Herpetofaunal Species Abundance, Richness, and Diversity in a Dry Tropical Forest and Agricultural Matrix at the Sakaerat Biosphere Reserve, Thailand

Total Page:16

File Type:pdf, Size:1020Kb

Herpetofaunal Species Abundance, Richness, and Diversity in a Dry Tropical Forest and Agricultural Matrix at the Sakaerat Biosphere Reserve, Thailand Herpetological Conservation and Biology 13(3):586–597. Submitted: 9 November 2016; Accepted: 21 October 2018; Published: 16 December 2018. HERPETOFAUNAL SPECIES ABUNDANCE, RICHNESS, AND DIVERSITY IN A DRY TROPICAL FOREST AND AGRICULTURAL MATRIX AT THE SAKAERAT BIOSPHERE RESERVE, THAILAND MATT S. CRANE1, COLIN T. STRINE1, TYLER K. KNIERIM1, TAKSIN ARTCHAWAKOM2, AND PONGTHEP SUWANWAREE1,3 1School of Biology, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, Thailand 30000 2Sakaerat Environmental Research Station, 1 Moo 9 Udom Sab Subdistrict, Wang Nam Khiao District, Nakhon Ratchasima, Thailand 30370 3Corresponding author, email: [email protected] Abstract.—With ongoing rapid anthropogenic deforestation and habitat degradation, it is critical that we understand the role of human-disturbed areas in conserving the biodiversity of the world. Despite intensive deforestation in Southeast Asia, there are few studies investigating faunal communities in human-modified landscapes there. We assessed herpetofauna in dry dipterocarp forest, disturbed forest, and Eucalyptus plantations in the Sakaerat Biosphere Reserve of Thailand. In May and June of 2015, we conducted surveys using 12 passive trapping arrays with funnel and pitfall traps. We captured 436 individuals representing 38 species, with 266 amphibians (13 species) and 170 reptiles (25 species). The Eucalyptus plantations and highly disturbed forest sites hosted higher amphibian abundance and richness than protected areas of dry dipterocarp forest. Reptile species richness did not differ between habitat types, but capture rates in the Eucalyptus plantations were significantly higher than in the dry dipterocarp forest. Funnel traps yielded significantly higher reptile capture rates than pitfall traps. For reptiles, the results support other studies, which have concluded that reptiles are less sensitive than amphibians to disturbance and possibly positively affected by human disturbance in some cases. The terrestrial amphibian abundance and species richness documented here indicate that disturbed habitats may provide suitable areas for these species. Key Words.—degraded forest; dipterocarp forest; herpetofaunal survey; human disturbance; passive trapping; Southeast Asia INTRODUCTION Stibig et al. 2014). Replacing forests with other land use types is detrimental for many taxa (Kwok and Corlett Loss of species in species-rich tropical regions is 2000; Sodhi et al. 2004). Conservationists, however, one of the greatest threats to global biodiversity loss are only beginning to understand the underlying as these areas undergo extensive deforestation, losing mechanisms for this in a few well-studied taxa, such large swaths of forested land each year (Brooks et al. as birds (Hsu et al. 2010), mammals, and invertebrates 2002; Bradshaw et al. 2009). Human-dominated land (Trimble and van Aarde 2012). Herpetofauna are in use types, such as plantation forests and agricultural need of intensive conservation effort as these taxa developments, are rapidly replacing natural forests are facing global declines resulting from a variety of (Rudel et al. 2005; Wright 2005). The conversion of factors, such as habitat loss, spread of invasive species, forests to agrarian lands has left mosaics of small forest overcollection of naïve fauna (Gibbons et al. 2000), patches surrounded by a mixture of anthropogenic climate change (Reading et al. 2010; Araújo et al. land uses (Saunders et al. 1991). These changes are 2006), and pandemic disease (Alford 2011; Lips et al. important because land use composition significantly 2005). Despite the severity of threats faced by many influences the structure of tropical species assemblages herpetofaunal taxa, Böhm et al. (2013) described one in found within disturbed habitat patches (Urbina-Cardona five reptilian species as Data Deficient using IUCN Red et al. 2006). List categories, with tropical species being among the Southeast Asia has among the least remaining forest most deficient. cover of all of the historically forested tropical regions Research on the impacts of replacing forests with (Achard et al. 2002; Laurance 2007) yet continues to plantations or other land uses is plentiful for temperate experience high rates of deforestation (Sodhi et al. 2004; regions (Trimble and van Aarde 2012). The studies Copyright © 2018. Matt S. Crane 586 All Rights Reserved. Crane et al.