The Running Man Nebula the Orion Nebula

Total Page:16

File Type:pdf, Size:1020Kb

The Running Man Nebula the Orion Nebula WESTCHESTER AMATEUR ASTRONOMERS JANUARY 2013 Sky tch The Running Man Nebula Olivier Prache captured this image of NGC 1977 (the Running Man nebula) in Orion. He employed a Hyperion 12.5 inch astrograph and a FLI ML16803 camera on a MI-250 Mount. The exposure was 100 minutes each R,G,B no binning with 10- minutes sub frames; acquired with CCD Commander and MaxImDL. The image was processed with CCDStack2 and Photoshop. NGC 1977 is a reflection nebula associated with the Great Nebula in Orion and lies at a distance of 1500 light yrs. The Orion Nebula Courtesy of Carl Lydon is this image of M42, the Great Nebula in Orion. This vast stellar nursery is one of the gems of the winter sky. Carl’s image combines four four-minute and 20 one-minute exposures. He stacked these in photoshop (with levels, curves and a high dynamic range filter). He used a Canon Rebel T3 camera, though an 11" Celestron 1100HD telescope. THE ASTRONOMY COMMUNITY SINCE 1983 Page 1 WESTCHESTER AMATEUR ASTRONOMERS JANUARY 2013 Events for January 2013 WAA Lectures • Newsletter Editor: Tom Boustead “Modern Telescope Mirror • Equipment Manager: Darryl Ciucci Manufacturing for Ground and Space The annual audit will be performed by Darryl Ciucci, Applications” Bill Newell. Friday January 11th, 7:30pm Miller Lecture Hall, Pace University The membership approved Bylaws amendments that Pleasantville, NY will permit official notifications from the club to be Mr. Charlie Schaub will discuss the techniques and made via email. equipment used to develop telescope mirrors for space and ground applications. It will highlight how modern 2013 Lecture Dates telescope mirror manufacturing involves a unique Lectures (Fridays, 7:30 pm, Miller Hall, Pace University) blending of the artisan classical finishing processes combined with modern computer controlled Winter-Spring Fall technologies. Mr. Schaub is the Director of Advanced Systems in the Intelligence, Surveillance, and January 11, 2013 (second September 6, 2013 Reconnaissance Division of the United Technologies Friday) Aerospace Systems group. A graduate of the Institute February 1, 2013 October 4, 2013 of Optics of the University of Rochester, he leads a March 1. 2013 November 1, 2013 team of scientists, engineers, and technicians in the April 5, 2013 December 6, 2013 development of advanced optical products for industry, the U.S. Government, and foreign May 3, 2013 governments. Free and open to the public. Directions June 7, 2013 and Map. Starway to Heaven More Upcoming Lectures There will be no public Starway to Heaven in January Miller Lecture Hall, Pace University or February. Starway to Heaven events will resume in Pleasantville, NY March. On February 1st, our speaker will be Brother Robert Novak, Ph.d., who will will present the latest results New Members. from Mars Curiosity. Lectures are free and open to the Stephanie Lester & John Naval - Dobbs Ferry public. Gary Telfer - Scarborough Annual Meeting Results Renewing Members. At the Annual Meeting on December 7, 2012, a new Hans Minnich - Bronx Larry and Elyse Faltz - Larchmont Board of Directors was elected. For 2013, the officers Jay Friedman - Katonah are: Bob Kelly - Ardsley • President: Larry Faltz Douglas & Vivian Towers - Yonkers • Senior VP: Charlie Gibson Mandira Roy - Hastings-on-Hudson • Treasurer: Doug Baum Anthony Sarro - Scarsdale • VP Membership: Paul Alimena Michael Rinaldi - Scarsdale • VP Lectures: Pat Mahon Jonathan Gold - Ossining • VP Field Events: Bob Kelly Ron Posmentier - Croton-on-Hudson Additional leadership positions appointed by the WAA APPAREL Board are: Charlie Gibson will be bringing WAA apparel for sale to • Assistant VP: Claudia Parrington