Using JAXA's Space Science Data for Education and Public Outreach

Total Page:16

File Type:pdf, Size:1020Kb

Using JAXA's Space Science Data for Education and Public Outreach Proc. of the GHOU 2007 in Tokyo Using JAXA's Space Science Data for Education and Public Outreach *1 Ken EBISAWA JAXA (Japan Aerospace Exploration Agency) is Japan's sole space organization, which is launching space science missions such as astronomical satellites, lunar and planetary missions and solar-terrestrial physics satellites, as well as practical missions such as whether satellites and communication satellites. I will introduce JAXA's space satellite missions and data, and our efforts to utilize these data for education and public outreach purposes. 1. Introduction Currently, JAXA's three astronomical satellites, Suzaku (X-rays), Akari (infrared) and Hinode (Solar), are operational, and continuously taking superior data in each field of astronomy. Furthermore, Hayabusa, an asteroid sample return mission, has produced excellent images of the asteroid Itokawa. The SELENE lunar orbiter, named “Kaguya” after the launch on Sep 14, 2007, is going to provide the most complete lunar reconnaissance data as well. Most of these data taken by JAXA satellites will become public after short proprietary periods, and be freely used not only for scientific researches but also for educational purposes and public outreach. Fig.1. Omnibus of Hinode and Suzaku archival data We are maintaining the JAXA’s space science at DARTS. Taken from “DARTS of the month” in archives named DARTS (Data ARchives and June, 07;http://darts.isas.jaxa.jp/month/200706.html. Transmission System; http://darts.isas.jaxa.jp), which myself am an X-ray astronomer. X-ray satellite keeps most extensive Japanese scientific satellite date, from educational point of view, have the database (Fig.1). DARTS’s prime purpose is to serve following characteristics: (1) Almost all the X-ray professional space scientists all over the world, but it astronomical satellite data are archived. Usually, may be used by educators and/or students. after one-year proprietary period, data are put in the Since DARTS is designed for professional archives, and everybody may freely use them. (2) scientist, significant efforts are required to make Data are highly processed. Users do not need to these data reachable to teachers and students, and to calibrate or reduce the data, but they can maximally utilize these precious data for education. immediately start data “analysis” (Fig.2). (3) X-ray We have a plan to start such systematic efforts in astronomy is a scientific field Japan is particularly collaboration with JAXA’s scientists and educators. strong at. Japan has been launching five X-ray satellites, and there are more than 100 professional 2. Using X-ray Data in Education Japanese X-ray astronomers, who are diversely distributed at universities or institutes all over Japan. As an example, I will present some ideas to I present two examples of the lesson plans using utilize X-ray satellite data for education, since I X-ray data in the following. *1 Center for Planning and Information Systems (PLAIN Timing analysis of Crab pulsar: center), Institute of Space and Astronautical Science Since X-ray photon can be counted by detectors (ISAS), Japan Aerospace eXploration Agency one-by-one, we will have “an X-ray event file” when (JAXA), [email protected] 1 © 2007, Japan Association for Hands-On Universe Proc. of the GHOU 2007 in Tokyo photon events are recorded. For each X-ray event, the photon arrival time is recorded with an accuracy of up to microseconds. For fast-rotating pulsars, such as Crab pulsar (P~30msec), the pulsation can be readily seen from the list of photon arrival time. If you see the raw light curve by naked eye, you may not notice the pulsation, since signal-to-noise ratio is too small. However, if you “fold” the light curve at the correct period of the pulsar (=put each photon in to the corresponding phase-bin), pulsation shall emerge. Such an analysis can be easily made using an EXEL-type spread-sheet. Thorough this lesson using real satellite data, students learn the concept of “phase” of pulsation/oscillation, and basic Fig.2. Explanation of the X-ray astronomical satellite statistics. data. Highly processed data are sent to guest users, Search for Black hole candidate on the Galactic so that they can start data “analysis” immediately, plane: not being worried about instrument calibration and The Ginga satellite, which was operational from data “reduction”. 1987 to 1991, carried out many Galactic scan observations to search for new X-ray sources. 