—Herpetofaunal community at the Sakaerat Biosphere Reserve, Thailand. FIGURE 1. Map of Thailand with the location of the Sakaerat Biosphere Reserve (left) and the land use provided by the Thai Land Development Department (2004) for the study area with sampling sites (right). (Map created by Mathew S. Crane) have produced varied results. While some studies argue diversity from disturbance (Kaensa et al. 2014) and that there are detrimental impacts upon herpetofaunal another finding higher amphibian abundances in highly diversity (Faria et al. 2007; Gardner et al. 2007; disturbed agricultural habitats (Phochayavanich et al. Wanger et al. 2010; Kurz et al. 2014), others suggest 2008). We aimed to further elucidate the impacts of that plantations are capable of housing herpetofaunal forest degradation in Thailand by comparing reptile communities similar in composition to those in and amphibian assemblages between protected and primary forests (Germano et al. 2003; Fredericksen degraded forest habitats in the northeastern part of and Fredericksen 2004; Folt and Reider 2013). Others the country. We also aimed to further address the suggest that these changes may have a positive influence knowledge gap concerning the diverse reptile and on amphibian diversity by maintaining forest cover amphibian communities in Thailand using standardized through the conversion to plantation forests (Vonesh passive trapping techniques across both protected 2001; Fredericksen and Fredericksen 2002). and degraded habitats. We hypothesized that forest The lack of consensus in the literature highlights the degradation affects species diversity and we predict that need for more studies to help determine the causes for more degraded forest habitats would have relatively the wide range of herpetofaunal community responses to lower amphibian abundance and species richness with land use change. There have been relatively few studies little to marginal influence of the habitat degradation on in Southeast Asia concerning herpetofaunal community reptiles compared to non-degraded forests. composition and land use changes (Wanger et al. 2010; Sung et al. 2012). It is critical to assess the conservation MATERIALS AND METHODS value of plantation and remnant forests for herpetofaunal communities in Southeast Asia to construct a broad set Study site.—We conducted the study within the of policy guidelines targeting land use management. Sakaerat Biosphere Reserve (SBR) located in Nakhon In Thailand, several studies have investigated Ratchasima Province, Thailand (14.44–14.55°N, herpetofaunal diversity along elevation (Kongjaroen 101.88–101.95°E). The reserve has an 80 km2 protected and Nabhitabhata 2007; Phochayavanich et al. 2010) Core Area, surrounded by a 360 km2 belt, comprised of and disturbance gradients (Konlek and Lauhachinda the Buffer and Transitional Zones (Fig. 1). The forested 2008; Kaensa et al. 2014), as well as between habitats areas occur predominately in the Core and Buffer Zones, (Inger and Colwell 1977; Suttanon and Lauhachinda which consist of primary-growth dry evergreen forest, 2008). The studies showed contrasting results with dry dipterocarp forest and secondary reforestation one study showing a negative impact on amphibian (Trisurat 2010). The Transition Zone comprises nearly 587 Herpetological Conservation and Biology double funnel traps measuring 2 × 0.5 × 0.3 m at the end of each fence line in the array. We placed a 40 L pitfall trap, extending 36 cm deep into the soil from the surface at the midpoint of each line for a total of three pitfalls per array. Additionally, we attached six double- chambered funnel traps to the center of each array for a total of 12 funnel traps and three pitfall traps (Fig. 2). To avoid flooding during rains, we drilled holes into the base of each pitfall trap. We fitted pitfall bases with a sheet of screen wire to prevent blockages and animals from escaping through the drainage holes. To reduce capture mortalities from exposure, we constructed shade covers over the traps from plastic mesh tarps affixed to bamboo stakes. We placed sponges in the second compartment of each funnel trap and in the pitfall traps to avoid desiccation for sensitive taxa. During sampling periods, we checked traps early in the morning to reduce the exposure