WAA meetings. Items include: • Webmaster: David Parmet •Caps, $10 (navy and khaki) •Short Sleeve Polos, $12 (navy). THE ASTRONOMY COMMUNITY SINCE 1983 Page 2 WESTCHESTER AMATEUR ASTRONOMERS JANUARY 2013 Articles and Photos Some Discoveries by the Fermi Gamma Ray Telescope by Larry Faltz ! Gamma Rays argon-40, emitting a 1.460 MeV gamma ray and a neutrino. The adult human body contains about 160 Gamma (γ) rays are the highest frequency grams of potassium of which about 0.0117% is electromagnetic waves and therefore, by the particle/ potassium-40, whose decay produces about 4,400 wave duality of quantum mechanics, the most disintegrations per second. Considering that these energetic photons in the electromagnetic spectrum. energetic rays can ionize atoms in biologic We recall the Bohr equation for the energy of an molecules, they are potentially hazardous. Cellular electromagnetic wave, E=hν, where h is Planck’s and DNA repair mechanisms can deal with most of constant (6.626x10-34 joule-seconds) and ν (nu) is the the damage, but it is possible that some diseases, frequency (1/seconds). If you do the algebra, the particularly cancers, could be due to unrepaired seconds cancel and we get the value in joules, a unit genetic injury from intrinsic potassium-40 decay. of energy. Since we more commonly talk about Potassium-40 decay also contributes to the heating of wavelengths for electromagnetic waves, the the Earth’s core (about 20% of the total energy, the wavelength λ (lambda) is merely the speed of light in rest provided by uranium and thorium decay). a vacuum (c=2.99792458x108 meters/second) divided by frequency (so Bohr’s equation becomes E=hc/λ). Gamma rays from nuclear disintegration can be used Very energetic gamma radiation can have for medical diagnosis and treatment. The sugar wavelengths of less than a picometer (10-12 meters, analog fluorodeoxyglucose (FDG) can be made with less than the diameter of an atom), frequencies fluorine-18. Taken up by metabolically active tissues, greater than 10 exahertz (or >1019 Hz) and energies the 18FDG emits a positron, which collides with a above 100 KeV (7,300 times the energy needed to nearby electron to produce a gamma ray. The camera ionize a hydrogen atom). Gamma rays are so on a positron-emission tomography (PET) scanner energetic that they can create matter in the form of detects the positrons and creates images. electron-positron pairs (recall E=mc2, therefore by Technicium-99m is taken up by bone mineral and simple algebra m=h/λc). Thank you, special relativity detected by gamma cameras to produce bone scans. and quantum mechanics! And since the basic laws of The deadly gamma emitter cobalt-60 was an early physics are reversible, an electron and positron can radiotherapy source, but in modern medicine it finds annihilate to form a gamma ray. its place in gamma knife devices for cancer radiosurgery. On Earth, gamma radiation is emitted by certain radioactive decays, in small amounts from lightning Another source of gamma radiation is and in large amounts from nuclear explosions. The bremsstrahlung, or “braking radiation.” These waves most common natural source of terrestrial gamma are emitted when charged particles decelerate as they radiation is the decay of potassium-40. This isotope follow curved paths in an electromagnetic field. has a half-life of 1.248x109 years. Although 90% of Diagnostic X-ray machines produce their radiation in the time it undergoes beta decay by emitting an this manner, but gamma rays can be produced if the electron and antineutrino to become calcium-40, 10% particles are at much higher energies. of the time it captures an electron to become THE ASTRONOMY COMMUNITY SINCE 1983 Page 3 WESTCHESTER AMATEUR ASTRONOMERS JANUARY 2013 The most energetic gamma radiation is