African Python, Python Natalensis, in South Africa (Courtesy of G

Total Page:16

File Type:pdf, Size:1020Kb

African Python, Python Natalensis, in South Africa (Courtesy of G i Cover photo: Green Anaconda photo by Lutz Dirksen. Photo permission granted for use. i Giant Constrictors: Biological and Management Profiles and an Establishment Risk Assessment for Nine Large Species of Pythons, Anacondas, and the Boa Constrictor By Robert N. Reed and Gordon H. Rodda Open-File Report 2009–1202 U.S. Department of the Interior U.S. Geological Survey i U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia 2009 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Reed, R.N., and Rodda, G.H., 2009, Giant constrictors: biological and management profiles and an establishment risk assessment for nine large species of pythons, anacondas, and the boa constrictor: U.S. Geological Survey Open-File Report 2009–1202, 302 p. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Frontispiece: Clockwise from upper left: Southern African Python, Python natalensis, in South Africa (courtesy of G. Alexander); A clutch of hatchling Burmese Pythons (Python molurus bivittatus) in Florida (courtesy of S. Snow); A brooding female Burmese Python lifted from her eggs in Florida (courtesy of S. Snow); Green Anaconda, Eunectes murinus, in Brazil (courtesy of L. Dirksen); DeSchauensee's Anaconda, Eunectes deschauenseei (courtesy of L. Dirksen); Boa Constrictor, Boa constrictor, on Aruba Island, West Indies (courtesy of R. Reed); Reticulated Python, Broghammerus reticulatus, on Sulawesi Island, Indonesia (courtesy of B. Lardner). ii iii iv Table of Contents Chapter One–Introduction and Synopsis of Conclusions ...................................................................... 1 Synopsis of Conclusions .............................................................................................................................. 4 Chapter Two–Materials and Methods ....................................................................................................... 9 Introduction .................................................................................................................................................. 9 Length Measurements ............................................................................................................................... 10 Climate Space ............................................................................................................................................ 11 International Trade ..................................................................................................................................... 14 Climate Matching ....................................................................................................................................... 15 Reasons for Preferring our Method to the use of Environmental Niche Models ......................................... 16 Chapter Three–Synopsis of Eradication Tools ...................................................................................... 21 Introduction ................................................................................................................................................ 21 Primary Tools ............................................................................................................................................. 23 Primary Tool I–Limit Spread: Barriers ..................................................................................................... 23 Primary Tool IIa–Localize Targets: Visual Searching ............................................................................. 25 Primary Tool IIb–Localize Targets: Public Reporting .............................................................................. 29 Primary Tool III–Localize Targets: Trapping ........................................................................................... 30 Primary Tool IV–Localize Targets: Detector Dogs .................................................................................. 32 Primary Tool V–Kill Unlocalized Snakes: Toxicants ............................................................................... 33 Summary of Primary Tools ..................................................................................................................... 34 Secondary Tools ........................................................................................................................................ 35 Secondary Tools I–Judas Snakes .......................................................................................................... 35 Secondary Tools II–Biocontrol ................................................................................................................ 36 Secondary Tools III–Habitat Manipulation .............................................................................................. 38 Secondary Tools IV–Bounties and Adding Value ................................................................................... 38 Secondary Tools V–Frightening Devices ................................................................................................ 38 Secondary Tools VI–Reproductive Inhibition .......................................................................................... 39 Secondary Tools VII–Egg/Nest Destruction ........................................................................................... 40 Secondary Tools VIII–Pheromonal Attractants ....................................................................................... 40 Summary of Secondary Tools ................................................................................................................ 42 Overall Summary .................................................................................................................................... 42 Chapter Four–The Indian or Burmese Python, Python molurus .......................................................... 43 1.0 Introduction .......................................................................................................................................... 43 1.1 Species ............................................................................................................................................. 43 1.2 Common Names ............................................................................................................................... 44 1.3 Evolutionary Context ........................................................................................................................ 44 2.0 Description ........................................................................................................................................... 45 2.1 Unique Morphological Features ........................................................................................................ 45 2.2 Size .................................................................................................................................................. 45 2.3 Sexual Size Dimorphism .................................................................................................................. 46 2.4 External Sexual Differentiation ......................................................................................................... 46 3.0 Distribution in Space and Time ............................................................................................................ 47 3.1 Native Range .................................................................................................................................... 47 v 3.2 Habitat Range................................................................................................................................... 50 3.2.1 Maximum Elevation .................................................................................................................... 50 3.3 Climate Range .................................................................................................................................. 50 3.4 Microhabitat ...................................................................................................................................... 51 3.5 Introduced Ranges ........................................................................................................................... 52 3.6 Seasonal Activity .............................................................................................................................. 52 3.7 Daily Activity ..................................................................................................................................... 52 3.8 Foraging Mode/Sensory Modalities .................................................................................................. 52 4.0 Life History ........................................................................................................................................... 53 4.1 Reproductive Mode .........................................................................................................................
