Leakage Rate) (2.8 %)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Outline of Tone Canal Project
Outline of Tone Canal Project Incorporated Administrative Agency Japan Water Agency The views expressed in this presentation are the views of the author and do not necessarily reflect the views or policies of ADBI, the Asian Development Bank (ADB), its Board of Directors, or the governments they represent. ADBI does not guarantee the accuracy of the data included in this presentation and accepts no responsibility for any consequences of their use. Terminology used may not necessarily be consistent with ADB official terms. 1.1. OutlineOutline ofof ProjectProject LocationLocation MapMap ((KantoKanto plainplain)) Tone Canal service coverage Tokyo of agri.(29,000ha) Metropolis Altitude Area Water Facility Irrigation 3,000m Paddy 2,000 Drainage 1,000 Uplan 500 Divertion 200 d 0 Residentia Pumpimg l Yagisawa Dam JWA Dam ToneTone CanalCanal ProjectProject Naramata Dam Others Dam Aimata Dam JWA Barrage Sonohara dam OutlineOutline JWA domestic and Industrial Sonohara Dam Canal JWA Irrigational Canal Kusaki Dam Tone river Shimokubo Dam Tone Takizawa Dam Diversion weir Watarase Urayama dam Ara river retarding basin Service Area of domestic water Service area (about 11million people) of agricultural water (29,000ha) Service Area Industrial water 743 Mil m3 of Industrial water Tokyo Domestic, Industrial, (about 370 company) or etc water 1,034 Mil m3 Metropolis TOTAL 1,778 Mil m3 ( per year 2005) Tokyo bay OutlineOutline ofof thethe ToneTone CanalCanal ProjectProject • Tone Canal Project was carried out during 1963 to 1968. • Intake water quantity from Tone river was max 138m3/s ( 134m3/s, nowadays). 33 PurposePurpose ofof thethe ProjectProject ①① ToTo supplysupply MunicipalMunicipal WaterWater forfor TokyoTokyo metropolitan,metropolitan, SaitamaSaitama andand GunmaGunma prefecture,prefecture, developeddeveloped byby damsdams inin upperupper sitesite ofof ToneTone RiverRiver andand AraAra River.River. -
24Th ICOLD Congress 2 to 8 June 2012 ~ Kyoto, Japan
24th ICOLD Congress 2 to 8 June 2012 ~ Kyoto, Japan 【JWA】 Norihisa Matsumoto Japan Commission on Large Dams The increase of dams higher than 15 m after 1900 2,500 2,000 1,500 Municipal water 1,000 Flood control Number of dams Multipurpose Hydropower 500 Irrigation 0 1900-1910 -1920 Excluding 672 dams constructed before 1900, mainly irrigation use. -1930 -1940 -1950 -1960 -1970 -1980 -1990 -2000 -2009 【 JCOLD 】 Type of dams in Japan 52 43 985 1043 281 Earthfill Rockfill Coccrete Gravity Concrete Arch Others Sayama-ike Dam 2003 【Osaka Pref.】 History of Modification of Sayamaike Dam 2001 Rehabilitation ③. 1608 ①. 1926~1931 1962~1964 ④-2. 1452 ②. 1620~1621 1693~1694 ④-1. 1202 1857~1859 ⑤. 762 ⑥. 731 ⑦. 616 ⑧-2. 1596(Earthquake) ⑧-1. 734(Earthquake) 【Osaka Pref.】 Water has sustained population (million) (million ha) (million m3) 140 10 5,000 9 120 Population 8 4,000 100 7 Active storage capacity 3,000 80 6 5 60 Cultivated area 4 2,000 Population 40 3 Cultivated area Cultivated 2 1,000 20 capacity storage Active 1 0 ≈ 0 0 A.D. 6000 800 1000 1200 1400 1600 1800 2000 【MAFF】 Food and water Increase Food Efficient Water Self-sufficiency Management 108m3 VITRTUAL WATER 80 billion m3 water imported (2005) 【 MOE 】 The first hydropower station in Japan Keage Hydroelectric Power Station 1st Stage 60kW ‐200kW 19 units Total 1760kW Commissioned since 1891 by Kyoto City Utilized for - Spinning - Lighting - Textile - Street cars An Element of Lake Biwa Canal Project 1895 【Kyoto City & KEPCO】 Development of hydropower in Japan Reservoir hydro Run-of-river -
JPCI Newsletter No.13 March 2021