produced by a vacuum; light moves slower in other media, like air, cataclysmic processes in the cosmos: supernovas, water or glass). This creates a kind of sonic boom, neutron stars and black holes. It is thought that most generating electron-positron pairs in an “air shower” of this radiation is the result of inverse Compton that in turn produces a cone of visible light. Special scattering and synchrotron radiation. In inverse telescopes in dark sites can detect these emissions. Compton scattering, low energy photons are kicked The spectrum of Cerenkov radiation has been well- up to higher energies by interaction with electrons studied, allowing the source, either gamma rays moving at relativistic speeds, such as in the accretion (photons) or cosmic rays (charged particles) to be disks around black holes. Synchrotron radiation is determined. produced when charged particles move along curved The first gamma-ray telescope was carried on board paths at ultra-relativistic speeds in a magnetic field. the American satellite Explorer 11 in 1961. Gamma- It’s the likely mechanism for the radiation component ray bursts from deep space were discovered by the of pulsar and black hole jets. An earthly example is Vela satellites, originally designed to detect nuclear radiation from the Large Hadron Collider at CERN. explosions on earth. Throughout the 1970’s and 80’s, In the LHC, highly energetic protons travelling at smaller gamma ray detectors made a number of 0.999999991 c are kept on their 27-km circular path interesting discoveries, detecting many gamma ray by 1,600 superconducting magnets. They bursts and pulsars. The 1991 Compton Gamma Ray continuously emit gamma rays, and the flux is so high Observatory mapped thousands of sources. Their that anyone standing in the corridor next to the device distribution showed that they did not arise in the would be fatally irradiated in a fraction of a second. Milky Way. Gamma ray bursts are now known to The real problem for the experiment, though (since arise from supernovas and perhaps from the merger of the device is cleared of personnel before a run) is that two neutron stars. conservation of energy requires that synchrotron radiation carry energy away from the proton beam, On June 11, 2008, the Fermi Gamma Ray Telescope reducing its intensity. was launched. Originally called GLAST, the Gamma Ray Large Area Telescope, Fermi has had a remarkably productive scientific life using its two instruments, the Large Area Telescope and the Gamma Ray Burst Monitor.
Recommended publications
  • Staff, Visiting Scientists and Graduate Students 2010
    Staff, Visiting Scientists and Graduate Students at the Pescara Center November 2010 2 Contents ICRANet Faculty Staff……………………………………………………………………. p. 17 Adjunct Professors of the Faculty .……………………………………………………… p. 31 Lecturers……………………………………………………………………………………..p. 67 Research Scientists ……………………………………………………………………….. p. 93 Short-term Visiting Scientists …………………………………………………………... p. 109 Long-Term Visiting Scientists …………………………………………………………... p. 129 IRAP Ph. D. Students …………………………………………………………………….. p. 141 IRAP Ph. D. Erasmus Mundus Students………………………………………………. p. 161 Administrative and Secretarial Staff …………………………………………………… p. 171 3 4 ICRANet Faculty Staff Belinski Vladimir ICRANet Bianco Carlo Luciano ICRANet Novello Mario Cesare Lattes-ICRANet Chair CBPF, Rio de Janeiro, Brasil Rueda Jorge A. ICRANet Ruffini Remo Università di Roma "Sapienza"and ICRANet Vereshchagin Gregory ICRANet Xue She-Sheng ICRANet 5 Adjunct Professors Of The Faculty Aharonian Felix Albert Benjamin Jegischewitsch Markarjan Chair Dublin Institute for Advanced Studies, Dublin, Ireland Max-Planck-Institut für Kernphysis, Heidelberg, Germany Amati Lorenzo Istituto di Astrofisica Spaziale e Fisica Cosmica, Italy Arnett David Subramanyan Chandrasektar- ICRANet Chair University of Arizona, Tucson, USA Chakrabarti Sandip P. Centre for Space Physics, India Chardonnet Pascal Université de la Savoie, France Chechetkin Valeri Mstislav Vsevolodich Keldysh-ICRANet Chair Keldysh institute for Applied Mathematics Moscow, Russia Christodoulou Dimitrios ETH, Zurich, Switzerland Coppi Bruno