Recommended publications
  • Flocks and Crowds
    Flocks and Crowds Flocks and crowds are other essential concepts we'll be exploring in this book. amount of realism to your simulation in just a few lines of code. Crowds can be a bit more complex, but we'll be exploring some of the powerful tools that come bundled with Unity to get the job done. In this chapter, we'll cover the following topics: Learning the history of flocks and herds Understanding the concepts behind flocks Flocking using the Unity concepts Flocking using the traditional algorithm Using realistic crowds the technology being the swarm of bats in Batman Returns in 1992, for which he won an and accurate, the algorithm is also very simple to understand and implement. [ 115 ] Understanding the concepts behind As with them to the real-life behaviors they model. As simple as it sounds, these concepts birds exhibit in nature, where a group of birds follow one another toward a common on the group. We've explored how singular agents can move and make decisions large groups of agents moving in unison while modeling unique movement in each Island. This demo came with Unity in Version 2.0, but has been removed since Unity 3.0. For our project. the way, you'll notice some differences and similarities, but there are three basic the algorithm's introduction in the 80s: Separation: This means to maintain a distance with other neighbors in the flock to avoid collision. The following diagram illustrates this concept: Here, the middle boid is shown moving in a direction away from the rest of the boids, without changing its heading [ 116 ] Alignment: This means to move in the same direction as the flock, and with the same velocity.
    [Show full text]
  • Rainforest Animals Question Sheet 2 the Answers to the Following Questions Can Be Found by Visiting
    www.ActiveWild.com Rainforest Animals Question Sheet 2 The answers to the following questions can be found by visiting: www.activewild.com/rainforest-animals-list/ (For each question, either underline or circle the correct answer.) 1. Is the Amazonian giant centipede 6. What is the smallest species of caiman? venomous? • Black caiman • Yes • No • Spectacled caiman 2. How does the Arrau turtle withdraw its neck into its shell? • Cuvier’s dwarf caiman • With a sideways motion 7. What type of animal is a coati? • It pulls its head straight back • Mammal in the cat family • It can’t withdraw its head • Mammal in the raccoon family • Reptile in the alligator family 3. What type of animal is an aye-aye? • Monkey 8. Where is the electric eel found? • Bushbaby • South America • Lemur • Southeast Asia • Africa 4. What is the Boa Constrictor’s scientific name? 9. The goliath beetle is the world’s largest • Corallus caninus beetle. Is it able to fly? • Yes • Boa constrictor • No • Boa imperator 10. True or false: the goliath birdeater spider’s diet consists almost entirely of 5. Is the Boa constrictor venomous? birds • Yes • True • No • False Copyright © 2019. All rights reserved. 1 www.ActiveWild.com 11. True or false: the green anaconda is the 17. True or false: piranhas are apex world’s longest snake. predators, with no predators of their own? • True • True • False • False 12. Why is the hoatzin also known as the ‘stinkbird’? 18. Tarsiers are known for having large… • It is found near swamps • Eyes • It ferments leaves in its crop • Brains • It feeds on dung • Teeth 13.
