Variability in Egg Size and Population Declines of Herring Gulls in Relation to Fisheries and Climate Conditions
VOLUME 12, ISSUE 2, ARTICLE 16 Bennett, J. L., E. G. Jamieson, R. A. Ronconi, and S. N. P. Wong. 2017. Variability in egg size and population declines of Herring Gulls in relation to fisheries and climate conditions. Avian Conservation and Ecology 12(2):16. https://doi.org/10.5751/ACE-01118-120216 Copyright © 2017 by the author(s). Published here under license by the Resilience Alliance. Research Paper Variability in egg size and population declines of Herring Gulls in relation to fisheries and climate conditions Jessica L. Bennett 1, Ellen G. Jamieson 2,3, Robert A. Ronconi 2,4 and Sarah N. P. Wong 2,5 1Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada, 2Department of Biology, Dalhousie University, Halifax, NS, Canada, 3Department of Environmental and Life Sciences, Trent University, Peterborough, ON, Canada, 4Canadian Wildlife Service, Environment and Climate Change Canada, Dartmouth, NS, Canada, 5Department of Biology, Acadia University, Wolfville, NS, Canada ABSTRACT. Changes in clutch and egg size in many avian species have been linked to seasonal variation, female physiological state, and laying date during breeding season. These reproductive variables have also been linked to population status and habitat variables. Recent declines in Herring Gull (Larus argentatus) populations in the Atlantic region may be associated with environmental changes, fishery activities, or natural species interactions and fluctuations. We studied variability and trends in Herring Gull egg, clutch, and population size at a cluster of three islands of the Grand Manan Archipelago in the Bay of Fundy, Canada. A generalized linear model investigating variability in Herring Gull egg volume over a 28-year period (1988 to 2015) showed increasing egg volume since a low in 2000, significant positive correlations with regional fisheries landings, and weak interactions with sea surface temperature and the winter North Atlantic Oscillation (NAO) index.
[Show full text]