Leakage Rate) (2.8 %)

Total Page:16

File Type:pdf, Size:1020Kb

Leakage Rate) (2.8 %) Hajime Horiguchi Tokyo Suido Services Co., Ltd. Contents 1. Introduction 2. NRW reduction in Tokyo (establishment of water saving city) 3.GIS and Map Management System 4.SCADA (By Water Supply Operation Center) 5.Conclusion 1. Introduction 1.1 Tokyo Now 1.2 Tokyo’s Experience 1.1 Tokyo Now Since the start of modern water supply in 1898, Bureau of Waterworks,Tokyo Metropolitan Government has been supporting the urban prosperity of Tokyo, one of the biggest cities in the world. Start of Service December 1, 1898 Service Area 1,223km2 Population Served 12.8 million Non Revenue Water Rate 4.2 % (Leakage Rate) (2.8 %) Total Pipe Length 26,348 km Water Supply Capacity 6.9 million m3/day Average Daily Supply 4.3 million m3/day Tokyo Water Availability 24/7 Note: AS of 2012 1.2 Tokyo’s Experience Tokyo’s 1.2 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 0 Water Crisis Water 1956 1957 1958 Economic Rapid 1959 Games in 1964 in1964 Games 1960 Olympic Tokyo 1961 Growth 1962 1963 1964 1965 1966 and 1967 1968 1969 1970 Supply & Demand Water 1971 1972 1973 1974 1975 Oil Crisis 1976 Crisis 1964 in Water 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 Collapse 1988 1989 1990 1991 Expansion Capacity 1992 1993 1994 Economy Bubble of the 1995 Supply Capacity 1996 1997 1990 in 1998 1999 Demand 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2. Establishment of Water Saving City 2. Establishment of a water saving city Five policies 2.1 Water saving tariff 2.2 Promotion of water recycling 2.3 Development/extensive use of water saving devices 2.4 Water saving campaign 2.5 Acceleration of leak prevention 2 Establishment of a water saving city 2.1 Water saving tariff system Increasing with consumption Volume Charges Fixed 1 6 11 21 31 51 101 201 1,001 Charges ~ ~ ~ ~ ~ ~ ~ ~ ~ Increasing with with diameter Increasing 5 10 20 30 50 100 200 1,000 Charge brackets (Yen) m3 m3 m3 m3 m3 m3 m3 m3 m3 (Yen/m3) φ 13mm 860 φ 20mm 1,170 0 22 128 163 202 213 298 372 404 φ 25mm 1,460 φ 30mm 3,435 213 298 372 404 φ 40mm 6,865 Household φ 50mm 20,720 372 404 & industries φ 75mm 45,623 φ 100mm 94,568 φ 150mm 159,094 φ 200mm 349,434 404 φ 250mm 480,135 φ 300mm~ 816,145 Public bath 0 22 109 ¥6,865 for diameters of 40mm or more * Water bill includes charge and consumption tax: Billed amount = (Fixed charge + Volume charge ×Volume) × 1.05 2.1 Establishment of a water saving city 2.2 Promotion of water recycling Elevated tank ・Flush water Recycled water Drinking water ・Sprinkling water Treatment plant Sewer 2.1 Establishment of a water saving city 2.1.3 Development/extensive use of water saving devices Saved Water by 76% ! 20L 20 Water saving toilet 18 16 14 13L 12 10L 10 8L 8 6L 5.5L 6 4.8L 20L/Flush 4.8L/Flush 4 -15.2L before 1975 now 2 0 ~1975 1994 1999 2007 1976 2006 Water saving washing machine 2. Establishment of a water saving city 2.4 Water saving campaign Skit Experiments Water Campaign Caravan for elementary school pupils Brochure “ Water Day” event Directly drinking from taps Poster Conutermeasure of water leakage prevention 2. Establishment of a water saving city 2.5 Acceleration of leak prevention ②Replacement with stainless steel service ①Replacement with anti-seismic joint pipes pipes ③Leak detection ④Leak repair 2. Establishment of a water saving city 2.6 Total consumption/person/day Distribution ( 105m3 ) Population served (103people) Consumption (liters/person/day) Distributed volume/year 3. GIS and Map Management System 3.1 GIS 3.2 Map management system 3.1 GIS 3.1.1 Composition and main