    [Show full text]
  • Swarm Intelligence
    Swarm Intelligence Leen-Kiat Soh Computer Science & Engineering University of Nebraska Lincoln, NE 68588-0115 [email protected] http://www.cse.unl.edu/agents Introduction • Swarm intelligence was originally used in the context of cellular robotic systems to describe the self-organization of simple mechanical agents through nearest-neighbor interaction • It was later extended to include “any attempt to design algorithms or distributed problem-solving devices inspired by the collective behavior of social insect colonies and other animal societies” • This includes the behaviors of certain ants, honeybees, wasps, cockroaches, beetles, caterpillars, and termites Introduction 2 • Many aspects of the collective activities of social insects, such as ants, are self-organizing • Complex group behavior emerges from the interactions of individuals who exhibit simple behaviors by themselves: finding food and building a nest • Self-organization come about from interactions based entirely on local information • Local decisions, global coherence • Emergent behaviors, self-organization Videos • https://www.youtube.com/watch?v=dDsmbwOrHJs • https://www.youtube.com/watch?v=QbUPfMXXQIY • https://www.youtube.com/watch?v=M028vafB0l8 Why Not Centralized Approach? • Requires that each agent interacts with every other agent • Do not possess (environmental) obstacle avoidance capabilities • Lead to irregular fragmentation and/or collapse • Unbounded (externally predetermined) forces are used for collision avoidance • Do not possess distributed tracking (or migration)
    [Show full text]
  • Quick Reference Guide: Introduced Constrictors in Florida1 Steve A
    WEC302 Quick Reference Guide: Introduced Constrictors in Florida1 Steve A. Johnson and Monica E. McGarrity2 Three non-native species of large constrictor snakes are that these were escaped or released pets. View maps of loca- now breeding in Florida, and several others have been tions where each species has been encountered in Florida encountered but have not yet established wild populations. by visiting the EDDMapS Florida invasive species reporting This fact sheet, best viewed as a pdf (http://edis.ifas.ufl.edu/ portal online at http://www.IveGot1.org. Learn more about pdffiles/UW/UW34700.pdf), is a quick reference guide how to scan for, recognize, and report introduced constric- to identification of the constrictors you are most likely to tors by completing the Introduced Reptile Early Detection encounter in Florida. Although many of these snakes are and Documentation training course. Visit http://ufwildlife. not established in the wild, they are common in the pet ifas.ufl.edu/reddy.shtml to learn more and get REDDy! trade, and each has been spotted in the wild—it is likely Pythons Burmese Python (Python bivittatus) Status: established, breeding populations; range expanding Head: dark arrowhead, light center line, dark and light in Florida wedges under eyes Size: up to 12 feet or longer Body: Giraffe-like spots, dark blotches not connected Figure 1. Burmese python. Credits: Head illustration by USGS; body illustration by Monica E. McGarrity, UF 1. This document is WEC302, one of a series of the Department of Wildlife Ecology and Conservation, UF/IFAS Extension. Original publication date November 2010. Revised February 2014 and June 2017.
    [Show full text]
  • A New Species of Hepatozoon (Apicomplexa: Adeleorina) from Python Regius (Serpentes: Pythonidae) and Its Experimental Transmission by a Mosquito Vector
    J. Parasitol., 93(?), 2007, pp. 1189–1198 ᭧ American Society of Parasitologists 2007 A NEW SPECIES OF HEPATOZOON (APICOMPLEXA: ADELEORINA) FROM PYTHON REGIUS (SERPENTES: PYTHONIDAE) AND ITS EXPERIMENTAL TRANSMISSION BY A MOSQUITO VECTOR Michal Sloboda, Martin Kamler, Jana Bulantova´*, Jan Voty´pka*†, and David Modry´† Department of Parasitology, University of Veterinary and Pharmaceutical Sciences, Palacke´ho 1-3, 612 42 Brno, Czech Republic. e-mail: [email protected] ABSTRACT: Hepatozoon ayorgbor n. sp. is described from specimens of Python regius imported from Ghana. Gametocytes were found in the peripheral blood of 43 of 55 snakes examined. Localization of gametocytes was mainly inside the erythrocytes; free gametocytes were found in 15 (34.9%) positive specimens. Infections of laboratory-reared Culex quinquefasciatus feeding on infected snakes, as well as experimental infection of juvenile Python regius by ingestion of infected mosquitoes, were performed to complete the life cycle. Similarly, transmission to different snake species (Boa constrictor and Lamprophis fuliginosus) and lizards (Lepidodactylus lugubris) was performed to assess the host specificity. Isolates were compared with Hepatozoon species from sub-Saharan reptiles and described as a new species based on the morphology, phylogenetic analysis, and a complete life cycle. Hemogregarines are the most common intracellular hemo- 3 genera (Telford et al., 2004). Low host specificity of Hepa- parasites found in reptiles. The Hemogregarinidae, Karyolysi- tozoon spp. is supported by experimental transmissions between dae, and Hepatozoidae are distinguished based on the different snakes from different families. Ball (1967) observed experi- developmental patterns in definitive (invertebrate) hosts oper- mental parasitemia with Hepatozoon rarefaciens in the Boa ating as vectors; all 3 families have heteroxenous life cycles constrictor (Boidae); the vector was Culex tarsalis, which had (Telford, 1984).
