licenses and the decommissioning of sites contaminated by the materials referenced above. Thus, we are also seeking an interpretation of your regulations in 10 CFR 20, Subpart E, as they relate to decommissionings.
    [Show full text]
  • A Historical Geography of Rare Earth Elements: from Discovery to the Atomic Age
    The Extractive Industries and Society 2 (2015) 572–580 Contents lists available at ScienceDirect The Extractive Industries and Society journal homepage: www.elsevier.com/locate/exis Review article A historical geography of rare earth elements: From discovery to the atomic age Julie Michelle Klinger* Frederick S. Pardee School of Global Studies, Boston University, United States ARTICLE INFO ABSTRACT Article history: This article presents a historical geography of rare earth elements from their discovery to the atomic age Received 16 January 2015 with a focus on the period between 1880 and 1960 in order to lend greater depth to the growing body of Received in revised form 19 May 2015 scholarship on the relationship between rare earth elements and global political change. Drawing on Available online 7 July 2015 archival and field research undertaken in the United States, China, Brazil, and Germany between 2011 and 2014, this article advances the following argument. Rare earth elements, and the production of geological Keywords: knowledge about them, have entangled with contentious politics since their first industrial applications Rare earth elements in the late 19th century. The historical geography of rare earth exploration and extraction is defined by a Historical geography fundamental tension between the military-industrial necessity of these elements and the hazards Geology fi Politics associated with their production. This tension played a de nitive role in international colonial, Cold War, Cold war and atomic politics. ã 2015 Elsevier Ltd. All rights reserved. Contents 1. Introduction . ................................................................................................... 572 2. Discovery and classification .......................................................................................... 573 3. Geology, territory, and power . ..................................................................................... 573 4. The political life of rare earth elements ...............................................................................
    [Show full text]
  • Oregon DEQ Briefing Paper: Rare Earth Elements
    Briefing Paper: Rare Earth Elements Oct. 4, 2011 Primary Author: Barb Puchy Executive Summary This paper describes rare earth elements - their composition, qualities and uses – and how these difficult-to-extract elements play a role in the global material management system. It describes how these elements may become more critical in the future for the military and for technologies including hybrid cars, wind turbines, cell phones and spy planes. This paper looks at the environmental consequences of using rare earth minerals, their limited availability, and how reusing and recycling these elements can be part of a more sustainable worldwide system. Rare earth elements include 17 chemical elements that are not really “rare” but are actually relatively abundant in the Earth’s crust. However, they seldom exist in pure form and are rarely in concentrated minable deposits, making them costly to extract. They include lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (the lanthanide elements on periodic table). Yttrium and scandium are also often considered rare earth elements since they tend to occur in the same ore deposits as the lanthanides and exhibit similar chemical properties. These rare earth elements’ unique properties have led to an ever-increasing variety of applications. These include uses in major industries such as automotive, medical, defense, technology/computers and clean energy, as well as use in hybrid cars and wind turbines. Because of widespread use of these elements in technology, particularly by the military, the U.S. is examining domestic deposits with renewed interest and funding. Currently, about 97 percent of the world supply of rare earth elements comes from China.
    [Show full text]
  • The Rare Earths I
    The Mountain Pass rare earth ore body in Southern California, 86 km (54 mi) south-southwest of LasLas Vegas,Vegas, Nevada,Nevada, isis oneone ofof thethe largest,largest, richest,richest, andand mostmost readilyreadily mineablemineable rarerare earthearth depositsdeposits inin thethe worldworld (N35°(N35° 28.7428.74 W115°W115° 31.98).31.98). ItsIts provenproven andand probableprobable reservesreserves exceedexceed 1.31.3 millionmillion metricmetric tonstons ofof rarerare earthearth oxideoxide (REO)(REO) equivalentequivalent containedcontained inin 18.418.4 millionmillion metricmetric tonstons ofof oreore withwith ~8%~8% ore grade and a 5% cut-off grade. ItIt containscontains allall ofof thethe naturallynaturally occurringoccurring rarerare earthearth elements.elements. Photo,Photo, courtesycourtesy ofof Molycorp,Molycorp, Inc.Inc. Rediscovery ...pg 40 2016 Solicitation...pg 52 2015 Awards . ..pg 54 Collegiate News ...pg 57 FALL 2015 THE Rediscovering The Rare Earths A new series starts on page 40. Redis co very of the Elements The Rare Earth s–The Beginnings I I I James L. Marshall, Beta Eta 1971 , and Virginia R. Marshall, Beta Eta 2003 , Department of Chemistry, University of North Texas, Denton, TX 76203-5070, [email protected] 1 Rare earths —introduction. The rare earths Figure 1. The “rare earths” are defined by IUPAC as the 15 lanthanides (green) and the upper two elements include the 17 chemically similar elements of the Group III family (yellow). These elements have similar chemical properties and all can exhibit the +3 occupying the f-block of the Periodic Table as oxidation state by the loss of the highest three electrons (two s electrons and either a d or an f electron, well as the Group III chemical family (Figure 1).