    [Show full text]
  • Astronomical Distances
    The Act of Measurement I: Astronomical Distances B. F. Riley The act of measurement causes astronomical distances to adopt discrete values. When measured, the distance to the object corresponds through an inverse 5/2 power law – the Quantum/Classical connection – to a sub-Planckian mass scale on a level or sub-level of one or both of two geometric sequences, of common ratio 1/π and 1/e, that descend from the Planck mass and may derive from the geometry of a higher-dimensional spacetime. The distances themselves lie on the levels and sub-levels of two sequences, of common ratio π and e, that ascend from the Planck length. Analyses have been performed of stellar distances, the semi-major axes of the planets and planetary satellites of the Solar System and the distances measured to quasars, galaxies and gamma-ray bursts. 1 Introduction Using Planck units the Quantum/Classical connection, characterised by the equation (1) maps astronomical distances R – in previous papers only the radii of astronomical bodies [1, 2] – onto sub-Planckian mass scales m on the mass levels and sub-levels1 of two geometric sequences that descend from the Planck mass: Sequence 1 of common ratio 1/π and Sequence 3 of common ratio 1/e.2 The sequences may derive from the geometry of a higher-dimensional spacetime [3]. First, we show that several distances associated with the Alpha Centauri system correspond through (1) to the mass scales of principal levels3 in Sequences 1 and 3. We then show that the mass scales corresponding through (1) to the distances from both Alpha Centauri and the Sun to the other stars lie on the levels and sub-levels of Sequences 1 and 3.
    [Show full text]
  • Glossary of Terms Absorption Line a Dark Line at a Particular Wavelength Superimposed Upon a Bright, Continuous Spectrum
    Glossary of terms absorption line A dark line at a particular wavelength superimposed upon a bright, continuous spectrum. Such a spectral line can be formed when electromag- netic radiation, while travelling on its way to an observer, meets a substance; if that substance can absorb energy at that particular wavelength then the observer sees an absorption line. Compare with emission line. accretion disk A disk of gas or dust orbiting a massive object such as a star, a stellar-mass black hole or an active galactic nucleus. An accretion disk plays an important role in the formation of a planetary system around a young star. An accretion disk around a supermassive black hole is thought to be the key mecha- nism powering an active galactic nucleus. active galactic nucleus (agn) A compact region at the center of a galaxy that emits vast amounts of electromagnetic radiation and fast-moving jets of particles; an agn can outshine the rest of the galaxy despite being hardly larger in volume than the Solar System. Various classes of agn exist, including quasars and Seyfert galaxies, but in each case the energy is believed to be generated as matter accretes onto a supermassive black hole. adaptive optics A technique used by large ground-based optical telescopes to remove the blurring affects caused by Earth’s atmosphere. Light from a guide star is used as a calibration source; a complicated system of software and hardware then deforms a small mirror to correct for atmospheric distortions. The mirror shape changes more quickly than the atmosphere itself fluctuates.