JPCI Newsletter No.13 March 2021 JPCI NEWSLETTER No.13, March 2021 Japan Prestressed Concrete Institute JPCI AWARD Award for Outstanding Structures ● Washimi Bridge Location:Gujo City, Gifu Prefecture. Structure overview:The Washimi Bridge (Phase II) is a 490.0m long bridge on the Tokai-Hokuriku expressway. It was designed to run adjacent to the current Phase I bridge spanning a deep valley, using a four-span continuous rigid frame prestressed reinforced concrete (PRC) box girder design with corrugated steel webs on three tall piers, the tallest of which is 125 m high and the best height in Japan. Because the bridge is in a heavy snowfall region with severe weather conditions during construction, the rapid construction method was adopted in order to utilize precast elements during construction of the bridge piers. To speed up the construction of the superstructure, the rapid construction of corrugated steel webs method was used. This method boosts construction efficiency by installing the form traveler on the corrugated steel panels and enabling construction to progress on several blocks simultaneously. Provider:Central Nippon Expressway Co., Ltd Design:Japan Bridge & Structure Institute, Inc Sumitomo Mitsui Construction Co., Ltd Construction:Sumitomo Mitsui Construction Co., Ltd ● The Second Komono Viaduct on the Shin-Meishin Expressway Location:Komono-cho , Mie Outline of Structure:The Second Komono Viaduct is a 19-span, 1,103-meter-long viaduct comprised of a 3-span prestressed reinforced concrete continuous extradosed bridge, sandwiched by two continuous box-girder bridges with 5 spans and 11 spans. Concerning the design, an attractive appearance of the sub- and super-structure was importantin determining the form. -
24Th ICOLD Congress in Kyoto June 6Th, 2012 Norihisa Matsumoto Japan Commission on Large Dams
“Dams in Japan” Memorial lecture at 24th ICOLD Congress in Kyoto June 6th, 2012 Norihisa Matsumoto Japan Commission on Large Dams 1. Distinguished guests, ladies and gentlemen. It is my great pleasure to have this opportunity to talk on “Dams in Japan” at this opening ceremony of 24th ICOLD Kyoto Congress1. 24th ICOLD Congress 2 to 8 June 2012 ~ Kyoto, Japan 【JWA】 Norihisa Matsumoto Japan Commission on Large Dams 1 2. This diagram shows the increase in the number of dams which are higher than 15 m. Before 1900, we had about seven hundred irrigation dams. We started our modern dam construction in the end of the 19th century. The first masonry concrete gravity dam was completed in the year 1900. In those early days, the irrigation dams dominated in numbers, and hydropower and multipurpose dams increased later on2. The increase of dams higher than 15 m after 1900 2,500 Municipal water 2,000 Flood control Multipurpose 1,500 Hydropower Irrigation 1,000 Number dams of 500 0 920 960 000 1910 -1 -1930 -1940 -1950 -1 -1970 -1980 -1990 -2 -2009 0- 【JCOLD】 190 Excluding 672 dams constructed before 1900, mainly irrigation use. 2 3. This chart shows which dam types are adopted in Japan3. Earhtfill, concrete gravity and rockfill are major dam types. The earthfill type is usually used for small irrigation dams. Type of dams in Japan 52 43 985 1043 281 Earthfill Rockfill Coccrete Gravity Concrete Arch Others 3 4. Now we are looking at Sayama-ike Dam4. It was built in the early 7th century to supply irrigation water for rice crops, a Japanese staple food. -
水道水源と水系別給水区域概要図 Outline of Water Resources and Service Areas by River Systems
水道水源と水系別給水区域概要図 Outline of Water Resources and Service Areas by River Systems 東京都水道局の概要 Yagisawa Dam Crest height 131m Naramata Dam Eective storage capacity 175.8 million m3 Water utilization capacity 115.5 million m3 Crest height 158m Eective storage capacity 85.00 million m3 Water utilization capacity 85.00 million m3 Fujiwara Dam Crest height 95m Outline of the Tokyo Waterworks Bureau Aimata Dam Eective storage capacity 35.89 million m3 Water utilization capacity 31.01 million m3 Kusaki Dam Crest height 67m Eective storage capacity 20.0 million m3 Sonohara Dam Crest height 140m Water utilization capacity 20.0 million m3 Eective storage capacity 50.50 million m3 Nakagawa River 3 Yanba Dam Akayagawa River Water utilization capacity 50.50 million m Kasumigaura Crest height 77m Water Conveyance Eective storage capacity 14.14 million m3 Katashinagawa River Water utilization capacity 13.22 million m3 Eective storage capacity 90.0 million m3 Agatsumagawa River Water utilization capacity 90.0 million m3 Construction period From 1976 to 2015 Construction period From 1967 to 2019 Watarasegawa River S51~H27 Tone Large Weir Kasumigaura kaihatsu Lake Kasumigaura Shimokubo Dam Eective storage capacity 617.0 million m3 Crest height 129m Tonegawa River Water utilization capacity 278.0 million m3 Eective storage capacity 120.0 million m3 Watarase Reservoir Water utilization capacity120.0 million m3 Kannagawa River Sekiyado Lock Gate Takizawa Dam Nakatsugawa River Musashi Channel Eective storage capacity 26.4 million m3 Water utilization capacity 26.4 -
