Open Research Online Oro.Open.Ac.Uk

Total Page:16

File Type:pdf, Size:1020Kb

Open Research Online Oro.Open.Ac.Uk Open Research Online The Open University’s repository of research publications and other research outputs The growth and decline of the semiconductor industry within the U.K. 1950-1985 Thesis How to cite: Morris, P. R. (1994). The growth and decline of the semiconductor industry within the U.K. 1950-1985. PhD thesis The Open University. For guidance on citations see FAQs. c 1994 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000e065 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk The Growth and Decline of the Semiconductor Industry within the U.K. 1950-1985 Offered for the degree of Doctor of Philosophy within the discipline of histoiy of science & technology by P.R. Morris BA(Hons), M.Phil, C.Eng., M.I.E.E., M.I.E.E.E. Submitted December 1 994 Abstract This thesis reviews the history of the semiconductor industry during the period 1950 to 1985 and identifies the major factors governing its development. It also analyses the rea- sons for the failure of British manufacturing companies to develop on a more competitive scale. The development of the British semiconductor industry, almost from the start, took place within an environment dominated by large foreign multinational companies. Operat- ing under conditions of technical lag and with increasing penetration of its markets, it con- centrated, aided by funding from the Ministry of Defence, on producing specialised solid-state components for the much smaller military market. Because of its size, this mar- ket was not sufficiently large to initiate the pump-priming action which was such an im- portant feature in bringing about the success of its American counterpart. Generous Government inducements, aimed at attracting multinational companies to British shores, did little to assist the development of the indigenous industry, which, un- derfunded, underprotected and increasingly restricted to niche markets by competitors, soon fell into relative decline. Direct Governmental assistance to the ailing commercial sector of the British semiconductor industry came too late substantially to affect the situa- tion. Both inconsistency and lack of continuity in policy towards the industry, under suc- cessive Governments, did not improve the confidence of industrial management, nor encourage a more long-term outlook. It is argued within this thesis that the best chance of industrial success would have been to adopt a national policy towards the industry at an early stage, with substantial funding on a long-term basis, together with adequate import controls. The epilogue concludes that only within a European framework might it now be possible to build a semiconductor manufacturing industry, eventually capable of competing on equal terms with overseas ri- vals. 1 Acknowledgements First and foremost, I would like to thank my three supervisors, Prof. R.A. Buchanan, Dr. D. Gorham and Dr. G.R. Roberts for their advice, encouragement, and support throughout this research project. Because of its nature, this work has relied, to a considerable extent, upon a wide range of information obtained through interviews with those in Government, industry and uni- versity departments. Almost all of those approached were extremely helpful, friendly and informative. This fact undoubtedly lightened my task and added to the enjoyment of the work. Some extent of my indebtedness may be obtained from a glance at the lengthy list of names of those who have assisted me and which I have included as an appendix. More generally, although also importantly, I am indebted to my ex. colleagues for the numerous and often rewarding conversations held through the years, when employed as a semiconductor engineer within the industry. Although it is impossible to properly evaluate their influence, there can be little doubt that my views regarding the industry have been, at the very least, strongly stimulated and tested by their opinions. Last but not least, I would also like to thank my daughter, Siani, for her welcome assis- tance in arranging the printing of the final version of this thesis. In order to conform to Open University regulations concerning previously published work, attention is drawn to the fact that some material contained within chapters 5 & 6 of this thesis has already been published under the title "The role of the Ministry of Defence (MOD) in influencing the commercial performance of the British semiconductor indus- try", History and Technology Vol.11, (1994), pp. 18 1-193. 11 Contents Page Abstract 1 Acknowledgements 11 Table of Contents 111 List of Tables vii Chapter 1 Introduction The Importance of Microelectronics 1 Introductory Theoretical Framework 2 Previous Contributions to the History of Semiconductor Manufacture: a Brief Survey 9 References 18 Chapter 2 A Review of the General Characteristics of the British Thermionic Valve Industry Introduction 21 The Development of the Thermionic Valve: The Initial Phase 1906-20 21 Development of the Valve Industry During the Inter-War Period 26 The UK Valve Manufacturing Industry in World War Two 36 Post-War Developments 41 Economies of Scale in Valve Manufacture 43 The Influence of Mullard Ltd upon Post-War Valve Manufacture 44 Cathode-ray Tube Production 47 Tube Sales and Import/Export Figures 48 Some Factors Affecting the Development of the Industry 50 Valve Manufacture within the United States 53 The Role of Patents 55 References 56 Chapter 3 