    [Show full text]
  • EBL with GRB and Blazars Joel Primack with Rudy Gilmore, Alberto Dominguez, & Rachel Somerville
    EBL with GRB and Blazars Joel Primack with Rudy Gilmore, Alberto Dominguez, & Rachel Somerville Thursday, March 25, 2010 The EBL is very difficult to observe directly because of foregrounds, especially the zodiacal light. Reliable lower limits are obtained by integrating the light from observed galaxies. The best upper limits come from (non-) attenuation of gamma rays from distant blazars, but these are uncertain because of the unknown emitted spectrum of these blazars. This talk concerns both the optical-IR EBL relevant to attenuation of TeV gamma rays, and also the UV EBL relevant to attenuation of gamma rays from very distant sources observed by Fermi and low-threshold ground- based ACTs. log dNγ/dE Just as IR light penetrates dust better than shorter wavelengths, so lower energy gamma rays penetrate the EBL better than higher energy, resulting in a softer observed gamma- ray spectrum from more distant sources. log E Thursday, March 25, 2010 PILLAR OF STAR BIRTH Carina Nebula in UV Visible Light Thursday, March 25, 2010 PILLAR OF STAR BIRTH Carina Nebula in IR Light Longer wavelength light penetrates the dust better Longer wavelength gamma rays also penetrate the EBL better Thursday, March 25, 2010 Gamma Ray Attenuation due to γγ e+e- If we know the intrinsic spectrum, we can infer the optical depth (E,z) from the observed spectrum. In -Γ practice, we assume that dN/dE|int is not harder than E with Γ = 1.5, since local sources have Γ ≥ 2. Thursday, March 25, 2010 Three approaches to calculate the EBL: Backward Evolution, which starts with the existing galaxy population and evolves it backward in time -- e.g., Stecker, Malkan, & Scully 2006.
    [Show full text]
  • Analytic Models Are Consistent with These Lower Limits and with the Gamma-Ray Upper Limit Constraints
    Radiation Fields in the Universe: Extragalactic Background Light and Gamma-ray Attenuation Joel Primack University of California, Santa Cruz Friday, July 15, 2011 Preview Data from (non-)attenuation of gamma rays from AGN and GRBs gives upper limits on the EBL from UV to mid-IR that are ~2x lower limits from observed galaxies. These upper limits now rule out some EBL models and purported observations, with improved data likely to provide even stronger constraints. EBL calculations based on careful extrapolation from observations and on semi-analytic models are consistent with these lower limits and with the gamma-ray upper limit constraints. Such comparisons “close the loop” on cosmological galaxy formation models, since they account for all the light, including that from galaxies too faint to see. Catching a few GRBs with ground-based ACT arrays or HAWC could provide important new constraints on star formation history. See the written version of my invited talk at the Texas 2010 meeting for a brief summary with refs: http://arxiv.org/abs/1107.2566 Friday, July 15, 2011 The EBL is very difficult to observe directly because of foregrounds, especially the zodiacal light. Reliable lower limits are obtained by integrating the light from observed galaxies. The best upper limits come from (non-) attenuation of gamma rays from distant blazars, but these are uncertain because of the unknown emitted spectrum of these blazars. This talk concerns both (1) the optical-IR EBL relevant to attenuation of TeV gamma rays, and also (2) the UV EBL relevant to attenuation of multi- GeV gamma rays from very distant GRBs & blazars observed by Fermi and low-threshold ground-based ACTs, including future arrays (e.g., CTA).
    [Show full text]
  • Recent Results in High Energy Gamma-Ray Astrophysics
    IL NUOVO CIMENTO Vol. 32 C, N. 3-4 Maggio-Agosto 2009 DOI 10.1393/ncc/i2009-10424-6 Colloquia: IFAE 2009 Recent results in High Energy Gamma-ray Astrophysics G. Barbiellini(1)(2)andF. Longo(1)(2) (1) Dipartimento di Fisica, Universit`a di Trieste - Trieste, Italy (2) INFN, Sezione di Trieste - Trieste, Italy (ricevuto il 19 Settembre 2009; pubblicato online il 12 Ottobre 2009) Summary. — Since June 2008 two gamma-ray satellite experiments, AGILE and Fermi -LAT, have been in contemporaneous operation. Their results allow the study of gamma-ray astrophysics from space to enter in a new era. Starting from the heritage of the EGRET experiment, the science objectives of these two experiments are reviewed. The role of the technological improvement in such achievements is also briefly introduced. PACS 95.55.Ka –X-andγ-ray telescopes and instrumentation. 1. – Introduction to High Energy Gamma-ray Astrophysics main questions The study of the sky in the energy band E>10 MeV to E ∼ 100 GeV is commonly called High Energy Gamma-ray Astrophysics. In this energy band, some of the most energetic phenomena of the Universe happen. The processes at play in the high energy sources are characterized by a wide-band non-thermal emission. Observing the sources from radio to gamma-rays helps to clarify their nature and their environments. Moreover fundamental physics questions could be answered using the information provided by distant high energy sources. The two approaches are indeed complementary in the sense the second one needs the first to avoid potential source issues, while the first one needs the second one to address potential implications of the observations.