(News Release) the Results of Radioactive Material Monitoring of the Surface Water Bodies Within Gunma Prefecture (July-September Samples)
(News Release) The Results of Radioactive Material Monitoring of the Surface Water Bodies within Gunma Prefecture (July-September Samples) Friday, November 8, 2013 Water Environment Division, Environment Management Bureau, Ministry of the Environment Direct line: 03-5521-8316 Switchboard: 03-3581-3351 Director: Masanobu Miyazaki (ext. 6610) Deputy Director: Saori Nagasawa (ext. 6614) Coordinator: Katsuhiko Sato (ext. 6628) In accordance with the Comprehensive Radiation Monitoring Plan determined by the Monitoring Coordination Meeting, the Ministry of the Environment (MOE) is continuing to monitor radioactive materials in water environments (surface water bodies (rivers, lakes and headwaters, and coasts), etc.). Samples taken from the surface water bodies of Gunma Prefecture during the period of July 17-September 30, 2013 have been measured as part of MOE’s efforts to monitor radioactive materials; the results have recently been compiled and are released here. The monitoring results of radioactive materials in surface water bodies carried out to date can be found at the following web page: http://www.env.go.jp/jishin/rmp.html#monitoring 1. Survey Overview (1) Survey Locations 68 environmental reference points, etc. in the surface water bodies within Gunma Prefecture (Rivers: 44 locations, Lakes and headwaters: 24 locations) (2) Survey Method ・ Measurement of concentrations of radioactive materials (radioactive cesium (Cs-134 and Cs-137)) in water and sediment ・ Measurement of concentrations of radioactive materials and spatial dose-rate in soil in the surrounding environment of water and sediment sample collection points (river terraces, etc.) 2. Outline of Results (* denotes the results of the previous survey: May-July 2013) (1) Water Quality (Lower detection limit: 1Bq/L) Cs-134+Cs-137: Not detectable (ND) at any location (* ND at any location) <Reference> Specification and Standards for Food, Food Additives, etc. -
(News Release) the Results of Radioactive Material Monitoring of the Surface Water Bodies Within Gunma Prefecture (October-December Samples)
(News Release) The Results of Radioactive Material Monitoring of the Surface Water Bodies within Gunma Prefecture (October-December Samples) Friday, March 1, 2013 Water Environment Division, Environment Management Bureau, Ministry of the Environment Direct line: 03-5521-8316 Switchboard: 03-3581-3351 Director: Tadashi Kitamura (ext. 6610) Deputy Director: Tetsuo Furuta (ext. 6614) Coordinator: Katsuhiko Sato (ext. 6628) In accordance with the Comprehensive Radiation Monitoring Plan determined by the Monitoring Coordination Meeting, the Ministry of the Environment (MOE) is continuing to monitor radioactive materials in water environments (surface water bodies (rivers, lakes and headwaters, and coasts), etc.). Samples taken from the surface water bodies of Gunma Prefecture during the period of October 8-December 19, 2012 have been measured as part of MOE’s efforts to monitor radioactive materials; the results have recently been compiled and are released here. The monitoring results of radioactive materials in surface water bodies carried out to date can be found at the following web page: http://www.env.go.jp/jishin/rmp.html#monitoring 1. Survey Overview (1) Survey Locations 70 environmental reference points, etc. in the surface water bodies within Gunma Prefecture (Rivers: 48 locations, Lakes: 22 locations) (2) Survey Method ・ Measurement of concentrations of radioactive materials (radioactive cesium (Cs-134 and Cs-137), etc.) in water and sediment ・ Measurement of concentrations of radioactive materials and spatial dose-rate in soil in the surrounding environment of water and sediment sample collection points (river terraces, etc.) 2. Outline of Results (* denotes the results of the previous survey: July-October 2012) (1) Water Quality (Lower detection limit: 1Bq/L) Cs-134+Cs-137: Not detectable (ND) at any location (* ND-1Bq/L) <Reference> Specification and Standards for Food, Food Additives, etc. -
(News Release) the Results of Radioactive Material Monitoring of the Surface Water Bodies Within Gunma Prefecture (October-December Samples)
