Download This Article in PDF Format
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Staff, Visiting Scientists and Graduate Students 2010
Staff, Visiting Scientists and Graduate Students at the Pescara Center November 2010 2 Contents ICRANet Faculty Staff……………………………………………………………………. p. 17 Adjunct Professors of the Faculty .……………………………………………………… p. 31 Lecturers……………………………………………………………………………………..p. 67 Research Scientists ……………………………………………………………………….. p. 93 Short-term Visiting Scientists …………………………………………………………... p. 109 Long-Term Visiting Scientists …………………………………………………………... p. 129 IRAP Ph. D. Students …………………………………………………………………….. p. 141 IRAP Ph. D. Erasmus Mundus Students………………………………………………. p. 161 Administrative and Secretarial Staff …………………………………………………… p. 171 3 4 ICRANet Faculty Staff Belinski Vladimir ICRANet Bianco Carlo Luciano ICRANet Novello Mario Cesare Lattes-ICRANet Chair CBPF, Rio de Janeiro, Brasil Rueda Jorge A. ICRANet Ruffini Remo Università di Roma "Sapienza"and ICRANet Vereshchagin Gregory ICRANet Xue She-Sheng ICRANet 5 Adjunct Professors Of The Faculty Aharonian Felix Albert Benjamin Jegischewitsch Markarjan Chair Dublin Institute for Advanced Studies, Dublin, Ireland Max-Planck-Institut für Kernphysis, Heidelberg, Germany Amati Lorenzo Istituto di Astrofisica Spaziale e Fisica Cosmica, Italy Arnett David Subramanyan Chandrasektar- ICRANet Chair University of Arizona, Tucson, USA Chakrabarti Sandip P. Centre for Space Physics, India Chardonnet Pascal Université de la Savoie, France Chechetkin Valeri Mstislav Vsevolodich Keldysh-ICRANet Chair Keldysh institute for Applied Mathematics Moscow, Russia Christodoulou Dimitrios ETH, Zurich, Switzerland Coppi Bruno -
Astronomical Distances
The Act of Measurement I: Astronomical Distances B. F. Riley The act of measurement causes astronomical distances to adopt discrete values. When measured, the distance to the object corresponds through an inverse 5/2 power law – the Quantum/Classical connection – to a sub-Planckian mass scale on a level or sub-level of one or both of two geometric sequences, of common ratio 1/π and 1/e, that descend from the Planck mass and may derive from the geometry of a higher-dimensional spacetime. The distances themselves lie on the levels and sub-levels of two sequences, of common ratio π and e, that ascend from the Planck length. Analyses have been performed of stellar distances, the semi-major axes of the planets and planetary satellites of the Solar System and the distances measured to quasars, galaxies and gamma-ray bursts. 1 Introduction Using Planck units the Quantum/Classical connection, characterised by the equation (1) maps astronomical distances R – in previous papers only the radii of astronomical bodies [1, 2] – onto sub-Planckian mass scales m on the mass levels and sub-levels1 of two geometric sequences that descend from the Planck mass: Sequence 1 of common ratio 1/π and Sequence 3 of common ratio 1/e.2 The sequences may derive from the geometry of a higher-dimensional spacetime [3]. First, we show that several distances associated with the Alpha Centauri system correspond through (1) to the mass scales of principal levels3 in Sequences 1 and 3. We then show that the mass scales corresponding through (1) to the distances from both Alpha Centauri and the Sun to the other stars lie on the levels and sub-levels of Sequences 1 and 3. -
Glossary of Terms Absorption Line a Dark Line at a Particular Wavelength Superimposed Upon a Bright, Continuous Spectrum
