19 95Apjs. . .98. .171V the Astrophysical Journal Supplement

Total Page:16

File Type:pdf, Size:1020Kb

19 95Apjs. . .98. .171V the Astrophysical Journal Supplement The Astrophysical Journal Supplement Series, 98:171-217,1995 May .171V © 1995. The American Astronomical Society. All rights reserved. Printed in U.S.A. .98. 95ApJS. OPTICAL SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES. 19 II. ANALYSIS OF THE NUCLEAR AND LONG-SLIT DATA S. Veilleux, ‘’2'3 D.-C. Kim,4 D. B. Sanders,4 J. M. Mazzarella,5 and B. T. Soifer6 Received 1994 April 14; accepted 1994 December 2 ABSTRACT 7 10 1 A spectroscopic survey of a sample of 200 luminous IRAS galaxies (LIGs: Lir > 3 X 10 L0; H0 = 75 km s“ Mpc-1 ) was carried out using the Palomar 5 meter and University of Hawaii 2.2 m telescopes. Kim et al. ( 1995 ) described the data-taking and data-reduction procedures and presented line and continuum measurements ex- tracted from the nucleus of these objects. In this paper, the nuclear data are combined with circumnuclear mea- surements on 23 of these galaxies to investigate the properties of the line-emitting gas and underlying stellar population in and out of the nucleus. The nuclear spectra of these galaxies were classified as “H n region-like” or “AGN-like” using a large number of line-ratio diagnostics corrected for the underlying stellar absorption features. This correction is an important source of errors in some previous studies. The emission-line spectra of many AGNs were found to be of relatively low ionization level and were therefore classified as LINER. We confirm that both the fraction of LIGs with AGN spectra and the fraction of Seyferts among the AGN increase with infrared luminosity, reaching values of 62% and 54% at the highest observed luminosities, respectively. The fraction of LINERs, on the other hand, is relatively constant at ~27%. The source of the ionization of the emission-line gas often is a function of the distance from the nucleus. Based on the emission-line ratios and the strengths of the stellar absorption features, circumnuclear starburst activity is a common feature of LIGs, regardless of their nuclear spectral types. The emission-line, absorption-line, continuum, radio, and IRAS properties of the LINERs suggest that most of the LINER emission in these infrared-selected galaxies is produced through shock ionization rather than photoionization by a genuine active nucleus. The nuclear region of Seyfert LIGs is found to be slightly less reddened than that of the LINERs and H n galaxies. The dust distribution generally is concentrated toward the nucleus, in agreement with the often peaky distribution of the molecular gas observed in these galaxies. Inverted dust profiles in which the nucleus appears less dusty than the circumnuclear region are observed in only three LIGs, all of which have AGN emission-line characteristics (one Seyfert 2 galaxy and two LINERs). Low nuclear dust content appears to favor the detection of active nuclei. This may be due to selection effects or may reflect real physical differences between these classes of objects: galaxies with Seyfert emission lines may be at a more advanced stage of dust destruction/expulsion than H ii LIGs. Complex optical depth effects may also explain these results without invoking a smaller amount of dust in the nucleus. The Hß and Mg I b absorption features are stronger in the nuclei of AGNs (especially among the LINERs) than in H ii LIGs, suggesting that AGN LIGs are at a more advanced stage of stellar evolution than HII LIGs. Further support for this scenario comes from the fact that AGNs are found more frequently in advanced mergers than H ii galaxies (only two Seyfert galaxies are detected in systems with well-separated nuclei). However, this last result may be a luminosity effect rather than an effect related to the dominant nuclear source of ionization. Moreover, the absorption-line data may simply reflect the fact that galaxies with powerful H ii regions show evidence for young stars while galaxies with AGNs do not. The radial variations of the Hß and Mg i b absorption features indicate the presence of a strong source of featureless continuum in the nucleus of nearly all LIGs, regardless of their nuclear spectral types. Contamination by the circumnuclear starburst prevents us from deter- mining the extent of this continuum source. The [O in] profiles of both Seyfert and LINER LIGs were found to be broader on average than those of H n objects. Nearly 20% of the LIGs in our sample have line widths larger than 600 km s-1. We find that most of the galaxies in which we could determine the radial variations of the [O m] line width present broader profiles in the circumnuclear region than at the nucleus. When combined with published data on a few other well-studied LIGs, these results suggest that large-scale nuclear winds are common in these objects and are an efficient way of getting rid of the obscuring material in the nuclear region. The spatially extended LINER emission observed in many of 1 Kitt Peak National Observatory, NOAO, P.O. Box 26732, Tucson, AZ 5 Infrared Processing and Analysis Center, MS 100-12, California Insti- 85726-6732. tute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125. 