(News Release) The Results of Radioactive Material Monitoring of the Surface Water Bodies within Gunma Prefecture (October-December Samples) Friday, February 7, 2014 Water Environment Division, Environment Management Bureau, Ministry of the Environment Direct line: 03-5521-8316 Switchboard: 03-3581-3351 Director: Masanobu Miyazaki (ext. 6610) Deputy Director: Saori Nagasawa (ext. 6614) Coordinator: Katsuhiko Sato (ext. 6628) In accordance with the Comprehensive Radiation Monitoring Plan determined by the Monitoring Coordination Meeting, the Ministry of the Environment (MOE) is continuing to monitor radioactive materials in water environments (surface water bodies (rivers, lakes and headwaters, and coasts), etc.). Samples taken from the surface water bodies of Gunma Prefecture during the period of October 1-December 13, 2013 have been measured as part of MOE’s efforts to monitor radioactive materials; the results have recently been compiled and are released here. The monitoring results of radioactive materials in surface water bodies carried out to date can be found at the following web page: http://www.env.go.jp/jishin/rmp.html#monitoring 1. Survey Overview (1) Survey Locations 72 environmental reference points, etc. in the surface water bodies within Gunma Prefecture (Rivers: 48 locations, Lakes and headwaters: 24 locations) (2) Survey Method ・ Measurement of concentrations of radioactive materials (radioactive cesium (Cs-134 and Cs-137)) in water and sediment ・ Measurement of concentrations of radioactive materials and spatial dose-rate in soil in the surrounding environment of water and sediment sample collection points (river terraces, etc.) 2. Outline of Results (* denotes the results of the previous survey: July-September 2013) (1) Water Quality (Lower detection limit: 1Bq/L) Cs-134+Cs-137: Not detectable (ND) at any location (* ND at any location) <Reference> Specification and Standards for Food, Food Additives, etc. -
2. Outline of the Tokyo Waterworks 第2 東京都水道局の概要 1 Service Area 1 給水区域等
2. Outline of the Tokyo Waterworks 第2 東京都水道局の概要 1 Service Area 1 給水区域等 The Bureau of Waterworks supplies water to the 23 wards 水道局は、23 区と多摩地区の 25 市町に給水して and 25 cities and towns in the Tama area. In addition, the いるほか、給水区域に含まれていない未統合3市に対 bureau diverts water to three unincorporated cities in the して分水を行っている。 Tama area that are not included in the service area. このうち多摩地区の5市については、それぞれの地 For the five cities in the Tama area, we commission the 域のお客さまと密接にかかわる水道料金徴収等の業務 affairs related to customer service, such as the collection を、各市に委託している。これについては、今後、順 of water bills, to the cities. We will dissolve these 次解消していく予定である。 commissions sequentially in the future. Table : Basic Data on Water Supply (As of March 2009 (Heisei 21)) 表 給水区域面積等(平成21年3月現在) Service area 2 給水区域面積 1222.78km Population served 給水人口 12,554,106人(people) Pervasion 普及率 100% Number of service connections 給水件数 6,831,308件(cases) Total length of distribution pipes 配水管延長 25,823km Total capacity of facilities 3 3 施設能力 6,859,500m /日(m /day) Total distribution amount per year 3 3 年間総配水量 1,581,925×10 m Maximum distribution amount per day 3 3 一日最大配水量 4,824,000m /日(m /day) Ave. distribution amount per day 3 3 一日平均配水量 4,334,000m /日(m /day) (note)Service area, population served, pervasion and number of service connections are numbers as of October 1st, 2008(Heisei 20). (注)給水区域面積、給水人口、普及率及び給水件数については、平成20年10月1日を基準日とした。 7 Figure : Outline of Water Resources and Service Areas by River Systems 図 水道水源と水系別給水区域概要図 Yagisawa Dam Crest height 131 m Naramata Dam Effective storage capacity 175.8 million m3 -
Fy2014 [Pdf 9207Kb]