Aspects of Early Semiconductor Development in the UK and USA Introduction 60 Genesis of the Transistor 60 Transistors versus Valves 66 Replacement of the Thermionic Valve by the Transistor 68 Aspects of Early (Germanium) Transistor Development 70 The Impetus of Military Involvement: Development of the Silicon Transistor 73 Transistor and Integrated Circuit Development 75 Product Innovation and Technical Lag 80 The British Contribution to Semiconductor Device Innovation 85 Infrastructural Factors Contributing to Technical Lag 86 111 Page The Nature of Semiconductor Development and its Contribution to Technical Lag 91 References 93 Chapter 4 Direct Governmental Involvement within the Semiconductor Manufacturing Industry Introduction 97 The Structure of Governmental Industrial Assistance - a Brief Chronological Survey 97 Governmental Policy - Organisations and Attitudes 102 Non-Defence Government Support Policy 109 INMOS 116 The Microelectronics Programme: Support within a Hostile Environment 120 Commercial Exploitation of Defence Contracts 125 Factors Involving Government Policies Directly Inhibiting Industrial Performance 127 Government Funding: A Conflict of Aims? 134 References 139 Chapter 5 Government Involvement within Non-Industrial Semiconductor Research Introduction 146 The Role of the Ministry of Defence 146 MOD Procurement: The Organisational Framework 149 MOD Procurement: The Strategy 151 Government R & D Establishments 153 Technological Innovation: Devices and Materials 155 The Post Office 161 University Involvement in Government Research 162 Government Policy: The Research Establishment View 165 Government Policy: The Industrial Viewpoint 170 References 174 Chapter 6 A Review of the Performance of Semiconductor Firms within theiJK Introduction l 78 Overseas Investment in Semiconductor Manufacture Within the United Kingdom 179 Mullard Ltd. 181 ITT Semiconductors 186 Texas Instruments 188 Overseas Subsidiaries in Scotland 194 The Effect of Foreign Market Penetration on Device Development in Britain 196 Ferranti Ltd. 197 The Plessey Company 205 The General Electric Company (GEC) 212 References 222 lv Page Chapter 7 Factors involving Industrial Performance - a Comparison between Britain and the United States Introduction 230 Research and Development: R & D Resources within America and Britain 231 British and American Public Funding - a Comparison 233 Early Government Involvement in Transistor Manufacture 235 University Research 237 Industrial and Economic Factors: Availability of Venture Capital 239 Wage Rates 240 Cost of Entry into the Industry 241 Technical Spin-off Under Conditions of an Assured Market 244 Skill Clusters 245 Labour Mobility 247 Communications 247 Conditions Governing Market Entry 248 Marketing 250 The Integrated Circuit: The US Circuit Procurement Programme 252 Patents and Licensing 256 References 263 Chapter 8 Technical Innovation and Economic Factors: Their Part in the Cycle of Industrial Growth and Decline Introduction 268 The Concept of Industrial Synergy and its Importance in Semiconductor Manufacture 269 The Manner of Industrial Growth 274 Factors Governing Synergistic Industrial Growth in the Components Industry 276 The Failure of Semiconductor Manufacture in Britain to Establish a Condition of Synergy 278 The Rise of Computer Manufacture and its Consequences for the Development of the British Semiconductor Industry 282 The American Technical Lead in Components: its Consequences for European Equipment Markets 286 Research Programmes and Commercial Spin-offs 289 References 290 Chapter 9 The Influence of Multinational Companies Introduction 294 Multinationals - The Advantages 294 Multinationals - The Costs 298 Multinationals - The Response 301 References 309 V Page Chapter 10 Summary and Conclusions Introduction 312 Industrial Factors 312 Governmental Factors
Recommended publications
  • Technical Details of the Elliott 152 and 153
    Appendix 1 Technical Details of the Elliott 152 and 153 Introduction The Elliott 152 computer was part of the Admiralty’s MRS5 (medium range system 5) naval gunnery project, described in Chap. 2. The Elliott 153 computer, also known as the D/F (direction-finding) computer, was built for GCHQ and the Admiralty as described in Chap. 3. The information in this appendix is intended to supplement the overall descriptions of the machines as given in Chaps. 2 and 3. A1.1 The Elliott 152 Work on the MRS5 contract at Borehamwood began in October 1946 and was essen- tially finished in 1950. Novel target-tracking radar was at the heart of the project, the radar being synchronized to the computer’s clock. In his enthusiasm for perfecting the radar technology, John Coales seems to have spent little time on what we would now call an overall systems design. When Harry Carpenter joined the staff of the Computing Division at Borehamwood on 1 January 1949, he recalls that nobody had yet defined the way in which the control program, running on the 152 computer, would interface with guns and radar. Furthermore, nobody yet appeared to be working on the computational algorithms necessary for three-dimensional trajectory predic- tion. As for the guns that the MRS5 system was intended to control, not even the basic ballistics parameters seemed to be known with any accuracy at Borehamwood [1, 2]. A1.1.1 Communication and Data-Rate The physical separation, between radar in the Borehamwood car park and digital computer in the laboratory, necessitated an interconnecting cable of about 150 m in length.