2 Department of Astronomy, University of Maryland, College Park, 6 Palomar Observatory, California Institute of Technology, 320-47, Pas- MD 20742. adena, CA 91125. 3 Hubble Fellow. 7 Lir = L (8-1000 ^m). 4 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822. 171 © American Astronomical Society • Provided by the NASA Astrophysics Data System .171V 172 VEILLEUX ET AL. Vol. 98 these objects is probably due to shock ionization resulting from the interaction of the wind-accelerated gas with .98. the ambient material of the host galaxy. Subject headings: galaxies: active — galaxies: nuclei — galaxies: stellar content — H n regions—infrared: galaxies 95ApJS. 19 1. INTRODUCTION 1991). Optical studies infer the nature of the energy source by Surveys with the Infrared Astronomical Satellite (IRAS) assuming that the physical characteristics of the circumnuclear have revealed that a significant fraction of extragalactic objects gas and underlying stellar population are good probes of the emit the bulk of their radiation at far-infrared wavelengths central energy source. This is also the approach that we will (e.g., Soifer et al. 1984a,b, 1986; Rieke & Lebofsky 1986). In follow in the present study. The weaknesses of this assumption fact, above log (L/L©) ^ 11.5, this class of galaxies becomes will be reviewed in the discussion of our results ( § 4 ). the dominant extragalactic population in the local universe, A major limitation of previous optical studies of LIGs has exceeding even the space densities of optically selected quasars been the small size of their samples or the limited number of at comparable bolometric luminosity (Soifer et al. 1987; Sand- line and continuum diagnostics used in their analysis. In an ers et al. 1989 ). The pioneering work by Rieke & Low (1972) attempt to remedy this situation we have carried out a spectro- originally suggested that far-infrared emission may not only be scopic survey of a large sample of IRAS galaxies. Long-slit Pal- omar 5 meter spectra covering at least 3750-8000 Á a dominant feature of the spectral energy distribution (SED) of a wide variety of extragalactic objects, but also that the ob- ( sometimes up to ~ 1 /mi) at a resolution of 8-10 A and MKO 2.2 m spectra covering 5850-8870 À were obtained of 200 served infrared luminosity may be causally connected to the radio emission in the nuclei of Seyfert and related galaxies. IRAS galaxies, including 114 objects from the IRAS Bright Coupled with more recent observations that suggest a strong Galaxy Survey (BGS; Soifer et al. 1989; Sanders et al. correlation between galaxy interaction and high infrared lumi- 1995a,b), hereafter referred to the BGSs (see Kim et al. 1995, hereafter Paper I ) and 86 objects from the IRAS Warm Galaxy nosity (e.g., Lonsdale, Persson, & Matthews, 1984; Joseph & Wright 1985; Cutri & McAlary 1985; Sanders et al. 1987), Survey ( WGS) selected on the basis of their “warm” infrared ( 60 ¡im/100 fim) colors, hereafter referred to as the WGSs ( see these results suggest that detailed studies of luminous infrared _1 Paper I). A constant linear aperture of 2 kpc (H0 = 15 km s galaxies (LIGs) may provide important clues to the origin of -1 nuclear activity in galaxies, and to the role of galaxy interac- Mpc and q0 = 0.5) was used to extract the nuclear spectra tions in triggering this activity. from these data and therefore minimize aperture-related Perhaps the most important question regarding LIGs is the effects. An atlas of the nuclear spectra was presented in Paper I nature of their energy source. The debate often centers on what along with tabulations of some of the results derived from these powers the most luminous infrared galaxies (L ^ 1011 L©) nuclear data. The present paper reports the results of our anal- since the far-infrared flux in most of the weaker sources proba- ysis of these nuclear data ( § 2 ) and also provides new informa- bly comes from dust heated by the old stellar population or as tion about the spatial variations of the various spectral param- a consequence of star formation (e.g., Allen, Roche, & Norris eters in 23 objects of the sample (§ 3). In § 4, we discuss the 1985; Elston, Cornell, & Lebofsky 1985; Lawrence et al. 1985; implications of this analysis, addressing the nature of the en- Leech et al. 1989; Thronson et al. 1990). Scenarios involving ergy sources in luminous infrared galaxies and describing pos- intense star formation (Norman & Scoville 1988; Rieke 1988; sible scenarios to explain the data.