    [Show full text]
  • Opinion No. 82-811
    TO BE PUBLISHED IN THE OFFICIAL REPORTS OFFICE OF THE ATTORNEY GENERAL State of California JOHN K. VAN DE KAMP Attorney General _________________________ : OPINION : No. 82-811 : of : APRI 28, 1983 : JOHN K. VAN DE KAMP : Attorney General : : JOHN T. MURPHY : Deputy Attorney General : : ________________________________________________________________________ THE HONORABLE ROBERT W. NAYLOR, A MEMBER OF THE CALIFORNIA ASSEMBLY, has requested an opinion on the following question: Does "python" as used in Penal Code section 653o to identify an endangered snake include "anaconda"? CONCLUSION As used in Penal Code section 653o to identify an endangered snake, "python" does not include "anaconda." 1 82-811 ANALYSIS Penal Code section 653o, subd. (a), provides as follows: "It is unlawful to import into this state for commercial purposes, to possess with intent to sell, or to sell within the state, the dead body, or any part or product thereof, of any alligator, crocodile, polar bear, leopard, ocelot, tiger, cheetah, jaguar, sable antelope, wolf (Canis lupus), zebra, whale, cobra, python, sea turtle, colobus monkey, kangaroo, vicuna, sea otter, free-roaming feral horse, dolphin or porpoise (Delphinidae), Spanish lynx, or elephant." "Any person who violates any provision of this section is guilty of a misdemeanor and shall be subject to a fine of not less than one thousand dollars ($1,000) and not to exceed five thousand dollars ($5,000) or imprisonment in the county jail for not to exceed six months, or both such fine and imprisonment, for each violation." (Emphasis added.) We are asked whether or not the term "python" in this statute includes "anaconda." Section 653o was enacted in 1970 (Stats.
    [Show full text]
  • Prevent Problems with Large Boas & Pythons
    Client Education—Snake Safety Tips Prevent Problems with Large Boas & Pythons ! According to the Humane Society of the United States,17 deaths and many more injuries have been related to large constrictors since 1978. Given the tens of thousands of large constrictors sold, the incidence of fatalities and injuries is relatively low, however every incident—including the death of four babies in their cribs and three additional children— is particularly tragic since such cases are completely preventable. So called “giant snakes” regularly exceed 8 feet (2.4 m) in length, potentially making them difficult or even unsafe to handle. Large constrictor species include the green anaconda (Eunectes murinus), Indian python (Python molurus), African rock python (Python sebae), amethystine python (Morelia amethistina), reticulated python (Python reticulatus), and Burmese python (Python molurus bivittatus). Only the latter two species, reticulated and Burmese pythons, are regularly found in the pet trade, however these species can exceed 20 feet (6.1 m) and are not recommended for casual hobbyists. One real life tragedy: In 2011, a Florida mother and her boyfriend were found guilty of the murder of her 2-year old daughter, strangled by her 8-foot 6- “The baby’s dead. inch pet Burmese python. The child was found in her crib, with the Our stupid snake snake coiled tightly around her neck and numerous bite marks on got out in the middle her face. of the night and strangled the Evaluation of the albino python named “Gypsy” found her to be baby”.—Florida man underweight, and the snake's enclosure had only a quilt for a lid.