    [Show full text]
  • WMF2019-PS1-MP-Mater
    Presentation to the World Materials Forum Selected Slides JuneOctober 13, 2019 17, 2015 Disclaimer The information contained in this Presentation (the “Presentation”) is being provided solely for information relating to MP Mine Operations LLC (“MP Materials”) and/or Secure Natural Resources LLC (“SNR”). This Presentation is not intended to constitute an offer or commitment in relation to any such opportunity. This Presentation does not purport to contain all of the information that may be required to evaluate all of the factors that would be relevant to a recipient considering an investment opportunity, and any recipient hereof should conduct its own investigation and analysis. Moreover, the information contained in this Presentation is subject to change without notice. This Presentation does not constitute investment, legal, tax or other advice, and does not take into consideration the investment objectives, financial situation or particular needs of any particular investor. None of MP Materials, SNR, or any of their respective affiliates, members, directors, officers or representatives makes any representation or warranty, express or implied, as to the accuracy or completeness of the information contained in this Presentation or any other written or oral communication transmitted or made available to any recipient. MP Materials, SNR, and their respective affiliates, members, directors, officers and representatives expressly disclaim any and all liability based, in whole or in part, on such information, errors therein or omissions therefrom. In addition, this Presentation includes certain projections and forward-looking statements provided by MP Materials and/or SNR with respect to future events and the anticipated future performance of MP Materials and/or SNR.
    [Show full text]
  • Investigating Rare Earth Element Mine Development in EPA Region 8 and Potential Environmental Impacts
    1 Investigating Rare Earth Element Mine Development in EPA Region 8 and Potential Environmental Impacts Justin Paul Greater Research Opportunity Fellow Gwenette Campbell Region 8 Mining Team Coordinator Additional review by Region 8 Mining Team Members August 15, 2011 EPA Document-908R11003 2 Report Index 1.0 Abstract………………………………………………………………………………3 2.0 Background …………………………………………………………………………3 2.1 Defining Rare Earth Elements………………………………………………3 2.2 Defining Key and Critical Materials……………………………………...…4 2.3 Uses…………………………………………………………………………..4 2.4 Supply………………………………………………………………………...5 3.0 Active Exploration and Deposits in Region 8……………………………………..6 3.1 Bear Lodge………………………………………………………………….7 3.2 Iron Hill……………………………………………………………………..9 3.3 Wet Mountains……………………………………………………………...9 3.4 Lemhi Pass……………………………………………………………….…10 3.5 Sheep Creek………………………………………………………………...10 4.0 Mining and Refining Processes…………………………………………..…….…11 5.0 Geochemistry and Possible Contaminants………………………………………..12 6.0 Potential Risks to Human Health and the Environment………………………....14 6.1 China…………………………………………………………………….….14 6.2 Radionuclides……………………………………………………………….15 6.3 Rare Earth Elements……………………………………………………….15 6.4 Metals………………………………………………………………………15 6.5 Mountain Pass Legacy……………………………………………………..18 6.6 Bear Lodge Case Study…………………………………………………….18 7.0 Conclusions……………………………………………………………………….20 8.0 References...………………………………………………………………………22 9.0 Appendix………………………………………………………………………….24 3 1.0 Abstract Even though most people have not heard of rare earth elements, they govern man kind’s modern lifestyle. The 17 periodic elements receiving rare earth designation encompass nearly all electronic, clean energy, and military technologies due to their unique physical and chemical properties. Despite world-wide usage of these elements, China succeeded in monopolizing the rare earth element industry two decades ago. Use of these elements has risen exponentially, while China has slashed rare earth element exports driving prices to record highs.
    [Show full text]
  • Ultrapotassic Mafic Dikes and Rare Earth Element-And Barium-Rich Carbonatite at Mountain Pass, Mojave Desert, Southern California: Summary and Field Trip Localities
    Ultrapotassic Mac Dikes and Rare Earth Element- and Barium-Rich Carbonatite at Mountain Pass, Mojave Desert, Southern California: Summary and Field Trip Localities by Gordon B. Haxel Schematic representation of the probability density function for one of the f orbitals. Progressive lling of the 4f orbitals characterizes the fteen lanthanide (rare earth) elements, lanthanum through lutetium. Open-File Report 2005-1219 2005 Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Ultrapotassic Mafic Dikes and Rare Earth Element- and Barium-Rich Carbonatite at Mountain Pass, Mojave Desert, Southern California: Summary and Field Trip Localities Gordon B. Haxel Rare Earth Element Resource Specialist U.S. Geological Survey 2255 N. Gemini Dr. Flagstaff, Arizona 86001 The Mountain Pass Rare Earth Element District Mountain Pass, California is famous for its world-class rare earth element deposit, hosted by a compositionally unique carbonatite stock (Olsen and others, 1954; DeWitt, 1987; Castor, 1990, 1991, 1994; Haxel, in press 1). This carbonatite contains extraordinary large concentrations of the lighter rare earth elements (La – Gd) and Ba, and is one of the most compositionally extreme, even bizarre, igneous rocks known on Earth. Mountain Pass also features a remarkable suite of silicate alkaline igneous rocks, distinguished by their ultrapotassic character and exceptionally high abundances of rare earth elements, F, Th, and large-ion-lithophile elements (K, Ba, Rb, Cs). Of particular interest are certain phlogopite shonkinite (melanosyenite) dikes that evidently represent the primary, parental silicate magmas at Mountain Pass.
    [Show full text]