Recommended publications
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • June 2013 BRAS Newsletter
    www.brastro.org June 2013 What's in this issue: PRESIDENT'S MESSAGE .............................................................................................................................. 2 NOTES FROM THE VICE PRESIDENT ........................................................................................................... 3 MESSAGE FROM THE HRPO ...................................................................................................................... 4 OBSERVING NOTES ..................................................................................................................................... 6 MAY ASTRONOMICAL EVENTS .................................................................................................................... 9 PRESIDENT'S MESSAGE Greetings Everyone, Summer is here and with it the humidity and bugs, but I hope that won't stop you from getting out to see some of the great summer time objects in the sky. Also, Saturn is looking quite striking as the rings are now tilted at a nice angle allowing us to see the Casini Division and shadows on and from the planet. Don't miss it! I've been asked by BREC to make sure our club members are all aware of the Park Rules listed on BREC's website. Many of the rules are actually ordinances enacted by the city of Baton Rouge (e.g., No smoking permitted in public areas, No alcohol brought onto or sold on BREC property, No Gambling, No Firearms or Weapons, etc.) Please make sure you observe all of the Park Rules while at the HRPO and provide good examples for the general public. (Many of which are from outside East Baton Rouge Parish and are likely unaware of some of the policies.) For a full list of BREC's Park Rules, you may visit their Park Rules section of their website at http://brec.org/index.cfm/page/555/n/75 I'm sorry I had to miss the outing to LIGO, but it will be good to see some folks again at our meeting on Monday, June 10th.
    [Show full text]
  • H {\Alpha} Imaging of Nearby Seyfert Host Galaxies
    Draft version November 6, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 Hα IMAGING OF NEARBY SEYFERT HOST GALAXIES Rachel L. Theios1 and Matthew A. Malkan and Nathaniel R. Ross2 Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095, USA Draft version November 6, 2018 ABSTRACT We used narrowband (∆λ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 meter telescope at Lick Observatory to observe 31 nearby (z < 0:03) Seyfert galaxies in the 12 µm Active Galaxy Sample (Spinoglio & Malkan 1989). We obtained pure emission line images of each galaxy, which reach down to a flux limit of 7:3 10−15 erg cm−2 s−1 arcsec−2, and corrected these images for [N ii] emission and extinction. We separated× the Hα emission line from the “nucleus” (central 100–1000 pc) from that of the host galaxy. The extended Hα emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current SFRs in these galaxies: 7.7 µm PAH, far infrared, and radio luminosity. Relative to what is expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The Hα luminosity we measured in the galaxy centers is dominated by the AGN, and is linearly correlated with hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for Seyfert 1s, because their nuclear Hα emission includes a strong additional contribution from the Broad Line Region.