Glossary of terms absorption line A dark line at a particular wavelength superimposed upon a bright, continuous spectrum. Such a spectral line can be formed when electromag- netic radiation, while travelling on its way to an observer, meets a substance; if that substance can absorb energy at that particular wavelength then the observer sees an absorption line. Compare with emission line. accretion disk A disk of gas or dust orbiting a massive object such as a star, a stellar-mass black hole or an active galactic nucleus. An accretion disk plays an important role in the formation of a planetary system around a young star. An accretion disk around a supermassive black hole is thought to be the key mecha- nism powering an active galactic nucleus. active galactic nucleus (agn) A compact region at the center of a galaxy that emits vast amounts of electromagnetic radiation and fast-moving jets of particles; an agn can outshine the rest of the galaxy despite being hardly larger in volume than the Solar System. Various classes of agn exist, including quasars and Seyfert galaxies, but in each case the energy is believed to be generated as matter accretes onto a supermassive black hole. adaptive optics A technique used by large ground-based optical telescopes to remove the blurring affects caused by Earth’s atmosphere. Light from a guide star is used as a calibration source; a complicated system of software and hardware then deforms a small mirror to correct for atmospheric distortions. The mirror shape changes more quickly than the atmosphere itself fluctuates. -
Constraining the Progenitor and Central Engine of Gamma-Ray Bursts with Observational Data
UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2015 Constraining the Progenitor and Central Engine of Gamma-ray Bursts with Observational Data Lu Houjun University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Stars, Interstellar Medium and the Galaxy Commons Repository Citation Houjun, Lu, "Constraining the Progenitor and Central Engine of Gamma-ray Bursts with Observational Data" (2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2366. http://dx.doi.org/10.34917/7645921 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. CONSTRAINING THE PROGENITOR AND CENTRAL ENGINE OF GAMMA-RAY BURSTS WITH OBSERVATIONAL DATA by HOUJUN L¨u Bachelor of Science Neijiang Normal University, China 2007 Master of Science Guangxi University, China 2010 A dissertation -
EBL with GRB and Blazars Joel Primack with Rudy Gilmore, Alberto Dominguez, & Rachel Somerville
EBL with GRB and Blazars Joel Primack with Rudy Gilmore, Alberto Dominguez, & Rachel Somerville Thursday, March 25, 2010 The EBL is very difficult to observe directly because of foregrounds, especially the zodiacal light. Reliable lower limits are obtained by integrating the light from observed galaxies. The best upper limits come from (non-) attenuation of gamma rays from distant blazars, but these are uncertain because of the unknown emitted spectrum of these blazars. This talk concerns both the optical-IR EBL relevant to attenuation of TeV gamma rays, and also the UV EBL relevant to attenuation of gamma rays from very distant sources observed by Fermi and low-threshold ground- based ACTs. log dNγ/dE Just as IR light penetrates dust better than shorter wavelengths, so lower energy gamma rays penetrate the EBL better than higher energy, resulting in a softer observed gamma- ray spectrum from more distant sources. log E Thursday, March 25, 2010 PILLAR OF STAR BIRTH Carina Nebula in UV Visible Light Thursday, March 25, 2010 PILLAR OF STAR BIRTH Carina Nebula in IR Light Longer wavelength light penetrates the dust better Longer wavelength gamma rays also penetrate the EBL better Thursday, March 25, 2010 Gamma Ray Attenuation due to γγ e+e- If we know the intrinsic spectrum, we can infer the optical depth (E,z) from the observed spectrum. In -Γ practice, we assume that dN/dE|int is not harder than E with Γ = 1.5, since local sources have Γ ≥ 2. Thursday, March 25, 2010 Three approaches to calculate the EBL: Backward Evolution, which starts with the existing galaxy population and evolves it backward in time -- e.g., Stecker, Malkan, & Scully 2006. -
Monte Carlo Simulations of GRB Afterglows