    [Show full text]
  • Final Rule to List Reticulated Python And
    Vol. 80 Tuesday, No. 46 March 10, 2015 Part II Department of the Interior Fish and Wildlife 50 CFR Part 16 Injurious Wildlife Species; Listing Three Anaconda Species and One Python Species as Injurious Reptiles; Final Rule VerDate Sep<11>2014 18:14 Mar 09, 2015 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\10MRR2.SGM 10MRR2 mstockstill on DSK4VPTVN1PROD with RULES2 12702 Federal Register / Vol. 80, No. 46 / Tuesday, March 10, 2015 / Rules and Regulations DEPARTMENT OF THE INTERIOR Services Office, U.S. Fish and Wildlife 3330) to list Burmese (and Indian) Service, 1339 20th Street, Vero Beach, pythons, Northern African pythons, Fish and Wildlife Service FL 32960–3559; telephone 772–562– Southern African pythons, and yellow 3909 ext. 256; facsimile 772–562–4288. anacondas as injurious wildlife under 50 CFR Part 16 FOR FURTHER INFORMATION CONTACT: Bob the Lacey Act. The remaining five RIN 1018–AV68 Progulske, Everglades Program species (reticulated python, boa Supervisor, South Florida Ecological constrictor, green anaconda, [Docket No. FWS–R9–FHC–2008–0015; Services Office, U.S. Fish and Wildlife DeSchauensee’s anaconda, and Beni FXFR13360900000–145–FF09F14000] Service, 1339 20th Street, Vero Beach, anaconda) were not listed at that time and remained under consideration for Injurious Wildlife Species; Listing FL 32960–3559; telephone 772–469– 4299. If you use a telecommunications listing. With this final rule, we are Three Anaconda Species and One listing four of those species (reticulated Python Species as Injurious Reptiles device for the deaf (TDD), please call the Federal Information Relay Service python, green anaconda, AGENCY: Fish and Wildlife Service, (FIRS) at 800–877–8339.
    [Show full text]
  • In the Matobo National Park, Zimbabwe
    CHIPANGALI WILDLIFE TRUST CARNIVORE RESEARCH INSTITUTE (CRI) Up-date of all Research Projects September 2005 CONTENTS Description Page No Project No 1 : The food and feeding habits of the leopard 1 (Panthera pardus) in the Matobo National Park, Zimbabwe. Project No 2 : The home range and movements of radio-collared 1 leopards (Panthera pardus) in the Matobo National Park, Zimbabwe. Project No 3 : Capture and translocation of problem cheetahs, 3 leopards and brown hyaenas found killing domestic livestock and the monitoring of their movements after release back into the wild. Project No 4 : The home range and movements of a radio-collared 4 brown hyaena (Hyaena brunnea) in the Matobo Hills World Heritage Site. Project No 5 : Check-list and Atlas of the Carnivores of Matabeleland. 4 Project No 6 : Field Survey and Captive Breeding Programme of the 6 Southern African Python (Python natalensis). Project No 7 : Biodiversity of the Matobo Hills World Heritage Site. 7 Acknowledgements. 9 PROJECT NO 1: THE FOOD AND FEEDING Leopard Kills Serval (Matopos National Park) HABITS OF THE LEOPARD (Panthera pardus) IN THE MATOBO NATIONAL PARK, ZIMBABWE On Tuesday 14th September, 2004 at 6:30am we were on our way to Maleme Vlei to catch This project commenced in January 2002 and after a invertebrates as part of our biodiversity survey of period of 4 years it will finally come to an end in the Matobo Hills World Heritage Site. December 2005. Up until the end of 2004 we had already collected 2630 different piles of droppings as At less than 20 metres from our tented camp at follows: Maleme Dam we came across signs of a kill that had taken place during the night.
    [Show full text]
  • Investigations Into the Presence of Nidoviruses in Pythons Silvia Blahak1, Maria Jenckel2,3, Dirk Höper2, Martin Beer2, Bernd Hoffmann2 and Kore Schlottau2*
    Blahak et al. Virology Journal (2020) 17:6 https://doi.org/10.1186/s12985-020-1279-5 RESEARCH Open Access Investigations into the presence of nidoviruses in pythons Silvia Blahak1, Maria Jenckel2,3, Dirk Höper2, Martin Beer2, Bernd Hoffmann2 and Kore Schlottau2* Abstract Background: Pneumonia and stomatitis represent severe and often fatal diseases in different captive snakes. Apart from bacterial infections, paramyxo-, adeno-, reo- and arenaviruses cause these diseases. In 2014, new viruses emerged as the cause of pneumonia in pythons. In a few publications, nidoviruses have been reported in association with pneumonia in ball pythons and a tiger python. The viruses were found using new sequencing methods from the organ tissue of dead animals. Methods: Severe pneumonia and stomatitis resulted in a high mortality rate in a captive breeding collection of green tree pythons. Unbiased deep sequencing lead to the detection of nidoviral sequences. A developed RT-qPCR was used to confirm the metagenome results and to determine the importance of this virus. A total of 1554 different boid snakes, including animals suffering from respiratory diseases as well as healthy controls, were screened for nidoviruses. Furthermore, in addition to two full-length sequences, partial sequences were generated from different snake species. Results: The assembled full-length snake nidovirus genomes share only an overall genome sequence identity of less than 66.9% to other published snake nidoviruses and new partial sequences vary between 99.89 and 79.4%. Highest viral loads were detected in lung samples. The snake nidovirus was not only present in diseased animals, but also in snakes showing no typical clinical signs.