    [Show full text]
  • Comprehensive Broadband X-Ray and Multiwavelength Study of Active Galactic Nuclei in Local 57 Ultra/Luminous Infrared Galaxies Observed with Nustar And/Or Swift/BAT
    Draft version July 26, 2021 Typeset using LATEX twocolumn style in AASTeX631 Comprehensive Broadband X-ray and Multiwavelength Study of Active Galactic Nuclei in Local 57 Ultra/luminous Infrared Galaxies Observed with NuSTAR and/or Swift/BAT Satoshi Yamada ,1 Yoshihiro Ueda ,1 Atsushi Tanimoto ,2 Masatoshi Imanishi ,3, 4 Yoshiki Toba ,1, 5 Claudio Ricci ,6, 7, 8 and George C. Privon 9 1Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan 2Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan 3National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588, Japan 4Department of Astronomical Science, Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 5Research Center for Space and Cosmic Evolution, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan 6N´ucleo de Astronom´ıade la Facultad de Ingenier´ıa,Universidad Diego Portales, Av. Ej´ercito Libertador 441, Santiago, Chile 7Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, People's Republic of China 8George Mason University, Department of Physics & Astronomy, MS 3F3, 4400 University Drive, Fairfax, VA 22030, USA 9National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA (Received April 13, 2021; Revised June 11, 2021; Accepted Jul, 2021) ABSTRACT We perform a systematic X-ray spectroscopic analysis of 57 local ultra/luminous infrared galaxy systems (containing 84 individual galaxies) observed with Nuclear Spectroscopic Telescope Array and/or Swift/BAT. Combining soft X-ray data obtained with Chandra, XMM-Newton, Suzaku and/or Swift/XRT, we identify 40 hard (>10 keV) X-ray detected active galactic nuclei (AGNs) and con- strain their torus parameters with the X-ray clumpy torus model XCLUMPY (Tanimoto et al.
    [Show full text]
  • 1987Apj. . .320. .2383 the Astrophysical Journal, 320:238-257
    .2383 The Astrophysical Journal, 320:238-257,1987 September 1 © 1987. The American Astronomical Society. AU rights reserved. Printed in U.S.A. .320. 1987ApJ. THE IRÁS BRIGHT GALAXY SAMPLE. II. THE SAMPLE AND LUMINOSITY FUNCTION B. T. Soifer, 1 D. B. Sanders,1 B. F. Madore,1,2,3 G. Neugebauer,1 G. E. Danielson,4 J. H. Elias,1 Carol J. Lonsdale,5 and W. L. Rice5 Received 1986 December 1 ; accepted 1987 February 13 ABSTRACT A complete sample of 324 extragalactic objects with 60 /mi flux densities greater than 5.4 Jy has been select- ed from the IRAS catalogs. Only one of these objects can be classified morphologically as a Seyfert nucleus; the others are all galaxies. The median distance of the galaxies in the sample is ~ 30 Mpc, and the median 10 luminosity vLv(60 /mi) is ~2 x 10 L0. This infrared selected sample is much more “infrared active” than optically selected galaxy samples. 8 12 The range in far-infrared luminosities of the galaxies in the sample is 10 LQ-2 x 10 L©. The far-infrared luminosities of the sample galaxies appear to be independent of the optical luminosities, suggesting a separate luminosity component. As previously found, a correlation exists between 60 /¿m/100 /¿m flux density ratio and far-infrared luminosity. The mass of interstellar dust required to produce the far-infrared radiation corre- 8 10 sponds to a mass of gas of 10 -10 M0 for normal gas to dust ratios. This is comparable to the mass of the interstellar medium in most galaxies.