3. Public Outreach using DARTS From the scan profile analysis with several different energy bands, Ginga could determine the accurate In DARTS, we have been developing systems position and approximate X-ray energy spectra of the which are useful for professional scientists to quickly new sources. For example, A new X-ray source browse a large amount of data, and are also easily was discovered in the Norma region on the Galactic used by ordinary people, in particular for science plane in 1988 April ([3]), which is considered to be lovers, to take a look at the latest satellite data. a black hole candidate because of its characteristic For example, beautiful solar pictures and movies X-ray energy spectrum. taken by the Yohkoh data (1991-2001) are found Most X-ray transient sources on the Galactic plane at http://darts.isas.jaxa.jp/solar/yohkoh/data.html. are either neutron star binaries or black hole binaries. Auroral movies taken by Akebono satellite are at One of the big differences is in their energy spectra. http://darts.isas.jaxa.jp/akbn/akebono/aurora. Using Since black holes are more massive than neutron JUDO (JAXA’s Universe Data Oriented; stars and their Schwarzschild radii are larger, the http://darts.isas.jaxa.jp/astro/judo), one can navigate black hole accretion disk inner-radii are also larger the universe using mouse by browsing the Suzaku than those of neutron stars. Consequently, disk X-ray color pictures. temperature is, in general, lower for black hole We have a plan to put explanations for ordinary candidates than neutron stars. people to understand the meaning of these satellite In this lesson plan, students are given the Ginga data. We would need to cooperate with schools or Galactic plane scan data and a dedicated program to educational institutes for this project. carry out the scan profile analysis. Students analyze the data, and find out position of the new source, and References its energy spectrum. If students compare the energy [1] Yamauchi, S. 2005, “An Ultrasoft Transient spectrum of the new black hole candidate and other X-ray Source in the Norma Region Discovered with neutron star sources that are simultaneously observed, Ginga”, Publication of the Astronomical Society they will understand the black hole energy spectrum Japan, 57, 465 has lower characteristic temperature. 2 © 2007, Japan Association for Hands-On Universe .
Recommended publications
  • Multiple Polar Cap Arcs: Akebono &Lpar;Exos D&Rpar; Observations
    Radio Science,Volume 31, Number 3, Pages645-653, May-June 1996 Multiple polar cap arcs: Akebono (Exos D) observations T. Obara, T. Mukai, H. Hayakawa, K. Tsuruda, A. Matsuoka, and A. Nishida Institute of Spaceand AstronauticalScience, Kanagawa, Japan H. Fukunishi Department of Geophysicsand Astrophysics,Tohoku University,Sendai, Japan Center for Atmosphericand SpaceSciences, Utah State University,Logan Abstract. Akebono (Exos D) observationsdemonstrate that polar cap arcssometimes have a fine structure,that is, multiple (doubleor triple) arcswith spacingof a few tens of kilometers.The multiplepolar cap arcsare dominantlyobserved in the nightsidepolar cap region, suggestingthat low backgroundconductance favors the appearanceof the structuredarcs. A relationshipbetween the spacingand the averageenergy of the precipitatingelectrons is investigated.Results show that a higher energyleads to a wider spacing.Akebono observationsalso showthe existenceof a downwardcurrent region embeddedbetween upward current regions (arcs). Comparison of the observationswith resultsfrom a coupledmagnetosphere-ionosphere Sun-aligned arc model is made, which showsgood qualitativeagreement between the modelingand observationalresults on the spacing-energydependence and the effect of backgroundionospheric conductance. Introduction dawn-to-duskcomponent of the electric field is the major contributorto the negativedivE. These results The electronsreaching low altitudes in the polar suggestthat localized electron precipitation in the cap region were categorized as "polar
    [Show full text]
  • II Publications, Presentations
    II Publications, Presentations 1. Refereed Publications Izumi, K., Kotake, K., Nakamura, K., Nishida, E., Obuchi, Y., Ohishi, N., Okada, N., Suzuki, R., Takahashi, R., Torii, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Y., Ueda, A., Yamazaki, T.: 2010, DECIGO and DECIGO Search for Gravitational-wave Inspiral Signals Associated with pathfinder, Class. Quantum Grav., 27, 084010. Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Aoki, K.: 2010, Broad Balmer-Line Absorption in SDSS Science Run, ApJ, 715, 1453-1461. J172341.10+555340.5, PASJ, 62, 1333. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, All- Aoki, K., Oyabu, S., Dunn, J. P., Arav, N., Edmonds, D., Korista sky search for gravitational-wave bursts in the first joint LIGO- K. T., Matsuhara, H., Toba, Y.: 2011, Outflow in Overlooked GEO-Virgo run, Phys. Rev. D, 81, 102001. Luminous Quasar: Subaru Observations of AKARI J1757+5907, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, PASJ, 63, S457. Search for gravitational waves from compact binary coalescence Aoki, W., Beers, T. C., Honda, S., Carollo, D.: 2010, Extreme in LIGO and Virgo data from S5 and VSR1, Phys. Rev. D, 82, Enhancements of r-process Elements in the Cool Metal-poor 102001. Main-sequence Star SDSS J2357-0052, ApJ, 723, L201-L206. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arai, A., et al. including Yamashita, T., Okita, K., Yanagisawa, TOPICAL REVIEW: Predictions for the rates of compact K.: 2010, Optical and Near-Infrared Photometry of Nova V2362 binary coalescences observable by ground-based gravitational- Cyg: Rebrightening Event and Dust Formation, PASJ, 62, wave detectors, Class.