FY2014 Results of the Radioactive Material Monitoring in the Water Environment March 2016 Ministry of the Environment Contents Outline .......................................................................................................................................................... 1 Part 1: National Radioactive Material Monitoring in the Water Environment in the Whole of Japan (FY2014) ....................................................................................................................................................... 6 1. Objective and Details ............................................................................................................................ 6 1.1 Objective ......................................................................................................................................... 6 1.2 Details ............................................................................................................................................. 6 2. Survey Methods and Analysis Methods ............................................................................................. 18 2.1 Survey methods ............................................................................................................................ 18 2.2 Analysis methods .......................................................................................................................... 19 3. Results ............................................................................................................................................... -
Dams Constructed in the Tone River Dams Constructed in the Tone River 600 12
24th ICOLD Congress 2 to 8 June 2012 ~ Kyoto, Japan 【JWA】 Norihisa Matsumoto Japan Commission on Large Dams The increase of dams higher than 15 m after 1900 Dams constructeed in Japan ( Dam Height over 15m) 2,500 Municipal water 2,000 Flood control Multipurpose 1,500 Hydropower Irrigation 1,000 Numberdamsof 500 0 -1920 -1930 -1940 -1950 -1960 -1970 -1980 -1990 -2000 -2009【JCOLD】 1900-1910 Excluding 672 dams constructed before 1900, mainly irrigation use. Type of dams in Japan 52 43 985 1043 281 Earthfill Rockfill Coccrete Gravity Concrete Arch Others Sayama-ike Dam 2003 【Osaka Pref.】 History of Modification of Sayamaike Dam 2001 Rehabilitation ③. 1608 ①. 1926~1931 1962~1964 ④-2. 1452 ②. 1620~1621 1693~1694 ④-1. 1202 1857~1859 ⑤. 762 ⑥. 731 ⑦. 616 ⑧-2. 1596(Earthquake) ⑧-1. 734(Earthquake) 【Osaka Pref.】 Water has sustained population (million) (million ha) (million m3) 140 10 5,000 9 120 Population 8 4,000 100 7 Active storage capacity 3,000 80 6 5 60 Cultivated area 4 2,000 Population 40 3 Cultivatedarea 2 1,000 20 Activestorage capacity 1 0 ≈ 0 0 A.D. 6000 800 1000 1200 1400 1600 1800 2000 【MAFF】 Food and water Increase Food Efficient Water Self-sufficiency Management 108m3 VITRTUAL WATER 80 billion m3 water imported (2005) 【 MOE 】 The first hydropower station in Japan Keage Hydroelectric Power Station 1st Stage 60kW ‐200kW 19 units Total 1760kW Commissioned since 1891 by Kyoto City Utilized for - Spinning - Lighting - Textile - Street cars A Element of Lake Biwa Canal Project 1895 【Kyoto City & KEPCO】 Development of hydropower in Japan -
Print Sample of English Manuscript
Annual Journal of Hy draulic Engineering, JSCE, Vol.5 9, 2015, February INVESTIGATING THE HYDROLOGIC RESPONSE OF CURRENT DAM OPERATION SYSTEM TO FUTURE CLIMATE IN A SNOWY RIVER BASIN (YATTAJIMA) OF JAPAN Maheswor SHRESTHA1, Patricia Ann JARANILLA-SANCHEZ2, Lei WANG 3 and Toshio KOIKE4 1,2Member of JSCE, Ph. D., Research Associate, Dept. of Civil Eng., the University of Tokyo (Bunkyo-ku, Tokyo, 113-8656, Japan) 3Member of JSCE, Ph. D., Professor, Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (Beijing, 100085, China) 4Fellow of JSCE, Dr. Eng., Professor, Dept. of Civil Eng., the University of Tokyo (Bunkyo-ku, Tokyo, 113-8656, Japan) A distributed biosphere hydrological model with energy balance based multilayer snow physics (WEB-DHM-S) was implemented to investigate the hydrologic response of the current dam operation system to future climate in a snowy river basin (Yattajima basin) of Japan considering the impacts on flood, drought and dam behavior. Dynamic downscaled data (6 km and hourly) for past and future climate were archived from Data Integration and Analysis System (DIAS). Dam operation modules for 6 dams were formulated based on observed patterns of dam inflow/outflow and were validated in 2001-2005. The climatological average analysis of past (1981-2010) vs future (2081-2110) simulation results indicate that a remarkable decrease in runoff in May at Yagisawa, Naramata, Fujiwara and Aimata dam is observed due to shift of snowmelt towards April. Top 20 flood analysis reveals that future peak flow will increase in all gauges and dams except Fujiwara dam. Flood risk is reduced by Fujiwara dam due to the projected changes in snow seasonality.