    [Show full text]
  • The Weak Fe Fluorescence Line and Long-Term X-Ray Evolution of The
    MNRAS 467, 4606–4621 (2017) doi:10.1093/mnras/stx357 Advance Access publication 2017 February 13 The weak Fe fluorescence line and long-term X-ray evolution of the Compton-thick active galactic nucleus in NGC 7674 P. Gandhi,1,2‹ A. Annuar,2 G. B. Lansbury,2,3 D. Stern,4 D. M. Alexander,2 F. E. Bauer,5,6,7 S. Bianchi,8 S. E. Boggs,9 P. G. Boorman,1 W. N. Brandt,10,11,12 M. Brightman,13 F. E. Christensen,14 A. Comastri,15 W. W. Craig, 14,16 A. Del Moro,17 M. Elvis,18 M. Guainazzi,19,20 C. J. Hailey,21 F. A. Harrison,13 M. Koss,22 I. Lamperti,22 G. Malaguti,23 A. Masini,15,24 G. Matt,8 S. Puccetti,25,26 C. Ricci,5 E. Rivers,13 D. J. Walton3,4,13 and W. W. Zhang27 Affiliations are listed at the end of the paper Accepted 2017 February 8. Received 2017 February 7; in original form 2016 May 24 ABSTRACT We present NuSTAR X-ray observations of the active galactic nucleus (AGN) in NGC 7674. The source shows a flat X-ray spectrum, suggesting that it is obscured by Compton-thick gas columns. Based upon long-term flux dimming, previous work suggested the alternate possibility that the source is a recently switched-off AGN with the observed X-rays being the lagged echo from the torus. Our high-quality data show the source to be reflection-dominated in hard X-rays, but with a relatively weak neutral Fe Kα emission line (equivalent width [EW] of ≈ 0.4 keV) and a strong Fe XXVI ionized line (EW ≈ 0.2 keV).
    [Show full text]
  • Lopsided Spiral Galaxies: Evidence for Gas Accretion
    A&A 438, 507–520 (2005) Astronomy DOI: 10.1051/0004-6361:20052631 & c ESO 2005 Astrophysics Lopsided spiral galaxies: evidence for gas accretion F. Bournaud1, F. Combes1,C.J.Jog2, and I. Puerari3 1 Observatoire de Paris, LERMA, 61 Av. de l’Observatoire, 75014 Paris, France e-mail: [email protected] 2 Department of Physics, Indian Institute of Science, Bangalore 560012, India 3 Instituto Nacional de Astrofísica, Optica y Electrónica, Calle Luis Enrique Erro 1, 72840 Tonantzintla, Puebla, Mexico Received 3 January 2005 / Accepted 15 March 2005 Abstract. We quantify the degree of lopsidedness for a sample of 149 galaxies observed in the near-infrared from the OSUBGS sample, and try to explain the physical origin of the observed disk lopsidedness. We confirm previous studies, but for a larger sample, that a large fraction of galaxies have significant lopsidedness in their stellar disks, measured as the Fourier amplitude of the m = 1 component normalised to the average or m = 0 component in the surface density. Late-type galaxies are found to be more lopsided, while the presence of m = 2 spiral arms and bars is correlated with disk lopsidedness. We also show that the m = 1 amplitude is uncorrelated with the presence of companions. Numerical simulations were carried out to study the generation of m = 1viadifferent processes: galaxy tidal encounters, galaxy mergers, and external gas accretion with subsequent star formation. These simulations show that galaxy interactions and mergers can trigger strong lopsidedness, but do not explain several independent statistical properties of observed galaxies. To explain all the observational results, it is required that a large fraction of lopsidedness results from cosmological accretion of gas on galactic disks, which can create strongly lopsided disks when this accretion is asymmetrical enough.
    [Show full text]
  • San Jose Astronomical Association Membership Form P.O
    SJAA EPHEMERIS SJAA Activities Calendar May General Meeting Jim Van Nuland Dr. Jeffrey Cuzzi May 26 at 8 p.m. @ Houge Park late April David Smith 20 Houge Park Astro Day. Sunset 7:47 p.m., 20% moon sets 0:20 a.m. Star party hours: 8:30 to 11:30 p.m. At our May 26 General Meeting the title of the talk will be: 21 Mirror-making workshop at Houge Park. 7:30 p.m. What Have We Learned from the Cassini/Huygens Mission to 28 General meeting at Houge Park. Karrie Gilbert will Saturn? – a presentation by Dr. Jeffrey Cuzzi of NASA Ames speak on Studies of Andromeda Galaxy Halo Stars. 8 Research Center. p.m. May Cassini is now well into its third year at Saturn. The Huygens 5 Mirror-making workshop at Houge Park. 7:30 p.m. entry probe landed on Titan in January 2005, but since then, 11 Astronomy Class at Houge Park. 7:30 p.m. many new discoveries have been made on Titan’s surface, and 11 Houge Park star party. Sunset 8:06 p.m., 27% moon elsewhere in the system, by the orbiter as it continues its four- rise 3:23 a.m. Star party hours: 9:00 to midnight. year tour. In addition, new understanding is emerging from 12 Dark sky weekend. Sunset 8:07 p.m., 17% moon rise analysis of the earliest obtained data. 3:50 a.m. In this talk, Dr. Jeffrey Cuzzi will review the key science highlights 17 Mirror-making workshop at Houge Park.