functions Main functions 1 Retrieving diagrams 2 Displaying distribution stop and cloudy water areas 3 Retrieving and displaying detailed diagram information 4 Retrieving and displaying construction work information 5 Retrieving and displaying emergency information 3.1 GIS 3.1.2 Displaying distribution stop span and cloudy water areas The area of cloudy water resulting from a distribution stop over a span of a pipeline can be estimated and displayed. Cloudy water area Distribution stop span 3.1 GIS 3.1.2 Output Meter, Diameter Address Valve Receiving tank Hydrant Tap No. Diameter, Material, Construction year 3.2 Map management system 3.2.1 Diagram of Block No 769 Number of Blocks ・Urban Area 4,900 ・Suburban Area 2,300 Total 7,200 Each block has ・700 households and 2,100 people served ・Pipe length 2.5km – 3.3km M Flow Meter Chamber 3.2 Map management system 3.2.2 Pipeline inspection for proper management Air valve inspection Pipe offset measurement Gate valve inspection 3.2 Map management system 3.2.4 Water Suspension Management Diagram : Valve plan profile 3.2 Map management system 3.2.5 Offset diagram Facility and number Road width and occupying place Diameter Pipe material and depth Address Distance from reference points Address 21 4. SCADA 4.1 History of Water Supply operation Center 4.2 Purification Plants and Supply Stations 4.3 Data collection and monitoring 4.4 Pipe Trouble Detection 4.5 Water Distribution during Soccer Game 4.6 Pressure and leakage rate 22 4. SCADA 4.1 History of Water Supply Operation Center 1964: Telemetry systems began to be installed. 1979: Water Supply Operation Center was established. Number of distribution Pipe telemeters: 215 Kinds of collecting data: 1,400 2012: Number of distribution pipe telemeters: 310 Kinds of collecting data: 20,000 Number of monitoring facilities: 54 ・The center monitors 24/7. ・Supply stations and purification plants are operated according to the raw water intake plan, transmission /distribution main operation plan, distribution pump operation plan, and service reservoir operation plan prepared by the center. 23 4. SCADA 4.2 Purification Plants and Supply Stations Yagisawa Dam Naramata Dam R.Naka Kasumigaura Water Conveyance Sonohara Dam Kusaki Dam (Under Construction) Aimata Dam Fujiwara Dam Water Supply Operation Center R.Tone Lake Kasumigaura Yanba Dam 利根川 Watarase Reservoir (Under construction) Kasumigaura Tone Weir kaihatsu Shimokubo Dam Musashi Channel Takizawa Dam R.Naka R.Edo Akigase Intake Weir Kita-chiba Water Conveyance Channel Urayama Dam R.Ara Arakawa Reservoir Misato Murayama-Yamaguchi Nakagawa River/Edo River Connection Water Conveyance Channel reservoir Mizumoto Water conservation forests 山口貯水池 Raw water Asaka Misono Kitasikahama Kanamachi connecting pipe Koemon Higashi-murayama Itabashi Minami Ozaku Ooyaguchi Kamiigusa Nerima -seuju Ogouchi Kameido Reservoir Higashi-yamato Hongo Suginami Toyozumi Ozaku Intake Weir Yodobashi Yasaka Izumi Nishi- Hamura Intake Weir Sakai Wadabori Harumi mizue Koto Kasai Narahara Toyosu Hino Takaido Komazawa Yoyogi Shiba Hodokubo Ariake Okura Inagi Tokyo Bay Hijirigaoka 多摩川 Toukai R.Tama Sagami Dam Kinuta Yakumo Kinuta -shimo Water Purification Plant(11) Tamagawa Kamiikedai Nagasawa Water Supplying Station(40) Shiroyama Dam Chofu Intake Weir Pumping Station Transmission Mains R.Sagami相模川 Water Pipes River, Water conveyance pipes 4. SCADA 4.3 Data collection and monitoring Collecting data on pressure and flow rate from water sources to distribution networks Water Sources (rainfall Monitoring measurements, Room etc.) Telemeter Comprehensive Water Supply Dams (water