of a captive to extreme temperatures. We sampled in May and June of 2015 to assess FIGURE 2. Passive trapping array showing the line (A), wings (B), herpetofauna. May had slightly higher average and traps (C and D). (Photographed by Mathew S. Crane) temperatures (26.3° C) and less rain (8.55 mm) compared 82% of the Reserves total area and is characterized by to June (25.6° C; 79.25 mm). Each month, we opened isolated forest fragments in a patchwork of agricultural a group of six plots (two from each habitat type) for 3 d fields, small plantation forests, and human settlements. before switching to the second set of six plots for a total of 6 d/mo. However, one of the PLE sites was destroyed Site selection and herpetofaunal sampling.— after the first sampling period in May, which created an We assessed
Recommended publications
  • Herpetological Journal SHORT NOTE
    Volume 28 (April 2018), 93-95 SHORT NOTE Herpetological Journal Published by the British Intersexuality in Helicops infrataeniatus Jan, 1865 Herpetological Society (Dipsadidae: Hydropsini) Ruth A. Regnet1, Fernando M. Quintela1, Wolfgang Böhme2 & Daniel Loebmann1 1Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Vertebrados. Av. Itália km 8, CEP: 96203-900, Vila Carreiros, Rio Grande, Rio Grande do Sul, Brazil 2Zoologisches Forschungsmuseum A. Koenig, Adenauerallee 160, D-53113 Bonn, Germany Herein, we describe the first case of intersexuality in the are viviparous, and interestingly, H. angulatus exhibits Hydropsini tribe. After examination of 720 specimens both reproductive modes (Rossman, 1984; Aguiar & Di- of Helicops infrataeniatus Jan, 1865, we discovered Bernardo, 2005; Braz et al., 2016). Helicops infrataeniatus one individual that presented feminine and masculine has a wide distribution that encompasses south- reproductive features. The specimen was 619 mm long, southeastern Brazil, southern Paraguay, North-eastern with seven follicles in secondary stage, of different shapes Argentina and Uruguay (Deiques & Cechin, 1991; Giraudo, and sizes, and a hemipenis with 13.32 and 13.57 mm in 2001; Carreira & Maneyro, 2013). At the coastal zone of length. The general shape of this organ is similar to that southernmost Brazil, H. infrataeniatus is among the most observed in males, although it is smaller and does not abundant species in many types of limnic and estuarine present conspicuous spines along its body. Deformities environments (Quintela & Loebmann, 2009; Regnet found in feminine and masculine structures suggest that et al., 2017). In October 2015 at the Laranjal beach, this specimen might not be reproductively functional. municipality of Pelotas, state of Rio Grande do Sul, Brazil (31°46’S, 52°13’W), a remarkable aggregation of reptiles Key words: Follicles, hemipenis, hermaphroditism, water and caecilians occurred after a flood event associated to snake.
    [Show full text]
  • New Records of Snakes (Squamata: Serpentes) from Hoa Binh Province, Northwestern Vietnam
    Bonn zoological Bulletin 67 (1): 15–24 May 2018 New records of snakes (Squamata: Serpentes) from Hoa Binh Province, northwestern Vietnam Truong Quang Nguyen1,2,*, Tan Van Nguyen 1,3, Cuong The Pham1,2, An Vinh Ong4 & Thomas Ziegler5 1 Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam 2 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam 3 Save Vietnam’s Wildlife, Cuc Phuong National Park, Ninh Binh Province, Vietnam 4 Vinh University, 182 Le Duan Road, Vinh City, Nghe An Province, Vietnam 5 AG Zoologischer Garten Köln, Riehler Strasse 173, D-50735 Cologne, Germany * Corresponding author. E-mail: [email protected] Abstract. We report nine new records of snakes from Hoa Binh Province based on a reptile collection from Thuong Tien, Hang Kia-Pa Co, Ngoc Son-Ngo Luong nature reserves, and Tan Lac District, comprising six species of Colubri- dae (Dryocalamus davisonii, Euprepiophis mandarinus, Lycodon futsingensis, L. meridionalis, Sibynophis collaris and Sinonatrix aequifasciata), one species of Pareatidae (Pareas hamptoni) and two species of Viperidae (Protobothrops mu- crosquamatus and Trimeresurus gumprechti). In addition, we provide an updated list of 43 snake species from Hoa Binh Province. The snake fauna of Hoa Binh contains some species of conservation concern with seven species listed in the Governmental Decree No. 32/2006/ND-CP (2006), nine species listed in the Vietnam Red Data Book (2007), and three species listed in the IUCN Red List (2018). Key words. New records, snakes, taxonomy, Hoa Binh Province.