    [Show full text]
  • The Afterglows of Swift-Era Short and Long Gamma-Ray Bursts
    The Afterglows of Swift-era Short and Long Gamma-Ray Bursts Dissertation zur Erlangung des akademischen Grades Dr. rer. nat. vorgelegt dem Rat der Physikalisch-Astronomischen Fakult¨at der Friedrich-Schiller-Universit¨atJena eingereicht von Dipl.-Phys. David Alexander Kann geboren am 15.02.1977 in Trier Gutachter 1. Prof. Dr. Artie Hatzes, Th¨uringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg 2. Prof. Dr. J¨orn Wilms, Dr. Remeis-Sternwarte, Sternwartstraße 7, 96049 Bamberg 3. PD Dr. Hans-Thomas Janka, Max-Planck-Institut fr Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching Tag der letzten Rigorosumspr¨ufung: 13. 07. 2011 Tag der ¨offentlichen Verteidigung: 13. 07. 2011 Zusammenfassung Das Ph¨anomen der Gammastrahlenausbr¨uche (Englisch: Gamma-Ray Bursts, kurz: GRBs) war auch lange nach ihrer Entdeckung vor ¨uber vier Jahrzehnten ein großes R¨atsel. Selbst heute, ¨uber ein Jahrzehnt seit Beginn der “Ara¨ der Nachgl¨uhen” (engl.: Afterglows) sind noch viele Fragen unbeantwortet. Das akzeptierte Bild, welches einen Großteil der Daten erkl¨aren kann ist, dass GRBs erzeugt werden, wenn ein massereicher Himmelsk¨orper (en- tweder ein Stern, der die Hauptreihe verlassen hat, oder miteinander verschmelzende kom- pakte Objekte) in kosmologischer Distanz zu einem schnell rotierenden Objekt kollabiert (ein Schwarzes Loch oder vielleicht ein kurzlebiger Magnetar), welches ultrarelativistische Materieausw¨urfe (sogenannte “Jets”) entlang der Polachse ausschleudert. Die interne Dissi- pation von Energie in dem Jet f¨uhrt zu kollimierter nicht-thermischer Strahlung bei hohen Energien (der eigentliche GRB), w¨ahrend Schockfronten, die bei der Interaktion des Jets mit der interstellaren Materie erzeugt werden, zu einem langlebigen abklingenden Afterglows f¨uhren. Die gesammelten physikalischen Prozesse, die die GRB-Emission beschreiben, werden als das Standard-Feuerballmodell bezeichnet.
    [Show full text]
  • The Benefit of Simultaneous Seven-Filter Imaging: 10 Years of Grond Observations
    Draft version December 4, 2018 Typeset using LATEX preprint2 style in AASTeX61 THE BENEFIT OF SIMULTANEOUS SEVEN-FILTER IMAGING: 10 YEARS OF GROND OBSERVATIONS J. Greiner1 1Max-Planck-Institut für extraterrestrische Physik, 85740 Garching, Germany ABSTRACT A variety of scientific results have been achieved over the last 10 years with the GROND simul- taneous 7-channel imager at the 2.2m telescope of the Max-Planck Society at ESO/La Silla. While designed primarily for rapid observations of gamma-ray burst afterglows, the combination of si- 0 0 0 0 multaneous imaging in the Sloan g r i z and near-infrared JHKs bands at a medium-sized (2.2 m) telescope and the very flexible scheduling possibility has resulted in an extensive use for many other astrophysical research topics, from exoplanets and accreting binaries to galaxies and quasars. Keywords: instrumentation: detectors, techniques: photometric arXiv:1812.00636v1 [astro-ph.HE] 3 Dec 2018 [email protected] 2 1. INTRODUCTION (5) mapping of galaxies to study their stel- An increasing number of scientific questions lar population; (6) multi-color light curves of require the measurement of spatially and spec- supernovae to, e.g., recognize dust formation trally resolved intensities of radiation from as- (Taubenberger et al. 2006); (7) differentiat- trophysical objects. Over the last decade, tran- ing achromatic microlensing events (Paczyn- sient and time-variable sources are increasingly ski 1986) from other variables with similar moving in the focus of present-day research light curves; (8) identifying objects with pe- (with its separate naming of “time-domain as- culiar SEDs, e.g.