levels, amounts stored, Computer Room etc.) Data Collection / Rivers Monitoring (water levels, flow rates, etc.) Telemetry Purification Plants Pumps, Distribution (raw water intake, output, (flow rates, water Reservoirs(operation, pressure, etc.) etc.) water levels, etc.) 4. SCADA 4.4 Pipe Trouble Detection Upper Limit Exceeded Warning Upper Limit Pressure / Flow Rate Data Normal Pressure/Flow Rate Pressure/Flow Operation Range Lower Limit Time If the upper or lower limit is exceeded, an alarm will sound and the conditions will be displayed on the multi-screen. 4. SCADA 4.5 Water Distribution during a Soccer Game of Japan vs Denmark in FIFA World Cup South Africa on Friday, June 25, 2010 (㎥/h) 130,000 June 25 120,000 Average of May 21, 28, and June 4 110,000 100,000 90,000 80,000 70,000 Second後半 Half 60,000 First Half Halftime (Time) 50,000 05:00 03:00 03:10 03:20 03:30 03:40 03:50 04:00 04:10 04:20 04:30 04:40 04:50 05:10 05:20 05:30 05:40 05:50 06:00 4. SCADA 4.6 Pressure and Leakage rate Mpa : Water Pressuer %: Leakage rate 0.35 18.0 16.0 0.30 +0.7Mpa Average water pressure of 14.0 0.25 distribution sub-main pipes 12.0 0.20 10.0 Expansion of direct 8.0 0.15 water supply to the 3rd floor (1989~) 6.0 0.10 - 9% 4.0 0.05 Water leakage rate 2.0 0.00 0.0 1985 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 5.Conclusion Our “efforts toward 3% leakage rate” won the Global Honour Awards. The IWA 2012 World Project GIS SCADA Innovation Awards Proper Maintenance Atsushi Masuko Director General, Bureau of Waterworks, Tokyo Metropolitan Gvmt. Provide safe and secure water to the world Thank you for your attention 30 .
Recommended publications
  • Outline of Tone Canal Project
    Outline of Tone Canal Project Incorporated Administrative Agency Japan Water Agency The views expressed in this presentation are the views of the author and do not necessarily reflect the views or policies of ADBI, the Asian Development Bank (ADB), its Board of Directors, or the governments they represent. ADBI does not guarantee the accuracy of the data included in this presentation and accepts no responsibility for any consequences of their use. Terminology used may not necessarily be consistent with ADB official terms. 1.1. OutlineOutline ofof ProjectProject LocationLocation MapMap ((KantoKanto plainplain)) Tone Canal service coverage Tokyo of agri.(29,000ha) Metropolis Altitude Area Water Facility Irrigation 3,000m Paddy 2,000 Drainage 1,000 Uplan 500 Divertion 200 d 0 Residentia Pumpimg l Yagisawa Dam JWA Dam ToneTone CanalCanal ProjectProject Naramata Dam Others Dam Aimata Dam JWA Barrage Sonohara dam OutlineOutline JWA domestic and Industrial Sonohara Dam Canal JWA Irrigational Canal Kusaki Dam Tone river Shimokubo Dam Tone Takizawa Dam Diversion weir Watarase Urayama dam Ara river retarding basin Service Area of domestic water Service area (about 11million people) of agricultural water (29,000ha) Service Area Industrial water 743 Mil m3 of Industrial water Tokyo Domestic, Industrial, (about 370 company) or etc water 1,034 Mil m3 Metropolis TOTAL 1,778 Mil m3 ( per year 2005) Tokyo bay OutlineOutline ofof thethe ToneTone CanalCanal ProjectProject • Tone Canal Project was carried out during 1963 to 1968. • Intake water quantity from Tone river was max 138m3/s ( 134m3/s, nowadays). 33 PurposePurpose ofof thethe ProjectProject ①① ToTo supplysupply MunicipalMunicipal WaterWater forfor TokyoTokyo metropolitan,metropolitan, SaitamaSaitama andand GunmaGunma prefecture,prefecture, developeddeveloped byby damsdams inin upperupper sitesite ofof ToneTone RiverRiver andand AraAra River.River.