    [Show full text]
  • Dust and CO Emission Towards the Centers of Normal Galaxies, Starburst Galaxies and Active Galactic Nuclei, I
    A&A 462, 575–579 (2007) Astronomy DOI: 10.1051/0004-6361:20047017 & c ESO 2007 Astrophysics Dust and CO emission towards the centers of normal galaxies, starburst galaxies and active galactic nuclei, I. New data and updated catalogue M. Albrecht1,E.Krügel2, and R. Chini3 1 Instituto de Astronomía, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile e-mail: [email protected] 2 Max-Planck-Institut für Radioastronomie (MPIfR), Auf dem Hügel 69, 53121 Bonn, Germany 3 Astronomisches Institut der Ruhr-Universität Bochum (AIRUB), Universitätsstr. 150 NA7, 44780 Bochum, Germany Received 6 January 2004 / Accepted 27 October 2006 ABSTRACT Aims. The amount of interstellar matter in a galaxy determines its evolution, star formation rate and the activity phenomena in the nucleus. We therefore aimed at obtaining a data base of the 12CO line and thermal dust emission within equal beamsizes for galaxies in a variety of activity stages. Methods. We have conducted a search for the 12CO (1–0) and (2–1) transitions and the continuum emission at 1300 µmtowardsthe centers of 88 galaxies using the IRAM 30 m telescope (MRT) and the Swedish ESO Submillimeter Telescope (SEST). The galaxies > are selected to be bright in the far infrared (S 100 µm ∼ 9 Jy) and optically fairly compact (D25 ≤ 180 ). We have applied optical spectroscopy and IRAS colours to group the galaxies of the entire sample according to their stage of activity into three sub-samples: normal, starburst and active galactic nuclei (AGN). The continuum emission has been corrected for line contamination and synchrotron contribution to retrieve the thermal dust emission.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • Annual Report ESO Staff Papers 2018
    ESO Staff Publications (2018) Peer-reviewed publications by ESO scientists The ESO Library maintains the ESO Telescope Bibliography (telbib) and is responsible for providing paper-based statistics. Publications in refereed journals based on ESO data (2018) can be retrieved through telbib: ESO data papers 2018. Access to the database for the years 1996 to present as well as an overview of publication statistics are available via http://telbib.eso.org and from the "Basic ESO Publication Statistics" document. Papers that use data from non-ESO telescopes or observations obtained with hosted telescopes are not included. The list below includes papers that are (co-)authored by ESO authors, with or without use of ESO data. It is ordered alphabetically by first ESO-affiliated author. Gravity Collaboration, Abuter, R., Amorim, A., Bauböck, M., Shajib, A.J., Treu, T. & Agnello, A., 2018, Improving time- Berger, J.P., Bonnet, H., Brandner, W., Clénet, Y., delay cosmography with spatially resolved kinematics, Coudé Du Foresto, V., de Zeeuw, P.T., et al. , 2018, MNRAS, 473, 210 [ADS] Detection of orbital motions near the last stable circular Treu, T., Agnello, A., Baumer, M.A., Birrer, S., Buckley-Geer, orbit of the massive black hole SgrA*, A&A, 618, L10 E.J., Courbin, F., Kim, Y.J., Lin, H., Marshall, P.J., Nord, [ADS] B., et al. , 2018, The STRong lensing Insights into the Gravity Collaboration, Abuter, R., Amorim, A., Anugu, N., Dark Energy Survey (STRIDES) 2016 follow-up Bauböck, M., Benisty, M., Berger, J.P., Blind, N., campaign - I. Overview and classification of candidates Bonnet, H., Brandner, W., et al.
    [Show full text]