    [Show full text]
  • The Global Distribution of Tetrapods Reveals a Need for Targeted Reptile
    1 The global distribution of tetrapods reveals a need for targeted reptile 2 conservation 3 4 Uri Roll#1,2, Anat Feldman#3, Maria Novosolov#3, Allen Allison4, Aaron M. Bauer5, Rodolphe 5 Bernard6, Monika Böhm7, Fernando Castro-Herrera8, Laurent Chirio9, Ben Collen10, Guarino R. 6 Colli11, Lital Dabool12 Indraneil Das13, Tiffany M. Doan14, Lee L. Grismer15, Marinus 7 Hoogmoed16, Yuval Itescu3, Fred Kraus17, Matthew LeBreton18, Amir Lewin3, Marcio Martins19, 8 Erez Maza3, Danny Meirte20, Zoltán T. Nagy21, Cristiano de C. Nogueira19, Olivier S.G. 9 Pauwels22, Daniel Pincheira-Donoso23, Gary Powney24, Roberto Sindaco25, Oliver Tallowin3, 10 Omar Torres-Carvajal26, Jean-François Trape27, Enav Vidan3, Peter Uetz28, Philipp Wagner5,29, 11 Yuezhao Wang30, C David L Orme6, Richard Grenyer✝1 and Shai Meiri✝*3 12 13 # Contributed equally to the paper 14 ✝ Contributed equally to the paper 15 * Corresponding author 16 17 Affiliations: 18 1 School of Geography and the Environment, University of Oxford, Oxford, OX13QY, UK. 19 2 Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, 20 Ben-Gurion University, Midreshet Ben-Gurion 8499000, Israel. (Current address) 21 3 Department of Zoology, Tel-Aviv University, Tel-Aviv 6997801, Israel. 22 4 Hawaii Biological Survey, 4 Bishop Museum, Honolulu, HI 96817, USA. 23 5 Department of Biology, Villanova University, Villanova, PA 19085, USA. 24 6 Department of Life Sciences, Imperial College London, Silwood Park Campus Silwood Park, 25 Ascot, Berkshire, SL5 7PY, UK 26 7 Institute of Zoology, Zoological Society of London, London NW1 4RY, UK. 27 8 School of Basic Sciences, Physiology Sciences Department, Universidad del Valle, Colombia.