    [Show full text]
  • 24Th ICOLD Congress 2 to 8 June 2012 ~ Kyoto, Japan
    24th ICOLD Congress 2 to 8 June 2012 ~ Kyoto, Japan 【JWA】 Norihisa Matsumoto Japan Commission on Large Dams The increase of dams higher than 15 m after 1900 2,500 2,000 1,500 Municipal water 1,000 Flood control Number of dams Multipurpose Hydropower 500 Irrigation 0 1900-1910 -1920 Excluding 672 dams constructed before 1900, mainly irrigation use. -1930 -1940 -1950 -1960 -1970 -1980 -1990 -2000 -2009 【 JCOLD 】 Type of dams in Japan 52 43 985 1043 281 Earthfill Rockfill Coccrete Gravity Concrete Arch Others Sayama-ike Dam 2003 【Osaka Pref.】 History of Modification of Sayamaike Dam 2001 Rehabilitation ③. 1608 ①. 1926~1931 1962~1964 ④-2. 1452 ②. 1620~1621 1693~1694 ④-1. 1202 1857~1859 ⑤. 762 ⑥. 731 ⑦. 616 ⑧-2. 1596(Earthquake) ⑧-1. 734(Earthquake) 【Osaka Pref.】 Water has sustained population (million) (million ha) (million m3) 140 10 5,000 9 120 Population 8 4,000 100 7 Active storage capacity 3,000 80 6 5 60 Cultivated area 4 2,000 Population 40 3 Cultivated area Cultivated 2 1,000 20 capacity storage Active 1 0 ≈ 0 0 A.D. 6000 800 1000 1200 1400 1600 1800 2000 【MAFF】 Food and water Increase Food Efficient Water Self-sufficiency Management 108m3 VITRTUAL WATER 80 billion m3 water imported (2005) 【 MOE 】 The first hydropower station in Japan Keage Hydroelectric Power Station 1st Stage 60kW ‐200kW 19 units Total 1760kW Commissioned since 1891 by Kyoto City Utilized for - Spinning - Lighting - Textile - Street cars An Element of Lake Biwa Canal Project 1895 【Kyoto City & KEPCO】 Development of hydropower in Japan Reservoir hydro Run-of-river
    [Show full text]
  • JPCI Newsletter No.13 March 2021
    JPCI Newsletter No.13 March 2021 JPCI NEWSLETTER No.13, March 2021 Japan Prestressed Concrete Institute JPCI AWARD Award for Outstanding Structures ● Washimi Bridge Location:Gujo City, Gifu Prefecture. Structure overview:The Washimi Bridge (Phase II) is a 490.0m long bridge on the Tokai-Hokuriku expressway. It was designed to run adjacent to the current Phase I bridge spanning a deep valley, using a four-span continuous rigid frame prestressed reinforced concrete (PRC) box girder design with corrugated steel webs on three tall piers, the tallest of which is 125 m high and the best height in Japan. Because the bridge is in a heavy snowfall region with severe weather conditions during construction, the rapid construction method was adopted in order to utilize precast elements during construction of the bridge piers. To speed up the construction of the superstructure, the rapid construction of corrugated steel webs method was used. This method boosts construction efficiency by installing the form traveler on the corrugated steel panels and enabling construction to progress on several blocks simultaneously. Provider:Central Nippon Expressway Co., Ltd Design:Japan Bridge & Structure Institute, Inc Sumitomo Mitsui Construction Co., Ltd Construction:Sumitomo Mitsui Construction Co., Ltd ● The Second Komono Viaduct on the Shin-Meishin Expressway Location:Komono-cho , Mie Outline of Structure:The Second Komono Viaduct is a 19-span, 1,103-meter-long viaduct comprised of a 3-span prestressed reinforced concrete continuous extradosed bridge, sandwiched by two continuous box-girder bridges with 5 spans and 11 spans. Concerning the design, an attractive appearance of the sub- and super-structure was importantin determining the form.