    [Show full text]
  • The Electrocom
    2013-14 Published Month/Year - March’14 Update yourself with the latest technology, construct some circuits, try some brain teasers,& check your knowledge with… THE ELECTROCOM An Initiative by SOCIETY OF ELECTRONICS ENGINEERS(SEE-MIET) Department of Electronics and communication Engg. Meerut Institute of Engineering and Technology, Meerut Contents EDITOR’S CUT TECH NEWS The ELECTROCOM is a platform for the students who want to enter the vast world of electronics. It helps you to acquire the knowledge and to ROCHAK TATHYA develop innovative thoughts and motivate you for the perseverance. We just want to give you the path to explore the electronic boom. Soon we BRAIN TEASERS are going to organize a national level quiz competition. We are also going to provide you with test series for GATE, notes of the required subject, help against the queries and blog for CONSTRUCTION the details of electronics. You can visit electrocom.see on Google to download the material required. This issue is primarily focusing on the WORDS OF WORTH new era of technology in the field of electronics, circuit analysis, E- crossword and live project with revolutionary ideas which can be implemented in the institute. We are EXPRESSIONS looking forward to hear from you in the form of your articles, suggestions, ideas and queries to make our endeavour better in every form. Editorial Team 2 How Water Could Help Make Better Batteries Water could be the key to producing a cheaper, more environmentally friendly and less dangerous way of making the lithium-ion batteries that power so many everyday gadgets, researchers say.
    [Show full text]
  • Sperry Corporation, UNIVAC Division Photographs and Audiovisual Materials 1985.261
    Sperry Corporation, UNIVAC Division photographs and audiovisual materials 1985.261 This finding aid was produced using ArchivesSpace on September 14, 2021. Description is written in: English. Describing Archives: A Content Standard Audiovisual Collections PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library Sperry Corporation, UNIVAC Division photographs and audiovisual materials 1985.261 Table of Contents Summary Information .................................................................................................................................... 3 Historical Note ............................................................................................................................................... 4 Scope and Content ......................................................................................................................................... 5 Arrangement ................................................................................................................................................... 6 Administrative Information ............................................................................................................................ 6 Related Materials ........................................................................................................................................... 7 Controlled Access Headings .......................................................................................................................... 8 Bibliography
    [Show full text]
  • Occam User Group
    for all users of occam and the transputer N912 January 1990 Contents EDITORIAL 2 Contributions to the newsletter 3 Occam user group publications 3 North American transputer users group publications 4 FORTHCOMING 4 Twelfth occam user group technical meeting 4 North American transputer users group spring meeting 5 Third Japanese transputer/ occam international conference 5 Thirteenth occam user group technical meeting 6 North American transputer users group fall meeting 6 Transputing 1991 7 REPORTS 9 Inaugural meeting of the occam user group: Latin America 9 Eleventh occam user group technical meeting 10 Why did the transputer cross The Pond? 14 Second seminar of the Swedish transputer user group 15 continued on back cover Meiko In-Sun Computing Surface Hardware (see page 98) occam is a trade mark of the INMOS Group of Companies 2 occam user group newsletteT EDITORIAL ~ ~ New groups seem to be springing up all around the world; this issue of nan the newsletter carries contact addresses for the first time for groups in U:E ~ Sweden and Latin America. We have contributions from as far afield as Brazil, the Basque country, and Bristol. It is all here: from exotic hardware (see for example pages 19, 82, 98 and many of the product announcements) to expressions of concern that software should be as unexciting as possible (see pages 22, 27). I would particularly like to draw your attention to the initiative to promote the occam language (see page 84); and to the CODE system from C-DAC (see pages 86 and18), an impromptu presentation of which stole the show in the exhibition at the OUG technical meeting in Edinburgh.