    [Show full text]
  • Annual Report 2009 ESO
    ESO European Organisation for Astronomical Research in the Southern Hemisphere Annual Report 2009 ESO European Organisation for Astronomical Research in the Southern Hemisphere Annual Report 2009 presented to the Council by the Director General Prof. Tim de Zeeuw The European Southern Observatory ESO, the European Southern Observa­ tory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. Several other countries have expressed an interest in membership. Created in 1962, ESO carries out an am­ bitious programme focused on the de­ sign, construction and operation of power­ ful ground­based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world­ View of the La Silla Observatory from the site of the One of the most exciting features of the class observing sites in the Atacama 3.6 ­metre telescope, which ESO operates together VLT is the option to use it as a giant opti­ with the New Technology Telescope, and the MPG/ Desert region of Chile: La Silla, Paranal ESO 2.2­metre Telescope. La Silla also hosts national cal interferometer (VLT Interferometer or and Chajnantor. ESO’s first site is at telescopes, such as the Swiss 1.2­metre Leonhard VLTI). This is done by combining the light La Silla, a 2400 m high mountain 600 km Euler Telescope and the Danish 1.54­metre Teles cope.
    [Show full text]
  • CV Gehrels 4-11
    CURRICULUM VITAE NAME: Neil Gehrels CITIZENSHIP: United States DATE OF BIRTH: October 3, 1952 PRESENT POSITION: Chief, Astroparticle Physics Laboratory, NASA/GSFC College Park Professor of Astronomy, U. Maryland Adjunct Professor of Astronomy & Astrophysics, Penn State RESEARCH AREAS: Gamma-Ray Astronomy High Energy Astrophysics Instrument Development EDUCATION: 1982 Ph.D. Physics, Caltech 1976 B.S. (Honors) Physics, University of Arizona 1976 B.M. Music, University of Arizona PREVIOUS POSITIONS: 1995 Visiting Professor of Astronomy, U. Maryland 1981-83 NAS/NRC Research Associate, GSFC 1977-81 Graduate Research Assistant, Caltech 1976-77 Graduate Fellow, Caltech 1974 Summer Research Assistant, Max Planck Inst. 1973-76 Undergraduate Research Assistant, U. Arizona HONORS AND AWARDS: 2012, Alumnus of the Year, Honors College, University of Arizona 2012, Harrie Massey Award, COSPAR 2011, Rossi Prize, AAS, P. Michelson, W. Attwood & Fermi team 2011, election to International Academy of Astronautics 2010, election to National Academy of Sciences 2009, Maria & Eric Muhlmann Award, Astron Soc Pacific, Swift Team 2009, George W. Goddard Award, SPIE society 2009, Henry Draper Medal, National Academy of Sciences 2008, election to American Academy of Arts and Sciences 2007, Bruno Rossi Prize, American Astron Society, with Swift Team 2006, Popular Science, Best of What's New Award, Swift Team 2005, NASA Exceptional Scientific Achievement Medal 2005, GSFC John C. Lindsay Award 2000, Randolph Lovelace Award, American Astronautical Society 1993, Fellow,
    [Show full text]
  • The Status of Gamma-Ray Astronomy