    [Show full text]
  • 24Th ICOLD Congress in Kyoto June 6Th, 2012 Norihisa Matsumoto Japan Commission on Large Dams
    “Dams in Japan” Memorial lecture at 24th ICOLD Congress in Kyoto June 6th, 2012 Norihisa Matsumoto Japan Commission on Large Dams 1. Distinguished guests, ladies and gentlemen. It is my great pleasure to have this opportunity to talk on “Dams in Japan” at this opening ceremony of 24th ICOLD Kyoto Congress1. 24th ICOLD Congress 2 to 8 June 2012 ~ Kyoto, Japan 【JWA】 Norihisa Matsumoto Japan Commission on Large Dams 1 2. This diagram shows the increase in the number of dams which are higher than 15 m. Before 1900, we had about seven hundred irrigation dams. We started our modern dam construction in the end of the 19th century. The first masonry concrete gravity dam was completed in the year 1900. In those early days, the irrigation dams dominated in numbers, and hydropower and multipurpose dams increased later on2. The increase of dams higher than 15 m after 1900 2,500 Municipal water 2,000 Flood control Multipurpose 1,500 Hydropower Irrigation 1,000 Number dams of 500 0 920 960 000 1910 -1 -1930 -1940 -1950 -1 -1970 -1980 -1990 -2 -2009 0- 【JCOLD】 190 Excluding 672 dams constructed before 1900, mainly irrigation use. 2 3. This chart shows which dam types are adopted in Japan3. Earhtfill, concrete gravity and rockfill are major dam types. The earthfill type is usually used for small irrigation dams. Type of dams in Japan 52 43 985 1043 281 Earthfill Rockfill Coccrete Gravity Concrete Arch Others 3 4. Now we are looking at Sayama-ike Dam4. It was built in the early 7th century to supply irrigation water for rice crops, a Japanese staple food.
    [Show full text]
  • 水道水源と水系別給水区域概要図 Outline of Water Resources and Service Areas by River Systems
    水道水源と水系別給水区域概要図 Outline of Water Resources and Service Areas by River Systems 東京都水道局の概要 Yagisawa Dam Crest height 131m Naramata Dam Eective storage capacity 175.8 million m3 Water utilization capacity 115.5 million m3 Crest height 158m Eective storage capacity 85.00 million m3 Water utilization capacity 85.00 million m3 Fujiwara Dam Crest height 95m Outline of the Tokyo Waterworks Bureau Aimata Dam Eective storage capacity 35.89 million m3 Water utilization capacity 31.01 million m3 Kusaki Dam Crest height 67m Eective storage capacity 20.0 million m3 Sonohara Dam Crest height 140m Water utilization capacity 20.0 million m3 Eective storage capacity 50.50 million m3 Nakagawa River 3 Yanba Dam Akayagawa River Water utilization capacity 50.50 million m Kasumigaura Crest height 77m Water Conveyance Eective storage capacity 14.14 million m3 Katashinagawa River Water utilization capacity 13.22 million m3 Eective storage capacity 90.0 million m3 Agatsumagawa River Water utilization capacity 90.0 million m3 Construction period From 1976 to 2015 Construction period From 1967 to 2019 Watarasegawa River S51~H27 Tone Large Weir Kasumigaura kaihatsu Lake Kasumigaura Shimokubo Dam Eective storage capacity 617.0 million m3 Crest height 129m Tonegawa River Water utilization capacity 278.0 million m3 Eective storage capacity 120.0 million m3 Watarase Reservoir Water utilization capacity120.0 million m3 Kannagawa River Sekiyado Lock Gate Takizawa Dam Nakatsugawa River Musashi Channel Eective storage capacity 26.4 million m3 Water utilization capacity 26.4
    [Show full text]
  • (News Release) the Results of Radioactive Material Monitoring of the Surface Water Bodies Within Gunma Prefecture (July-September Samples)