    [Show full text]
  • Sperry Corporation, Univac Division Records 1825.I
    Sperry Corporation, Univac Division records 1825.I This finding aid was produced using ArchivesSpace on September 14, 2021. Description is written in: English. Describing Archives: A Content Standard Manuscripts and Archives PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library Sperry Corporation, Univac Division records 1825.I Table of Contents Summary Information .................................................................................................................................... 4 Historical Note ............................................................................................................................................... 4 Scope and Content ......................................................................................................................................... 5 Administrative Information ............................................................................................................................ 7 Related Materials ........................................................................................................................................... 8 Controlled Access Headings .......................................................................................................................... 9 Appendices ..................................................................................................................................................... 9 Bibliography ................................................................................................................................................
    [Show full text]
  • Forty Years of Marconi Radar from 1946 to 1986 by R
    172 Forty Years of Marconi Radar from 1946 to 1986 by R. W. SIMONS, OBE, C.Eng., FIEE, F.I.Mgt. Roy W. Simons joined Marconi's Wireless Telegraph Company in 1943 as a member of the and J. W. SUTHERLAND, CBE, MA, FIEE Research Division. After an initial period formerly at Marconi Radar Systems developing special receivers for wartime directionĆfinding systems, he worked exclusively on military and civil radar systems until his retirement in 1986. He was the first Technical Director of the newlyĆformed Marconi Radar Systems Ltd. in 1969 and in the subsequent The earliest concept of radar in the Marconi years he took responsibility for all Company Company came on 20th June 1922 when development at both Chelmsford and Leicester, as well as - for a period - all Company Guglielmo Marconi addressed a joint meeting in production. Latterly he had direct control of the Radar Research Laboratory at Baddow. He was New York of the American Institute of Electrical appointed OBE in 1986. He is currently Visiting Engineers and Institute of Radio Engineers, Professor in Priciples of Engineering Design at Sussex University. receiving the latter's Medal of Honour on the same (EĆmail: roy [email protected]) occasion. He said: John Sutherland was educated at Queens' College Cambridge from 1941Ć2 and 1946Ć48, ‘In some of my tests I have noticed the effects and graduating with a BA in 1947 and MA in 1949. He was a Radar Officer in the Royal Navy deflection of these waves by metallic objects miles between 1942 and 1946, serving in the Mediterranean and the Atlantic.
    [Show full text]
  • CHAIN HOME TOWER at Great Baddow - Response to Case #: 1454834
    CHAIN HOME TOWER at Great Baddow - Response to case #: 1454834 My interest in this case stems from my family history. My father Bruce Neale, later to become Chief Engineer at Marconi Radar, was an RAF Warrant Officer in WW2 and worked on CH and later precision bombing aids such as OBOE and GEE. This is how he met my mother, a WAAF Sergeant who initially monitored the CH oscilloscope traces looking for the reflections of incoming German aircraft – some signals which were probably launched from that very RAF Canewdon (now Baddow) tower! Below is the remarkable photograph of my ‘to be’ parents actually in an Oboe station in 1943 courtesy of Colin Latham’s book ‘Radar-A wartime Miracle’. I have always regarded myself as a child of Radar! The ‘CH-The First Operational Radar’ article ( www.radarpages.co.uk/mob/ch/chainhome.htm ) was written by my father for the GEC Journal, a special edition commemorating the 50th anniversary of Robert Watson Watt and Arnold Wilkins’ demonstration of the feasibility of detecting radio reflections from aircraft at Weedon, Northamptonshire in 1935. My parents got to know Arnold Wilkins and his wife towards the end of all of their lives. The article has become the reference paper for anybody interested in the CH Radar System and he gave many lectures on the subject. My father had joined the Marconi Company in the early 1950’s when they won the contract for project ROTOR to upgrade the UK WW2 Early Warning Radar Network which included the later versions of CH and he officially retired in 1985 although he continued as a consultant until his death.