ABSTRACT WARREN III, DONALD CAMERON. Monte Carlo Simulations of Efficient Shock Acceleration during the Afterglow Phase of Gamma-Ray Bursts. (Under the direction of Donald Ellison.) Gamma-ray bursts (GRBs) signal the violent death of massive stars, and are the brightest ex- plosions in the Universe since the Big Bang itself. Their afterglows are relics of the phenomenal amounts of energy released in the blast, and are visible from radio to X-ray wavelengths up to years after the event. The relativistic jet that is responsible for the GRB drives a strong shock into the circumburst medium that gives rise to the afterglow. The afterglows are thus intimately related to the GRB and its mechanism of origin, so studying the afterglow can offer a great deal of insight into the physics of these extraordinary objects. Afterglows are studied using their photon emission, which cannot be understood without a model for how they generate cosmic rays (CRs)—subatomic particles at energies much higher than the local plasma temperature. The current leading mechanism for converting the bulk energy of shock fronts into energetic particles is diffusive shock acceleration (DSA), in which charged particles gain energy by randomly scattering back and forth across the shock many times. DSA is well-understood in the non-relativistic case—where the shock speed is much lower than the speed of light—and thoroughly-studied (but with greater difficulty) in the relativistic case. At both limits of speed, DSA can be extremely efficient, placing significant amounts of energy into CRs. This must, in turn, affect the structure of the shock, as the presence of the CRs upstream of the shock acts to modify the incoming plasma flow. -
Analytic Models Are Consistent with These Lower Limits and with the Gamma-Ray Upper Limit Constraints
Radiation Fields in the Universe: Extragalactic Background Light and Gamma-ray Attenuation Joel Primack University of California, Santa Cruz Friday, July 15, 2011 Preview Data from (non-)attenuation of gamma rays from AGN and GRBs gives upper limits on the EBL from UV to mid-IR that are ~2x lower limits from observed galaxies. These upper limits now rule out some EBL models and purported observations, with improved data likely to provide even stronger constraints. EBL calculations based on careful extrapolation from observations and on semi-analytic models are consistent with these lower limits and with the gamma-ray upper limit constraints. Such comparisons “close the loop” on cosmological galaxy formation models, since they account for all the light, including that from galaxies too faint to see. Catching a few GRBs with ground-based ACT arrays or HAWC could provide important new constraints on star formation history. See the written version of my invited talk at the Texas 2010 meeting for a brief summary with refs: http://arxiv.org/abs/1107.2566 Friday, July 15, 2011 The EBL is very difficult to observe directly because of foregrounds, especially the zodiacal light. Reliable lower limits are obtained by integrating the light from observed galaxies. The best upper limits come from (non-) attenuation of gamma rays from distant blazars, but these are uncertain because of the unknown emitted spectrum of these blazars. This talk concerns both (1) the optical-IR EBL relevant to attenuation of TeV gamma rays, and also (2) the UV EBL relevant to attenuation of multi- GeV gamma rays from very distant GRBs & blazars observed by Fermi and low-threshold ground-based ACTs, including future arrays (e.g., CTA). -
Pos(GRB 2012)080 8 Begins to Realise Their Ce
High redshift gamma-ray bursts PoS(GRB 2012)080 N. R. Tanvir∗† Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH. United Kingdom E-mail: [email protected] The brightest gamma-ray bursts (GRBs) can be seen at very high redshifts, offering a probe of star-formation and galaxy evolution, into the reionization era and beyond. Their bright afterglows pinpoint their host galaxies, however faint, and can give redshifts, metallicity estimates, infor- mation on the presence of dust and molecules, and HI column densities. Statistical samples of well-observed GRBs at high redshift may therefore tell us about the evolution of the global star formation rate, chemical enrichment, UV escape fraction and the galaxy luminosity function; all of which are very difficult to establish by conventional searches for galaxies. To date, only a handful of z > 6 GRBs have been discovered, but their presence at z > 8 begins to realise their potential as searchlights to illuminate the early Universe. Gamma-Ray Bursts 2012 Conference -GRB2012, May 07-11, 2012 Munich, Germany ∗Speaker. †It is a pleasure to acknowledge my many collaborators who have contributed to various aspects of the work de- scribed here, particularly Andrew Levan and Klaas Wiersema. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ High redshift GRBs N. R. Tanvir 1. Introduction By z ∼ 6 the reservoir of gas between the nascent galaxies had become almost completely ionized [1]. This phase change presumably accompanied a rising far-ultraviolet and/or X-ray ion- izing [2, 3] radiation field. -
Recent Results in High Energy Gamma-Ray Astrophysics
IL NUOVO CIMENTO Vol. 32 C, N. 3-4 Maggio-Agosto 2009 DOI 10.1393/ncc/i2009-10424-6 Colloquia: IFAE 2009 Recent results in High Energy Gamma-ray Astrophysics G. Barbiellini(1)(2)andF. Longo(1)(2) (1) Dipartimento di Fisica, Universit`a di Trieste - Trieste, Italy (2) INFN, Sezione di Trieste - Trieste, Italy (ricevuto il 19 Settembre 2009; pubblicato online il 12 Ottobre 2009) Summary. — Since June 2008 two gamma-ray satellite experiments, AGILE and Fermi -LAT, have been in contemporaneous operation. Their results allow the study of gamma-ray astrophysics from space to enter in a new era. Starting from the heritage of the EGRET experiment, the science objectives of these two experiments are reviewed. The role of the technological improvement in such achievements is also briefly introduced. PACS 95.55.Ka –X-andγ-ray telescopes and instrumentation. 1. – Introduction to High Energy Gamma-ray Astrophysics main questions The study of the sky in the energy band E>10 MeV to E ∼ 100 GeV is commonly called High Energy Gamma-ray Astrophysics. In this energy band, some of the most energetic phenomena of the Universe happen. The processes at play in the high energy sources are characterized by a wide-band non-thermal emission. Observing the sources from radio to gamma-rays helps to clarify their nature and their environments. Moreover fundamental physics questions could be answered using the information provided by distant high energy sources. The two approaches are indeed complementary in the sense the second one needs the first to avoid potential source issues, while the first one needs the second one to address potential implications of the observations. -
Grailquest: Hunting for Atoms of Space and Time Hidden In
Voyage 2050 - long term plan in the ESA science programme GrailQuest: hunting for Atoms of Space and Time hidden in the wrinkle of Space{Time A swarm of nano/micro/small{satellites to probe the ultimate structure of Space-Time and to provide an all-sky monitor to study high energy astrophysics phenomena Contact Scientist: Luciano Burderi Dipartimento di Fisica, Universit`adegli Studi di Cagliari SP Monserrato-Sestu km 0.7, 09042 Monserrato, Italy Tel.: +39-070-6754854 Fax: +39-070-510171 E-mail: [email protected] 2 Contact Scientist: Luciano Burderi Core Proposing Team: Luciano Burderi Dipartimento di Fisica, Universit`adegli Studi di Cagliari, SP Monserrato-Sestu km 0.7, 09042 Monserrato, Italy Andrea Sanna Dipartimento di Fisica, Universit`adegli Studi di Cagliari, SP Monserrato-Sestu km 0.7, 09042 Monserrato, Italy Tiziana Di Salvo Universit`adegli Studi di Palermo, Dipartimento di Fisica e Chimica, via Archirafi 36, 90123 Palermo, Italy Lorenzo Amati INAF-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti 93/3, I-40129 Bologna, Italy Giovanni Amelino-Camelia Dipartimento di Fisica Ettore Pancini, Universit`adi Napoli \Federico II", and INFN, Sezione di Napoli, Complesso Univ. Monte S. Angelo, I-80126 Napoli, Italy Marica Branchesi Gran Sasso Science Institute, I-67100 L`Aquila, Italy Salvatore Capozziello Dipartimento di Fisica, Universit`adi Napoli \Federico II", Complesso Universitario di Monte SantAngelo, Via Cinthia, 21, I-80126 Napoli, Italy Eugenio Coccia Gran Sasso Science Institute, I-67100 L`Aquila, Italy Monica Colpi Dipartimento di Fisica \G. Occhialini", Universit`adegli Studi Milano - Bicocca, Piazza della Scienza 3, Milano, Italy Enrico Costa INAF-IAPS,Via del Fosso del Cavaliere 100, I-00133 Rome, Italy Paolo De Bernardis Physics Department, Universit`adi Roma La Sapienza, Ple. -