    [Show full text]
  • An Inventory of Online Reptile Images
    Zootaxa 0000 (0): 000–000 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.0000.0.0 http://zoobank.org/urn:lsid:zoobank.org:pub:00000000-0000-0000-0000-00000000000 An inventory of online reptile images BENJAMIN MICHAEL MARSHALL1*, PAUL FREED2, LAURIE J. VITT3, PEDRO BERNARDO4, GERNOT VOGEL5, SEBASTIAN LOTZKAT6, MICHAEL FRANZEN7, JAKOB HALLERMANN8, RICHARD D. SAGE9, BRIAN BUSH10, MARCELO RIBEIRO DUARTE11, LUCIANO JAVIER AVILA12, DAVID JANDZIK13, BORIS KLUSMEYER14, BRAD MARYAN15, JIŘÍ HOŠEK16, PETER UETZ17* 1Suranaree University of Technology, Nakhon Ratchasima, Thailand �[email protected]; https://orcid.org/0000-0001-9554-0605 2Scotts Mills, Oregon 97375, USA. �[email protected] 3Sam Noble Museum, Norman, Oklahoma 73072, USA. �[email protected] 4Royal Ontario Museum, Toronto, ON, Canada. �[email protected] 5Society for Southeast Asian Herpetology, Heidelberg, Germany �[email protected]; https://orcid.org/0000-0002-4542-518X 6Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany �[email protected]; https://orcid.org/0000-0001-8171-9321 7Zoologische Staatssammlung München (ZSM-SNSB), 81247 München, Germany. �[email protected] 8Universität Hamburg, Centrum für Naturkunde, Hamburg, Germany �[email protected]; https://orcid.org/0000-0002-8835-9303 9Museum of Vertebrate Zoology, University of California, Berkeley, California 94720, and Sociedad Naturalista Andino Patagónica (SNAP), S. C. de Bariloche, Río Negro, 8400, Argentina. �[email protected]; https://orcid.org/0000-0002-0897-6927 10Stoneville, WA, Australia. �[email protected]; https://orcid.org/0000-0002-3487-6620 11Instituto Butantan, Laboratório de Coleções Zoológicas, São Paulo, Brazil.
    [Show full text]
  • Cambodian Journal of Natural History
    Cambodian Journal of Natural History Artisanal Fisheries Tiger Beetles & Herpetofauna Coral Reefs & Seagrass Meadows June 2019 Vol. 2019 No. 1 Cambodian Journal of Natural History Editors Email: [email protected], [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Alison Behie, Australia National University, • Dr Keo Omaliss, Forestry Administration, Cambodia. Australia. • Ms Meas Seanghun, Royal University of Phnom Penh, • Dr Stephen J. Browne, Fauna & Flora International, Cambodia. UK. • Dr Ou Chouly, Virginia Polytechnic Institute and State • Dr Chet Chealy, Royal University of Phnom Penh, University, USA. Cambodia. • Dr Nophea Sasaki, Asian Institute of Technology, • Mr Chhin Sophea, Ministry of Environment, Cambodia. Thailand. • Dr Martin Fisher, Editor of Oryx – The International • Dr Sok Serey, Royal University of Phnom Penh, Journal of Conservation, UK. Cambodia. • Dr Thomas N.E. Gray, Wildlife Alliance, Cambodia. • Dr Bryan L. Stuart, North Carolina Museum of Natural Sciences, USA. • Mr Khou Eang Hourt, National Authority for Preah Vihear, Cambodia. • Dr Sor Ratha, Ghent University, Belgium. Cover image: Chinese water dragon Physignathus cocincinus (© Jeremy Holden). The occurrence of this species and other herpetofauna in Phnom Kulen National Park is described in this issue by Geissler et al. (pages 40–63). News 1 News Save Cambodia’s Wildlife launches new project to New Master of Science in protect forest and biodiversity Sustainable Agriculture in Cambodia Agriculture forms the backbone of the Cambodian Between January 2019 and December 2022, Save Cambo- economy and is a priority sector in government policy.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Reptile Rap Newsletter of the South Asian Reptile Network ISSN 2230-7079 No.15 | January 2013 Date of Publication: 22 January 2013 1