    (News Release) The Results of Radioactive Material Monitoring of the Surface Water Bodies within Gunma Prefecture (July-September Samples) Friday, November 8, 2013 Water Environment Division, Environment Management Bureau, Ministry of the Environment Direct line: 03-5521-8316 Switchboard: 03-3581-3351 Director: Masanobu Miyazaki (ext. 6610) Deputy Director: Saori Nagasawa (ext. 6614) Coordinator: Katsuhiko Sato (ext. 6628) In accordance with the Comprehensive Radiation Monitoring Plan determined by the Monitoring Coordination Meeting, the Ministry of the Environment (MOE) is continuing to monitor radioactive materials in water environments (surface water bodies (rivers, lakes and headwaters, and coasts), etc.). Samples taken from the surface water bodies of Gunma Prefecture during the period of July 17-September 30, 2013 have been measured as part of MOE’s efforts to monitor radioactive materials; the results have recently been compiled and are released here. The monitoring results of radioactive materials in surface water bodies carried out to date can be found at the following web page: http://www.env.go.jp/jishin/rmp.html#monitoring 1. Survey Overview (1) Survey Locations 68 environmental reference points, etc. in the surface water bodies within Gunma Prefecture (Rivers: 44 locations, Lakes and headwaters: 24 locations) (2) Survey Method ・ Measurement of concentrations of radioactive materials (radioactive cesium (Cs-134 and Cs-137)) in water and sediment ・ Measurement of concentrations of radioactive materials and spatial dose-rate in soil in the surrounding environment of water and sediment sample collection points (river terraces, etc.) 2. Outline of Results (* denotes the results of the previous survey: May-July 2013) (1) Water Quality (Lower detection limit: 1Bq/L) Cs-134+Cs-137: Not detectable (ND) at any location (* ND at any location) <Reference> Specification and Standards for Food, Food Additives, etc.
    [Show full text]
  • (News Release) the Results of Radioactive Material Monitoring of the Surface Water Bodies Within Gunma Prefecture (October-December Samples)
    (News Release) The Results of Radioactive Material Monitoring of the Surface Water Bodies within Gunma Prefecture (October-December Samples) Friday, March 1, 2013 Water Environment Division, Environment Management Bureau, Ministry of the Environment Direct line: 03-5521-8316 Switchboard: 03-3581-3351 Director: Tadashi Kitamura (ext. 6610) Deputy Director: Tetsuo Furuta (ext. 6614) Coordinator: Katsuhiko Sato (ext. 6628) In accordance with the Comprehensive Radiation Monitoring Plan determined by the Monitoring Coordination Meeting, the Ministry of the Environment (MOE) is continuing to monitor radioactive materials in water environments (surface water bodies (rivers, lakes and headwaters, and coasts), etc.). Samples taken from the surface water bodies of Gunma Prefecture during the period of October 8-December 19, 2012 have been measured as part of MOE’s efforts to monitor radioactive materials; the results have recently been compiled and are released here. The monitoring results of radioactive materials in surface water bodies carried out to date can be found at the following web page: http://www.env.go.jp/jishin/rmp.html#monitoring 1. Survey Overview (1) Survey Locations 70 environmental reference points, etc. in the surface water bodies within Gunma Prefecture (Rivers: 48 locations, Lakes: 22 locations) (2) Survey Method ・ Measurement of concentrations of radioactive materials (radioactive cesium (Cs-134 and Cs-137), etc.) in water and sediment ・ Measurement of concentrations of radioactive materials and spatial dose-rate in soil in the surrounding environment of water and sediment sample collection points (river terraces, etc.) 2. Outline of Results (* denotes the results of the previous survey: July-October 2012) (1) Water Quality (Lower detection limit: 1Bq/L) Cs-134+Cs-137: Not detectable (ND) at any location (* ND-1Bq/L) <Reference> Specification and Standards for Food, Food Additives, etc.