The Afterglows of Swift-Era Short and Long Gamma-Ray Bursts
The Afterglows of Swift-era Short and Long Gamma-Ray Bursts Dissertation zur Erlangung des akademischen Grades Dr. rer. nat. vorgelegt dem Rat der Physikalisch-Astronomischen Fakult¨at der Friedrich-Schiller-Universit¨atJena eingereicht von Dipl.-Phys. David Alexander Kann geboren am 15.02.1977 in Trier Gutachter 1. Prof. Dr. Artie Hatzes, Th¨uringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg 2. Prof. Dr. J¨orn Wilms, Dr. Remeis-Sternwarte, Sternwartstraße 7, 96049 Bamberg 3. PD Dr. Hans-Thomas Janka, Max-Planck-Institut fr Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching Tag der letzten Rigorosumspr¨ufung: 13. 07. 2011 Tag der ¨offentlichen Verteidigung: 13. 07. 2011 Zusammenfassung Das Ph¨anomen der Gammastrahlenausbr¨uche (Englisch: Gamma-Ray Bursts, kurz: GRBs) war auch lange nach ihrer Entdeckung vor ¨uber vier Jahrzehnten ein großes R¨atsel. Selbst heute, ¨uber ein Jahrzehnt seit Beginn der “Ara¨ der Nachgl¨uhen” (engl.: Afterglows) sind noch viele Fragen unbeantwortet. Das akzeptierte Bild, welches einen Großteil der Daten erkl¨aren kann ist, dass GRBs erzeugt werden, wenn ein massereicher Himmelsk¨orper (en- tweder ein Stern, der die Hauptreihe verlassen hat, oder miteinander verschmelzende kom- pakte Objekte) in kosmologischer Distanz zu einem schnell rotierenden Objekt kollabiert (ein Schwarzes Loch oder vielleicht ein kurzlebiger Magnetar), welches ultrarelativistische Materieausw¨urfe (sogenannte “Jets”) entlang der Polachse ausschleudert. Die interne Dissi- pation von Energie in dem Jet f¨uhrt zu kollimierter nicht-thermischer Strahlung bei hohen Energien (der eigentliche GRB), w¨ahrend Schockfronten, die bei der Interaktion des Jets mit der interstellaren Materie erzeugt werden, zu einem langlebigen abklingenden Afterglows f¨uhren. Die gesammelten physikalischen Prozesse, die die GRB-Emission beschreiben, werden als das Standard-Feuerballmodell bezeichnet. -
A Photometric Redshift of Z ∼ 9.4 for GRB 090429B
A photometric redshift of z ∼ 9.4 for GRB 090429B A. Cucchiara1,2,3, A. J. Levan4, D. B. Fox1, N. R. Tanvir5, T. N. Ukwatta6,7, E. Berger8, T. Kr¨uhler9,10, A. K¨upc¨uYolda¸s11,12, X. F. Wu1,13, K. Toma1, J. Greiner9, F. Olivares E.9, A. Rowlinson5, L. Amati14, T. Sakamoto7 , K. Wiersema5, K. Roth15, A. Stephens15, A. M. Soderberg8, R. J. Foley8, A. S. Fruchter16, J.P.U. Fynbo17, J. Hjorth17, P. Jakobsson18, P. T. O’Brien5, J. Rhoads19, R. E. Rutledge20, M. A. Dopita21, B. P. Schmidt21, P. Podsiadlowski22, R. Willingale5 C. Wolf22, S. R. Kulkarni23 [email protected] – 2 – ABSTRACT Gamma-ray bursts (GRBs) serve as powerful probes of the early Universe, with their luminous afterglows revealing the locations and physical properties of star forming galaxies at the highest redshifts, and potentially locating first generation (Pop III) stars. Since GRB afterglows have intrinsically very simple spectra, they allow robust redshifts from low signal to noise spectroscopy, or photometry. Here we present a photometric redshift of z ∼ 9.4 for the Swift detected GRB 090429B based on deep observations with Gemini, the Very Large Telescope (VLT) and the GRB Optical and Near-infrared 1Department of Astronomy & Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802, USA 2Lawrence Berkeley National Laboratory, M.S. 50-F, 1 Cyclotron Road, Berkeley, CA 94720 3Department of Astronomy, 601 Campbell Hall, University of California, Berkeley, CA 94720-3411 4Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 5Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK 6Department of Physics, The George Washington University, Washington, D.C.