    [Show full text]
  • Travels in Goneland
    Travels in Goneland Michael Prior 1 Introduction It is easy enough to see the remains of the earliest industrial revolution if one knows where to look; along the steep watercourses that powered the first mechanized mills. Now overgrown by trees and bushes, these stone basins and channels provided the -­‐ water power for the first mechanized mills with power looms and spinning frames. They also provided the spark for the first industrial labour-­‐ protests, the Luddites, mostly handloom weavers, who smashed the mechanized mills and were themselves broken on gallows in York and Manchester. Staups Mill and waterfall, Jumble Hole clough, Hebden Bridge The next stage of the industrial development based on coal also can also still be seen in the remaining chimneys of the mills and factories of northern England and the Scottish . lowlands The huge buildings of the final stages of this revolution are impossible to miss, close to the centres of Manchester, Leeds and all the northern towns and cities which sat on the coal measures. It was this which has defined Britain to this day. Travel south from Stoke, east from Leeds or north Newcastle and it is easy enough to see where the accessible coal seams ran out. Population thins out and settlements are located ural in nat places, valley bottoms along rivers rather than up hillsides where the coal seams outcropped. There are few traces left of the mines. The headworks are gone and diligent work has mostly removed or vegetated the spoil heaps f which once disfigured much o 2 the countryside. Even so, the photographic record of the mines which once covered much of Britain remains immense After the fire which shut Daw Mill in 2013, only Kellingley and Thoresby remained, both closed in 2015.
    [Show full text]
  • TPC-8 TESLA AGAINST MARCONI the Dispute for the Radio Patent
    TPC-8 TESLA AGAINST MARCONI The Dispute for the Radio Patent Paternity Paul Brenner, M.Sc., Senior Member, IEEE, Member WREN, Israeli Representative in the World Renewable Energy Council Abstract: The goal of this paper is to present the an academic title. Tesla was an autodidact. He started multilateral personality of the greatest inventor in to read many works, memorizing whole books. history, Nikola Tesla and the claims against Specialists supposed that T. had a photographic Guglielmo Marconi for the radio patent paternity. memory. In his autobiography he tells that many Index Terms: Tesla (T.), Marconi (M.), coherer, times he experienced detailed moments of inspiration. magnifying transformer, LW (long wave), SW Since his childhood, T. was stricked by halucinations (short wave), MW (medium wave). accompanied frequently by blinding flashes of light. Much of the effects of this peculiar affliction were related to a word or an idea; the simple hearing of the I. INTRODUCTION: name of an item was able to induce its detailed A genius is born - Nikola Tesla [1] envisioning in Tesla's mind. Most of his inventions would have been apriori visualized in detail in his Nikola Tesla (Fig.1) saw mind.( picture thinking ). This perfect photographic the daylight for the first memory was perhaps a hereditary inheritance from time in his life in Smiljan, his mother, possessing, as said, a natural gift in a small village in Croatia, remembering entire epic poems - who knows? in the Lika region, on July 10, 1856. His father, Rev. Hungary and France Milutin Tesla was a priest in the Serbian Orthodox After moving to Budapest in 1881 he started to work Church Metropolitanate in Tivadar Puskás's Hungarian National Telephone of .