    [Show full text]
  • XIII Publications, Presentations
    XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys.
    [Show full text]
  • Wide-Field Infrared Survey Explorer Launch Press
    PRess KIT/DECEMBER 2009 Wide-field Infrared Survey Explorer Launch Contents Media Services Information ................................................................................................................. 3 Quick Facts ............................................................................................................................................. 4 Mission Overview .................................................................................................................................. 5 Why Infrared? ....................................................................................................................................... 10 Science Goals and Objectives ......................................................................................................... 12 Spacecraft ............................................................................................................................................. 16 Science Instrument ............................................................................................................................. 19 Infrared Missions: Past and Present ............................................................................................... 23 NASA’s Explorer Program ................................................................................................................. 25 Program/Project Management .......................................................................................................... 27 Media Contacts J.D. Harrington
    [Show full text]
  • X-Ray Telescope
    Early results of the Hitomi satellite Hiro Matsumoto Ux group & KMI Nagoya Univ.1 Outline •Hitomi instruments •Early scientific results –DM in Perseus –Turbulence in Perseus –others 2 Japanese history of X-ray satellites Launch, Feb. 17, 2016 Weight Suzaku Ginga ASCA Hitomi Tenma Hakucho Rocket 3 International collaboration More than 160 scientists from Japan/USA/Europe 4 Attitude anomaly Loss of communication (Mar. 26, 2016) spinning Gave up recovery (Apr. 28, 2016)5 Hitomi Obs. List Target Date Perseus Cluster of galaxies Feb. 25—27, 2016 Mar. 4—8, 2016 N132D Supernova remnants Mar. 8—11, 2016 IGR J16318-4848 Pulsar wind nebula Mar. 11—15, 2016 RXJ 1856-3754 Neutron star Mar. 17—19, 2016 Mar. 23—25, 2016 G21.5-0.9 Pulsar wind nebula Mar. 19—23, 2016 Crab Pulsar wind nebula Mar. 25, 2016 6 Scienfitic Instruments 7 4 systems Name X-Ray Telescope SXS Soft Micro-calorimeter (E<10keV) SXI Soft CCD (E<10keV) HXI Hard Si/CdTe (E<80keV) SGD --- Si/CdTe (Compton) 8 Wide energy range (0.3—600keV) HXT 1keV∼ 107K SXT SGD SXI HXI SXS 9 SXT + SXS (0.3—12keV) Soft X-ray Telescope Soft X-ray Spectrometer (X-ray micro-calorimeter) f=5.6m 10 Soft X-ray Spectrometer (SXS) FOV: 3′ × 3′ Δ푇 ∝ ℎ휈 6 × 6 pix 11 Energy Resolution Hitomi SXS Suzaku CCD Δ퐸 = 5 푒푉@ 6푘푒푉 (cf. CCD Δ퐸 = 130 푒푉)12 Before Hitomi: gratings Point source Extended Not good for extended objects 13 X-ray microcalorimeter Extended Non-dispersive type. Spatial extension doesn’t matter.
    [Show full text]
  • Mp-Ist-056-32
    UNCLASSIFIED/UNLIMITED The International Reference Ionosphere – Climatological Standard for the Ionosphere Dieter Bilitza Raytheon IS, Space Physics Data Facility GSFC, Code 612.4 Greenbelt, MD 20771 U.S.A. [email protected] ABSTRACT The International Reference Ionosphere (IRI) a joint project of URSI and COSPAR is the defacto standard for a climatological specification of ionospheric parameters. IRI is based on a wide range of ground and space data and has been steadily improved since its inception in 1969 with the ever-increasing volume of ionospheric data and with better mathematical descriptions of the observed global and temporal variation patterns. The IRI model has been validated with a large amount of data including data from the most recent ionospheric satellites (KOMPSAT, ROCSAT and TIMED) and data from global network of ionosondes. Several IRI teams are working on specific aspects of the IRI modeling effort including an improved representation of the topside ionosphere with a seamless transition to the plasmasphere, a new effort to represent the global variation of F2 peak parameters using the Neural Network (NN) technique, and the inclusion of several additional parameters in IRI, e.g., spread-F probability and ionospheric variability. Annual IRI workshops are the forum for discussions of these efforts and for all science activities related to IRI as well as applications of the IRI model in engineering and education. In this paper I will present a status report about the IRI effort with special emphasis on the presentations and results from the most recent IRI Workshops (Paris, 2004; Tortosa, 2005) and on the most important ongoing IRI activities.