    Reptile Rap Newsletter of the South Asian Reptile Network No.15 | January 2013 ISSN 2230-7079 Date of publication: 22 January 2013 1. Crocodile, 1. 2. Crocodile, Caiman, 3. Gharial, 4.Common Chameleon, 5. Chameleon, 9. Chameleon, Flap-necked 8. Chameleon Flying 7. Gecko, Dragon, Ptychozoon Chamaeleo sp. Fischer’s 10 dilepsis, 6. &11. Jackson’s Frill-necked 21. Stump-tailed Skink, 20. Gila Monster, Lizard, Green Iguana, 19. European Iguana, 18. Rhinoceros Antillean Basilisk, Iguana, 17. Lesser 16. Green 15. Common Lizard, 14. Horned Devil, Thorny 13. 12. Uromastyx, Lizard, 34. Eastern Tortoise, 33. 32. Rattlesnake Indian Star cerastes, 22. 31. Boa,Cerastes 23. Python, 25. 24. 30. viper, Ahaetulla Grass Rhinoceros nasuta Snake, 29. 26. 27. Asp, Indian Naja Snake, 28. Cobra, haje, Grater African 46. Ceratophrys, Bombina,45. 44. Toad, 43. Bullfrog, 42. Frog, Common 41. Turtle, Sea Loggerhead 40. Trionychidae, 39. mata Mata 38. Turtle, Snake-necked Argentine 37. Emydidae, 36. Tortoise, Galapagos 35. Turtle, Box 48. Marbled Newt Newt, Crested 47. Great Salamander, Fire Reptiles, illustration by Adolphe Millot. Source: Nouveau Larousse Illustré, edited by Claude Augé, published in Paris by Librarie Larousse 1897-1904, this illustration from vol. 7 p. 263 7 p. vol. from 1897-1904, this illustration Larousse Librarie by published in Paris Augé, Claude by edited Illustré, Larousse Nouveau Source: Millot. Adolphe by illustration Reptiles, www.zoosprint.org/Newsletters/ReptileRap.htm OPEN ACCESS | FREE DOWNLOAD REPTILE RAP #15, January 2013 Contents A new record of the Cochin Forest Cane Turtle Vijayachelys silvatica (Henderson, 1912) from Shendurney Wildlife Sanctuary, Kerala, India Arun Kanagavel, 3–6pp New Record of Elliot’s Shieldtail (Gray, 1858) in Seshachalam Biosphere Reserve, Eastern Ghats, Andhra Pradesh, India M.
    [Show full text]
  • First Record of the Malaysian Bridle Snake, Dryocalamus Subannulatus (Duméril, Bibron & Duméril, 1854), in Myanmar (Reptilia, Serpentes, Colubridae)
    14 2 341 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 14 (2): 341–345 https://doi.org/10.15560/14.2.341 First record of the Malaysian Bridle Snake, Dryocalamus subannulatus (Duméril, Bibron & Duméril, 1854), in Myanmar (Reptilia, Serpentes, Colubridae) Justin L. Lee,1, 2 Aryeh H. Miller,1, 3 Grant M. Connette,4 Khin Swe Oo,5 George R. Zug,1 Daniel G. Mulcahy6 1 Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013 USA. 2 College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park, MD, 20742 USA. 3 Department of Biology, University of North Carolina Asheville, Asheville, NC 28804 USA. 4 Conservation Ecology Center, Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, USA. 5 Myeik University, Department of Zoology, Myeik, Myanmar. 6 Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013 USA. Corresponding author: Justin L. Lee, [email protected] Abstract Dryocalamus subannulatus is reported for the first time from Myanmar. A single individual was found on the Thay- awthadangyi Island Group in the Myeik Archipelago, Tanintharyi Region. Morphological features and a maximum likelihood analysis of the 16S mitochondrial gene confirm its identity. This specimen represents the first record of D. subannulatus north of the Isthmus of Kra. Keywords Distribution extension; Myanmar; Thailand; snake; Dryocalamus; phylogeny; morphology. Academic editor: Ross MacCulloch | Received 15 December 2017 | Accepted 5 February 2018 | Published 16 March 2018 Citation: Lee JL, Miller AH, Connette GM, Oo KS, Zug GR, Mulcahy DG (2018) First record of the Malaysian Bridle Snake, Dryocalamus subannulatus (Duméril, Bibron & Duméril, 1854), in Myanmar (Reptilia, Serpentes, Colubridae).