    [Show full text]
  • (News Release) the Results of Radioactive Material Monitoring of the Surface Water Bodies Within Gunma Prefecture (October-December Samples)
    (News Release) The Results of Radioactive Material Monitoring of the Surface Water Bodies within Gunma Prefecture (October-December Samples) Friday, February 7, 2014 Water Environment Division, Environment Management Bureau, Ministry of the Environment Direct line: 03-5521-8316 Switchboard: 03-3581-3351 Director: Masanobu Miyazaki (ext. 6610) Deputy Director: Saori Nagasawa (ext. 6614) Coordinator: Katsuhiko Sato (ext. 6628) In accordance with the Comprehensive Radiation Monitoring Plan determined by the Monitoring Coordination Meeting, the Ministry of the Environment (MOE) is continuing to monitor radioactive materials in water environments (surface water bodies (rivers, lakes and headwaters, and coasts), etc.). Samples taken from the surface water bodies of Gunma Prefecture during the period of October 1-December 13, 2013 have been measured as part of MOE’s efforts to monitor radioactive materials; the results have recently been compiled and are released here. The monitoring results of radioactive materials in surface water bodies carried out to date can be found at the following web page: http://www.env.go.jp/jishin/rmp.html#monitoring 1. Survey Overview (1) Survey Locations 72 environmental reference points, etc. in the surface water bodies within Gunma Prefecture (Rivers: 48 locations, Lakes and headwaters: 24 locations) (2) Survey Method ・ Measurement of concentrations of radioactive materials (radioactive cesium (Cs-134 and Cs-137)) in water and sediment ・ Measurement of concentrations of radioactive materials and spatial dose-rate in soil in the surrounding environment of water and sediment sample collection points (river terraces, etc.) 2. Outline of Results (* denotes the results of the previous survey: July-September 2013) (1) Water Quality (Lower detection limit: 1Bq/L) Cs-134+Cs-137: Not detectable (ND) at any location (* ND at any location) <Reference> Specification and Standards for Food, Food Additives, etc.
    [Show full text]
  • 2. Outline of the Tokyo Waterworks 第2 東京都水道局の概要 1 Service Area 1 給水区域等
    2. Outline of the Tokyo Waterworks 第2 東京都水道局の概要 1 Service Area 1 給水区域等 The Bureau of Waterworks supplies water to the 23 wards 水道局は、23 区と多摩地区の 25 市町に給水して and 25 cities and towns in the Tama area. In addition, the いるほか、給水区域に含まれていない未統合3市に対 bureau diverts water to three unincorporated cities in the して分水を行っている。 Tama area that are not included in the service area. このうち多摩地区の5市については、それぞれの地 For the five cities in the Tama area, we commission the 域のお客さまと密接にかかわる水道料金徴収等の業務 affairs related to customer service, such as the collection を、各市に委託している。これについては、今後、順 of water bills, to the cities. We will dissolve these 次解消していく予定である。 commissions sequentially in the future. Table : Basic Data on Water Supply (As of March 2009 (Heisei 21)) 表 給水区域面積等(平成21年3月現在) Service area 2 給水区域面積 1222.78km Population served 給水人口 12,554,106人(people) Pervasion 普及率 100% Number of service connections 給水件数 6,831,308件(cases) Total length of distribution pipes 配水管延長 25,823km Total capacity of facilities 3 3 施設能力 6,859,500m /日(m /day) Total distribution amount per year 3 3 年間総配水量 1,581,925×10 m Maximum distribution amount per day 3 3 一日最大配水量 4,824,000m /日(m /day) Ave. distribution amount per day 3 3 一日平均配水量 4,334,000m /日(m /day) (note)Service area, population served, pervasion and number of service connections are numbers as of October 1st, 2008(Heisei 20). (注)給水区域面積、給水人口、普及率及び給水件数については、平成20年10月1日を基準日とした。 7 Figure : Outline of Water Resources and Service Areas by River Systems 図 水道水源と水系別給水区域概要図 Yagisawa Dam Crest height 131 m Naramata Dam Effective storage capacity 175.8 million m3
    [Show full text]
  • Fy2014 [Pdf 9207Kb]
    FY2014 Results of the Radioactive Material Monitoring in the Water Environment March 2016 Ministry of the Environment Contents Outline .......................................................................................................................................................... 1 Part 1: National Radioactive Material Monitoring in the Water Environment in the Whole of Japan (FY2014) ....................................................................................................................................................... 6 1. Objective and Details ............................................................................................................................ 6 1.1 Objective ......................................................................................................................................... 6 1.2 Details ............................................................................................................................................. 6 2. Survey Methods and Analysis Methods ............................................................................................. 18 2.1 Survey methods ............................................................................................................................ 18 2.2 Analysis methods .......................................................................................................................... 19 3. Results ...............................................................................................................................................