    [Show full text]
  • Hinode Project and Science Center (Hinode-SC)
    Hinode Project and Science Center (Hinode-SC) Shinsuke Imada (Nagoya Univ., ISEE) Characteristics of the Advanced Telescopes | Hinode Science Center at NAOJ 2019/10/13 22(30 For Researchers 日本語 シェア Tweet “Hinode” Unveils To do research Information Gallery For Researchers the Mysteries of the Sun using Hinode data TOP "Hinode" Unveils the Mysteries of the Sun Characteristics of the Advanced Telescopes Solar Observing Satellite "Hinode" (SOLAR-B) | Hinode Science Center at NAOJ 2019/10/13 22(29 "Hinode" Unveils Characteristics of the Advanced Telescopes the Mysteries of the For Researchers 日本語 Sun Tweet シェア Overview of “Hinode” “Hinode” Unveils To do research Characteristics of the Advanced Telescopes Solar Observing Information Gallery For Researchers Satellite "Hinode" the Mysteries of the Sun using Hinode data (SOLAR-B) The Sun's atmosphere is comprised of layers. The layers beneath the surface (photosphere) cannot be TOP "Hinode" UnveilsSolar the Mysteries of the Sun ObservingSolar Observing Satellite "Hinode" (SOLAR-B) Satelliteseen “ directly,Hinode but the upper layers ”above (SOLAR the photosphere each emit- differentB) wavelengths of lights. So, About the "Hinode" Project you can see each layer by changing the observing wavelength. By loading three telescopes observing in "Hinode" Unveils Solar Observing Satellite "Hinode" (SOLAR-B) different wavelengththe Mysteries ranges, of the Hinode can simultaneously observe from the photosphere to the corona (upper atmosphere).Sun Characteristics of the Advanced Telescopes Overview of “Hinode”
    [Show full text]
  • Building the Coolest X-Ray Satellite
    National Aeronautics and Space Administration Building the Coolest X-ray Satellite 朱雀 Suzaku A Video Guide for Teachers Grades 9-12 Probing the Structure & Evolution of the Cosmos http://suzaku-epo.gsfc.nasa.gov/ www.nasa.gov The Suzaku Learning Center Presents “Building the Coolest X-ray Satellite” Video Guide for Teachers Written by Dr. James Lochner USRA & NASA/GSFC Greenbelt, MD Ms. Sara Mitchell Mr. Patrick Keeney SP Systems & NASA/GSFC Coudersport High School Greenbelt, MD Coudersport, PA This booklet is designed to be used with the “Building the Coolest X-ray Satellite” DVD, available from the Suzaku Learning Center. http://suzaku-epo.gsfc.nasa.gov/ Table of Contents I. Introduction 1. What is Astro-E2 (Suzaku)?....................................................................................... 2 2. “Building the Coolest X-ray Satellite” ....................................................................... 2 3. How to Use This Guide.............................................................................................. 2 4. Contents of the DVD ................................................................................................. 3 5. Post-Launch Information ........................................................................................... 3 6. Pre-requisites............................................................................................................. 4 7. Standards Met by Video and Activities ...................................................................... 4 II. Video Chapter 1
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Jaxa Today 10.Pdf
    Japan Aerospace Exploration Agency April 2016 No. 10 Special Features Japan’s Technical Prowess Technical excellence and team spirit are manifested in such activities as the space station capture of the HTV5 spacecraft, development of the H3 Launch Vehicle, and reduction of sonic boom in supersonic transport International Cooperation JAXA plays a central role in international society and contributes through diverse joint programs, including planetary exploration, and the utilization of Earth observation satellites in the environmental and disaster management fields Contents No. 10 Japan Aerospace Exploration Agency Special Feature 1: Japan’s Technical Prowess 1−3 Welcome to JAXA TODAY Activities of “Team Japan” Connecting the Earth and Space The Japan Aerospace Exploration Agency (JAXA) is positioned as We review some of the activities of “Team the pivotal organization supporting the Japanese government’s Japan,” including the successful capture of H-II Transfer Vehicle 5 (HTV5), which brought overall space development and utilization program with world- together JAXA, NASA and the International Space Station (ISS). leading technology. JAXA undertakes a full spectrum of activities, from basic research through development and utilization. 4–7 In 2013, to coincide with the 10th anniversary of its estab- 2020: The H3 Launch Vehicle Vision JAXA is currently pursuing the development lishment, JAXA defined its management philosophy as “utilizing of the H3 Launch Vehicle, which is expected space and the sky to achieve a safe and affluent society” and to become the backbone of Japan’s space development program and build strong adopted the new corporate slogan “Explore to Realize.” Under- international competitiveness. We examine the H3’s unique features and the development program’s pinned by this philosophy, JAXA pursues a broad range of pro- objectives.