    [Show full text]
  • Download Download
    HAMADRYAD Vol. 27. No. 2. August, 2003 Date of issue: 31 August, 2003 ISSN 0972-205X CONTENTS T. -M. LEONG,L.L.GRISMER &MUMPUNI. Preliminary checklists of the herpetofauna of the Anambas and Natuna Islands (South China Sea) ..................................................165–174 T.-M. LEONG & C-F. LIM. The tadpole of Rana miopus Boulenger, 1918 from Peninsular Malaysia ...............175–178 N. D. RATHNAYAKE,N.D.HERATH,K.K.HEWAMATHES &S.JAYALATH. The thermal behaviour, diurnal activity pattern and body temperature of Varanus salvator in central Sri Lanka .........................179–184 B. TRIPATHY,B.PANDAV &R.C.PANIGRAHY. Hatching success and orientation in Lepidochelys olivacea (Eschscholtz, 1829) at Rushikulya Rookery, Orissa, India ......................................185–192 L. QUYET &T.ZIEGLER. First record of the Chinese crocodile lizard from outside of China: report on a population of Shinisaurus crocodilurus Ahl, 1930 from north-eastern Vietnam ..................193–199 O. S. G. PAUWELS,V.MAMONEKENE,P.DUMONT,W.R.BRANCH,M.BURGER &S.LAVOUÉ. Diet records for Crocodylus cataphractus (Reptilia: Crocodylidae) at Lake Divangui, Ogooué-Maritime Province, south-western Gabon......................................................200–204 A. M. BAUER. On the status of the name Oligodon taeniolatus (Jerdon, 1853) and its long-ignored senior synonym and secondary homonym, Oligodon taeniolatus (Daudin, 1803) ........................205–213 W. P. MCCORD,O.S.G.PAUWELS,R.BOUR,F.CHÉROT,J.IVERSON,P.C.H.PRITCHARD,K.THIRAKHUPT, W. KITIMASAK &T.BUNDHITWONGRUT. Chitra burmanica sensu Jaruthanin, 2002 (Testudines: Trionychidae): an unavailable name ............................................................214–216 V. GIRI,A.M.BAUER &N.CHATURVEDI. Notes on the distribution, natural history and variation of Hemidactylus giganteus Stoliczka, 1871 ................................................217–221 V. WALLACH.
    [Show full text]
  • Lotus Wind Power Project
    Initial Environmental Examination – Appendix H Project Number: 54211-001 March 2021 Document Stage: Draft Viet Nam: Lotus Wind Power Project Prepared by ERM Vietnam for Lien Lap Wind Power Joint Stock Company, Phong Huy Wind Power Joint Stock Company, and Phong Nguyen Wind Power Joint Stock Company as a requirement of the Asian Development Bank. The initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “Terms of Use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Biodiversity survey Wet season report Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam 7 July 2020 Prepared by ERM’s Subcontractor for ERM Vietnam Document details Document title Biodiversity survey Wet season report Document subtitle Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam Date 7 July 2020 Version 1.0 Author ERM’s Subcontractor Client Name ERM Vietnam Document history Version Revision Author Reviewed by ERM approval to issue Comments Name Date Draft 1.0 Name Name Name 00.00.0000 Text Version: 1.0 Client: ERM Vietnam 7 July 2020 BIODIVERSITY SURVEY WET SEASON REPORT CONTENTS Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam CONTENTS 1.