    32ND INTERNATIONAL COSMIC RAY CONFERENCE,BEIJING 2011 The status of gamma-ray astronomy 1 STEFAN FUNK 1Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Labo- ratory, Stanford University, Stanford, California 94305, USA [email protected] Abstract: Gamma-ray studies are an essential tool in our search for the origin of cosmic rays. Instruments like the Fermi-LAT, H.E.S.S., MAGIC and VERITAS have revolutionized our understanding of the high energy Universe. This paper describes the status of the very rich field of gamma-ray astrophysics that contains a wealth of data on Galactic and extragalactic particle accelerators. It is the write-up of a rapporteur talk given at the 32nd ICRC in Beijing, China in which new results were presented with an emphasis on the cosmic-ray related studies of the Universe. Keywords: 1 Introduction and General statements • OG 2.5: Instrumentation: 65 This paper is intended to give a summary of the results Taking a step back and looking at the overall situation of reported from the sessions OG 2.1-2.5 of the 32nd ICRC the field since the last ICRC two years ago, the field has that took place in August of 2011 in Beijing, China. The clearly seen several important milestones. basis of this write-up is the Rapporteur talk on these sessions (available at http://indico.ihep.ac. • The Fermi-LAT team has released their first cn/getFile.py/access?contribId=1388& (1FGL) [1] and second (2FGL) [2] catalogs of the sessionId=16&resId=0&materialId=slides& GeV sky.
    [Show full text]
  • The Afterglows of Swift -Era Gamma-Ray Bursts. I. Comparing
    The Astrophysical Journal, 720:1513–1558, 2010 September 10 doi:10.1088/0004-637X/720/2/1513 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFT AND SWIFT-ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS∗ D. A. Kann1,S.Klose1, B. Zhang2, D. Malesani3, E. Nakar4,5, A. Pozanenko6,A.C.Wilson7, N. R. Butler8,9,52, P. Jakobsson10,11, S. Schulze1,11, M. Andreev12,13, L. A. Antonelli14,I.F.Bikmaev15, V. Biryukov16,17,M.Bottcher¨ 18, R. A. Burenin6, J. M. Castro Ceron´ 3,19, A. J. Castro-Tirado20, G. Chincarini21,22,B.E.Cobb23,24,S.Covino21, P. D’Avanzo22,25,V.D’Elia14,26, M. Della Valle27,28,29, A. de Ugarte Postigo21, Yu. Efimov16, P. Ferrero1,30, D. Fugazza21,J.P.U.Fynbo3, M. Gålfalk31, F. Grundahl32, J. Gorosabel20, S. Gupta18,S.Guziy20, B. Hafizov33, J. Hjorth3, K. Holhjem34,35, M. Ibrahimov33,M.Im36, G. L. Israel14,M.Jelinek´ 20,B.L.Jensen3, R. Karimov33, I. M. Khamitov37, U.¨ Kizilogluˇ 38, E. Klunko39,P.Kubanek´ 19, A. S. Kutyrev40, P. Laursen3, A. J. Levan41, F. Mannucci42, C. M. Martin43, A. Mescheryakov6, N. Mirabal44,53, J. P. Norris45, J.-E. Ovaldsen46, D. Paraficz3, E. Pavlenko17, S. Piranomonte14,A.Rossi1, V. Rumyantsev17, R. Salinas47, A. Sergeev12,13, D. Sharapov33, J. Sollerman3,31, B. Stecklum1, L. Stella14, G. Tagliaferri21,N.R.Tanvir48, J. Telting33, V. Testa14, A. C. Updike49, A. Volnova50, D. Watson3, K. Wiersema48,51, and D. Xu3 1 Thuringer¨ Landessternwarte Tautenburg, Sternwarte 5, D–07778 Tautenburg, Germany 2 Department
    [Show full text]