    [Show full text]
  • AKARI: Astronomical IR Satellite MLHES Mission Program
    Probing Ancient Mass Loss with AKARI’s Extended Dust Emission Objects Rachael Tomasino1, Dr. Toshiya Ueta1,2, Dr. Yamamura Issei2, Dr. Hideyuki Izumiura3 1University of Denver, USA; 2Institute of Space and Astronomical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Japan, 3Okayama Astrophysical Observatory, Japan AKARI: Astronomical IR Satellite FIS-AKARI Slow-scan Tools! Extended Emission Calibration! AKARI (formerly ASTRO-F), is the second Japanese satellite FAST is a program that allows for interactive Original calibration of the FIS detector was done using diffuse galactic cirrus emission dedicated to infrared (IR) astronomy, from the Institute of assessment of the data quality and on-the-fly with low photon counts. On the other hand, bright point sources can cause the slow Space and Astronautical Science (ISAS) of the Japanese corrections to the time-series data on a pixel-by- transient response effect because of high photon counts. Marginally extended sources Aerospace Exploration Agency (JAXA). Its main objective is pixel basis in order to manually correct glitches consist of regions of high and low photon counts, and therefore, only parts of them suffer to perform an all-sky survey with better spatial resolution and that would have been missed in the pipeline from the slow transient response effect. Hence, we needed to devise a specific method to wider wavelength coverage than IRAS (first US, UK, Dutch process. These corrections include: (1) eliminate address the detector response as a whole. This method uses a contour aperture to include infrared satellite launched in 1983), mapping the entire sky in bad on-sky calibration sequences, (2) flag out both the faint and bright emission by setting a threshold of background + 3#.! six infrared bands.
    [Show full text]
  • Co-Aligned IRIS, SDO and Hinode Data Cubes Release 1.0
    Co-aligned IRIS, SDO and Hinode data cubes Release 1.0 Milan Gošic´ Feb 26, 2020 CONTENTS 1 Introduction 1 1.1 About this Guide.............................................1 1.2 Synopsis of the IRIS, Hinode and SDO missions............................1 1.3 Hinode and SDO data cubes co-aligned with IRIS observations....................2 2 Finding and downloading IRIS-SDO-Hinode co-aligned data cubes5 2.1 Using the IRIS Webpage (HCR).....................................5 2.2 Using SSWIDL..............................................5 3 Reading and browsing IRIS-SDO-Hinode co-aligned data cubes 11 3.1 Reading level 2 co-aligned SDO and Hinode datasets.......................... 11 3.2 Browsing co-aligned SDO and Hinode data cubes with CRISPEX................... 13 i ii CHAPTER ONE INTRODUCTION 1.1 About this Guide The purpose of this guide is to provide detailed instructions on how users can find, download, browse, and analyze co-aligned level 2 data obtained with The Interface Region Imaging Spectrograph (IRIS), the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), and Hinode/SOT level 2 data. The IRIS team at the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL) created new data cubes consisting of the Hinode/SOT and SDO/AIA images co-aligned with the simultaneous IRIS observations. These datasets all have the same IRIS level 2 FITS format, therefore can be accessed and examined using the IRIS SolarSoft software. In this guide, we provide step by step instructions how to access, read, and visualize these newly created co-aligned data cubes. In particular, we describe: • How to find data using SolarSoft IDL routines; • How to acquire data sets using either SolarSoft or Heliophysics Coverage Registry (HCR); • How to read data and visualize them using SolarSoft routines or Crisp Spectral Explorer (CRISPEX).
    [Show full text]