    [Show full text]
  • Dams Constructed in the Tone River Dams Constructed in the Tone River 600 12
    24th ICOLD Congress 2 to 8 June 2012 ~ Kyoto, Japan 【JWA】 Norihisa Matsumoto Japan Commission on Large Dams The increase of dams higher than 15 m after 1900 Dams constructeed in Japan ( Dam Height over 15m) 2,500 Municipal water 2,000 Flood control Multipurpose 1,500 Hydropower Irrigation 1,000 Numberdamsof 500 0 -1920 -1930 -1940 -1950 -1960 -1970 -1980 -1990 -2000 -2009【JCOLD】 1900-1910 Excluding 672 dams constructed before 1900, mainly irrigation use. Type of dams in Japan 52 43 985 1043 281 Earthfill Rockfill Coccrete Gravity Concrete Arch Others Sayama-ike Dam 2003 【Osaka Pref.】 History of Modification of Sayamaike Dam 2001 Rehabilitation ③. 1608 ①. 1926~1931 1962~1964 ④-2. 1452 ②. 1620~1621 1693~1694 ④-1. 1202 1857~1859 ⑤. 762 ⑥. 731 ⑦. 616 ⑧-2. 1596(Earthquake) ⑧-1. 734(Earthquake) 【Osaka Pref.】 Water has sustained population (million) (million ha) (million m3) 140 10 5,000 9 120 Population 8 4,000 100 7 Active storage capacity 3,000 80 6 5 60 Cultivated area 4 2,000 Population 40 3 Cultivatedarea 2 1,000 20 Activestorage capacity 1 0 ≈ 0 0 A.D. 6000 800 1000 1200 1400 1600 1800 2000 【MAFF】 Food and water Increase Food Efficient Water Self-sufficiency Management 108m3 VITRTUAL WATER 80 billion m3 water imported (2005) 【 MOE 】 The first hydropower station in Japan Keage Hydroelectric Power Station 1st Stage 60kW ‐200kW 19 units Total 1760kW Commissioned since 1891 by Kyoto City Utilized for - Spinning - Lighting - Textile - Street cars A Element of Lake Biwa Canal Project 1895 【Kyoto City & KEPCO】 Development of hydropower in Japan
    [Show full text]
  • Print Sample of English Manuscript
    Annual Journal of Hy draulic Engineering, JSCE, Vol.5 9, 2015, February INVESTIGATING THE HYDROLOGIC RESPONSE OF CURRENT DAM OPERATION SYSTEM TO FUTURE CLIMATE IN A SNOWY RIVER BASIN (YATTAJIMA) OF JAPAN Maheswor SHRESTHA1, Patricia Ann JARANILLA-SANCHEZ2, Lei WANG 3 and Toshio KOIKE4 1,2Member of JSCE, Ph. D., Research Associate, Dept. of Civil Eng., the University of Tokyo (Bunkyo-ku, Tokyo, 113-8656, Japan) 3Member of JSCE, Ph. D., Professor, Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (Beijing, 100085, China) 4Fellow of JSCE, Dr. Eng., Professor, Dept. of Civil Eng., the University of Tokyo (Bunkyo-ku, Tokyo, 113-8656, Japan) A distributed biosphere hydrological model with energy balance based multilayer snow physics (WEB-DHM-S) was implemented to investigate the hydrologic response of the current dam operation system to future climate in a snowy river basin (Yattajima basin) of Japan considering the impacts on flood, drought and dam behavior. Dynamic downscaled data (6 km and hourly) for past and future climate were archived from Data Integration and Analysis System (DIAS). Dam operation modules for 6 dams were formulated based on observed patterns of dam inflow/outflow and were validated in 2001-2005. The climatological average analysis of past (1981-2010) vs future (2081-2110) simulation results indicate that a remarkable decrease in runoff in May at Yagisawa, Naramata, Fujiwara and Aimata dam is observed due to shift of snowmelt towards April. Top 20 flood analysis reveals that future peak flow will increase in all gauges and dams except Fujiwara dam. Flood risk is reduced by Fujiwara dam due to the projected changes in snow seasonality.
    [Show full text]