    [Show full text]
  • New Records and an Updated Checklist of Amphibians and Snakes From
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Bonn zoological Bulletin - früher Bonner Zoologische Beiträge. Jahr/Year: 2021 Band/Volume: 70 Autor(en)/Author(s): Le Dzung Trung, Luong Anh Mai, Pham Cuong The, Phan Tien Quang, Nguyen Son Lan Hung, Ziegler Thomas, Nguyen Truong Quang Artikel/Article: New records and an updated checklist of amphibians and snakes from Tuyen Quang Province, Vietnam 201-219 Bonn zoological Bulletin 70 (1): 201–219 ISSN 2190–7307 2021 · Le D.T. et al. http://www.zoologicalbulletin.de https://doi.org/10.20363/BZB-2021.70.1.201 Research article urn:lsid:zoobank.org:pub:1DF3ECBF-A4B1-4C05-BC76-1E3C772B4637 New records and an updated checklist of amphibians and snakes from Tuyen Quang Province, Vietnam Dzung Trung Le1, Anh Mai Luong2, Cuong The Pham3, Tien Quang Phan4, Son Lan Hung Nguyen5, Thomas Ziegler6 & Truong Quang Nguyen7, * 1 Ministry of Education and Training, 35 Dai Co Viet Road, Hanoi, Vietnam 2, 5 Hanoi National University of Education, 136 Xuan Thuy Road, Hanoi, Vietnam 2, 3, 7 Institute of Ecology and Biological Resources, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam 6 AG Zoologischer Garten Köln, Riehler Strasse 173, D-50735 Köln, Germany 6 Institut für Zoologie, Universität Köln, Zülpicher Strasse 47b, D-50674 Köln, Germany * Corresponding author: Email: [email protected] 1 urn:lsid:zoobank.org:author:2C2D01BA-E10E-48C5-AE7B-FB8170B2C7D1 2 urn:lsid:zoobank.org:author:8F25F198-A0F3-4F30-BE42-9AF3A44E890A 3 urn:lsid:zoobank.org:author:24C187A9-8D67-4D0E-A171-1885A25B62D7 4 urn:lsid:zoobank.org:author:555DF82E-F461-4EBC-82FA-FFDABE3BFFF2 5 urn:lsid:zoobank.org:author:7163AA50-6253-46B7-9536-DE7F8D81A14C 6 urn:lsid:zoobank.org:author:5716DB92-5FF8-4776-ACC5-BF6FA8C2E1BB 7 urn:lsid:zoobank.org:author:822872A6-1C40-461F-AA0B-6A20EE06ADBA Abstract.
    [Show full text]
  • Download Download
    BIODIVERSITAS ISSN: 1412-033X Volume 20, Number 9, September 2019 E-ISSN: 2085-4722 Pages: 2718-2732 DOI: 10.13057/biodiv/d200937 Species diversity and prey items of amphibians in Yoddom Wildlife Sanctuary, northeastern Thailand PRAPAIPORN THONGPROH1,♥, PRATEEP DUENGKAE2,♥♥, PRAMOTE RATREE3,♥♥♥, EKACHAI PHETCHARAT4,♥♥♥♥, WASSANA KINGWONGSA5,♥♥♥♥♥, WEEYAWAT JAITRONG6,♥♥♥♥♥♥, YODCHAIY CHUAYNKERN1,♥♥♥♥♥♥♥, CHANTIP CHUAYNKERN1,♥♥♥♥♥♥♥♥ 1Department of Biology, Faculty of Science, Khon Kaen University, Mueang Khon Kaen, Khon Kaen, 40002, Thailand. Tel.: +6643-202531, email: [email protected]; email: [email protected]; email: [email protected] 2Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand. email: [email protected] 3Protected Areas Regional Office 9 Ubon Ratchathani, Mueang Ubon Ratchathani, Ubon Ratchathani, 34000, Thailand. email: [email protected] 4Royal Initiative Project for Developing Security in the Area of Dong Na Tam Forest, Sri Mueang Mai, Ubon Ratchathani, 34250, Thailand. email: [email protected] 5Center of Study Natural and Wildlife, Nam Yuen, Ubon Ratchathani, 34260, Thailand. email: [email protected] 6Thailand Natural History Museum, National Science Museum, Technopolis, Khlong 5, Khlong Luang, Pathum Thani, 12120, Thailand, email: [email protected] Manuscript received: 25 July 2019. Revision accepted: 28 August 2019. Abstract. Thongproh P, Duengkae P, Ratree P, Phetcharat E, Kingwongsa W, Jaitrong W, Chuaynkern Y, Chuaynkern C. 2019. Species diversity and prey items of amphibians in Yoddom Wildlife Sanctuary, northeastern Thailand. Biodiversitas 20: 2718-2732. Amphibian occurrence within Yoddom Wildlife Sanctuary, which is located along the border region among Thailand, Cambodia, and Laos, is poorly understood. To determine amphibian diversity within the sanctuary, we conducted daytime and nocturnal surveys from 2014 to 2017 within six management units.
    [Show full text]