    [Show full text]
  • A Decade of Semiconductor Companies : 1988 Edition
    1988 y DataQuest Do Not Remove A. Decade of Semiconductor Companies 1988 Edition Components Division TABLE OF CONTENTS Page I. Introduction 1 II. Venture Capital 11 III. Strategic Alliances 15 IV. Product Analysis 56 Emerging Technology Companies 56 Analog ICs 56 ASICs 58 Digital Signal Processing 59 Discrete Semiconductors 60 Gallium Arsenide 60 Memory 62 Microcomponents 64 Optoelectronics 65 Telecommunication ICs 65 Other Products 66 Bubble Memory 67 V. Company Profiles (139) 69 A&D Co., Ltd. 69 Acrian Inc. 71 ACTEL Corporation 74 Acumos, Inc. 77 Adaptec, Inc. 79 Advanced Linear Devices, Inc. 84 Advanced Microelectronic Products, Inc. 87 Advanced Power Technology, Inc. 89 Alliance Semiconductor 92 Altera Corporation 94 ANADIGICS, Inc. 100 Applied Micro Circuits Corporation 103 Asahi Kasei Microsystems Co., Ltd. 108 Aspen Semiconductor Corporation 111 ATMEL Corporation 113 Austek Microsystems Pty. Ltd. 116 Barvon Research, Inc. 119 Bipolar Integrated Technology 122 Brooktree Corporation 126 California Devices, Ihc. 131 California Micro Devices Corporation 135 Calmos Systems, Inc. 140 © 1988 Dataquest Incorporated June TABLE OF CONTENTS (Continued) Pagg Company Profiles (Continued) Calogic Corporation 144 Catalyst Semiconductor, Inc. 146 Celeritek, Inc. ISO Chartered Semiconductor Pte Ltd. 153 Chips and Technologies, Inc. 155 Cirrus Logic, Inc. 162 Conductus Inc. 166 Cree Research Inc. 167 Crystal Semiconductor Corporation 169 Custom Arrays Corporation 174 Custom Silicon Inc. 177 Cypress Semiconductor Corporation 181 Dallas Semiconductor Corporation 188 Dolphin Integration SA 194 Elantec, Inc. 196 Electronic Technology Corporation 200 Epitaxx Inc. 202 European Silicon Structures 205 Exel Microelectronics Inc. 209 G-2 Incorporated 212 GAIN Electronics 215 Gazelle Microcircuits, Inc. 218 Genesis Microchip Inc.
    [Show full text]
  • Chad Is Our Most Important Product
    CHAD IS OUR MOST IMPORTANT PRODUCT An Engineer’s Memoir of Teletype Corporation Jim Haynes The author operating W5YM in 1957 1 I. How it all started When I was growing up in a small town I thought it was an awfully boring place. Now I realize that I had some opportunities that probably would not have been available in a larger city. For one thing, it was possible for a kid to hang out at the newspaper office, telephone office, telegraph office, or radio station and watch a Teletype machine in operation. Things were slow enough that the people who worked there usually had time to answer questions. When I wanted to understand how a Teletype machine worked the wire chief at the telephone office let me borrow the “green book”1. After reading all about selector cams and swords and code bars and pull bars I could drop in to the Western Union office where the manager, a friend of the family, let me play with a little-used printer and see in action all the parts I had read about. Another advantage to living out in the sticks was that television arrived very late. This allowed a pretty good news stand to remain in full operation through most of my teen years. Jack’s News Stand carried several magazines of interest: Radio-Electronics, Radio & Television News, and the amateur radio magazines QST and CQ. Hugo Gernsback’s Radio-Electronics ran a series of articles by Ed- mund C. Berkeley about digital computers, which gave me an early introduction to binary arithmetic, Boolean algebra, and logic circuits.
    [Show full text]
  • Science Policy Under Thatcher
    Science Policy under Thatcher Science Policy under Thatcher Jon Agar First published in 2019 by UCL Press University College London Gower Street London WC1E 6BT Available to download free: www.uclpress.co.uk Text © Jon Agar, 2019 Jon Agar has asserted his right under the Copyright, Designs and Patents Act 1988 to be identified as author of this work. A CIP catalogue record for this book is available from The British Library. This book is published under a Creative Commons 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Agar, J. 2019. Science Policy under Thatcher. London, UCL Press. https://doi.org/10.14324/111.9781787353411 Further details about Creative Commons licenses are available at http:// creativecommons.org/licenses/ Any third-party material in this book is published under the book’s Creative Commons license unless indicated otherwise in the credit line to the material. If you would like to re-use any third-party material not covered by the book’s Creative Commons license, you will need to obtain permission directly from the copyright holder. ISBN: 978-1-78735-343-5 (Hbk) ISBN: 978-1-78735-342-8 (Pbk) ISBN: 978-1-78735-341-1 (PDF) ISBN: 978-1-78735-344-2 (epub) ISBN: 978-1-78735-345-9 (mobi) ISBN: 978-1-78735-346-6 (html) DOI: https://doi.org/10.14324/111.9781787353411 For Kathryn, Hal and Max, and my parents Ann and Nigel Agar.
    [Show full text]