    [Show full text]
  • Aspidites Melanocephalus) in the Wild
    Northern Territory Naturalist (2019) 29: 37-39 Short Note An observation of excavating behaviour by a Black-headed Python (Aspidites melanocephalus) in the wild Gerry Swan1 and Christy Harvey2 12 Acron Road, St Ives, NSW 2075, Australia Email: [email protected] 216 Fleetwood Cres, Frankston South, VIC 3199, Australia Abstract The Black-headed Python (Aspidites melanocephalus) and the Woma (Aspidites ramsayi) have both been reported as carrying out burrowing or excavating behaviour. These reports have been based mainly on observations of captive individuals, with the only observations of specimens in the wild being those of Bruton (2013) on Womas. Here we report on a Black-headed Python scooping out sand with its head and fore-body to create a depression in the wild. The pythonid genus Aspidites has been reported as exhibiting burrowing behaviour (Ross & Marzec 1990; Ehmann 1993; Barker & Barker 1994), based mainly on the report by Murphy, Lamoreaux & Barker (1981) that four captive Black-headed Pythons (A. melanocephalus) excavated gravel by using their head and neck to scoop loose material and create a cavity. O’Brien & Naylor (1987) reported that a young specimen that had been recently removed from the wild and was being held pending release, was observed digging beneath rocks and logs, ultimately creating a cavity in which it concealed itself. Fyfe & Harvey (1981) recorded similar behaviour by six captive Womas (Aspidites ramsayi). The floor of the vivaria in which they were housed was covered with 5–15 cm of sand and the pythons scooped this out in large quantities until they reached the base of the vivarium.
    [Show full text]
  • Updated 3 February 2020 1
    Updated 3 February 2020 Orange County Animal Services Advisory Board (ASAB) “Dangerous Animals Task Force” Participants: Chair Bryan Stuart; Current Members Amanda Schwoerke, Edmund Tiryakian, Beth Grooms, Irene Phipps, Bob Marotto, Rachel Plast; Past Members Susan Elmore, Evelyn Daniel --- Animal Control Ordinance DIVISION 5. – KEEPING OF WILD ANIMALS POTENTIALLY DANGEROUS TO PERSONS AND PROPERTY Sec. 4-181. Definitions. As used hereinafter, the following term shall mean: Wild Animals Potentially Dangerous to Persons and Property, hereinafter referred to as “Wild and Dangerous Animals”: The term applies to the following types of animals that are deemed dangerous and injurious to the public and/or domesticated animals and/or other property based on elevated risk of causing physical, zoonotic or epidemiological harm: Venomous reptiles, defined as lizard and snake species or subspecies that are capable of injecting toxins that may cause severe pain, injury, and/or death to humans; Crocodilians; Large constricting snakes, meaning any heavy-bodied snake that feeds by constriction and which species, subspecies or hybrid may attain a total adult body length reaching or exceeding 10 feet, including, but not restricted to, Green Anaconda (Eunectes murinus), Yellow Anaconda (Eunectes notaeus), Reticulated Python [Python (=Malayopython) reticulatus), Burmese Python (Python bivittatus), Indian Python (Python molurus), African Rock Python (Python sebae), and Amethystine Python [Morelia (=Simalia) amethistina]i; Felines other than the domestic house cat. Any hybrid of such felines with the domestic house cat (hereafter as “hybrid felines”) is permissible only if the hybrid is a filial 5 (F5) hybrid or later (defined as being five or more generations since the cross included a pure wild feline) as documented by a breeder pedigree from a generally accepted registry, or genetic testing methods that are generally accepted by the scientific community; maintained at all times in an enclosed environment; and documented to be vaccinated against rabies by a licensed veterinarian.
    [Show full text]