Fish and Invertebrate Bycatch and Discards in New Zealand Hoki, Hake, and Ling Fisheries from 1990–91 Until 2012–13

Total Page:16

File Type:pdf, Size:1020Kb

Fish and Invertebrate Bycatch and Discards in New Zealand Hoki, Hake, and Ling Fisheries from 1990–91 Until 2012–13 Fish and invertebrate bycatch and discards in New Zealand hoki, hake, or ling trawl fisheries from 1990–91 until 2012–13 New Zealand Aquatic Environment and Biodiversity Report No. 163 S.L. Ballara R.L. O’Driscoll ISSN 1179-6480 (online) ISBN 978-1-77665-111-5 (online) November 2015 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries Table of Contents EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 2. METHODS 5 2.1 Definition of terms 5 2.2 Observer data 5 2.2.1 Data preparation and grooming 6 2.3 Commercial fishing return data 8 2.4 Analysis of factors influencing bycatch and discards 9 2.5 Calculation of bycatch and discard rates 9 2.6 Analysis of temporal trends in bycatch and discards 10 2.7 Comparison of trends in bycatch with data from trawl surveys 11 2.8 Discard information from Catch Landing Returns 11 2.9 Observer-authorised discarding 12 3. RESULTS 12 3.1 Distribution and representativeness of observer data 12 3.2 Comparison of estimators 13 3.3 Bycatch data (excluding discards) 14 3.3.1 Overview of raw bycatch data 14 3.3.2 Regression modelling and stratification of bycatch data 15 3.4 Discard data 15 3.4.1 Overview of raw discard data 15 3.4.2 Regression modelling and stratification of discard data 16 3.5 Estimation of retained bycatch 17 3.5.1 Bycatch rates 17 3.5.2 Annual bycatch levels 18 3.6 Estimation of discards 19 3.6.1 Discard rates 19 3.6.2 Annual discard levels 19 3.6.3 Discard information from Catch Landing Returns 20 3.6.4 Observer-authorised discarding 21 3.7 Efficiency of the hoki, hake, or ling trawl fishery 21 3.8 Annual retained bycatch by individual species 21 3.8.1 Comparison of trends in individual species bycatch in the hoki, hake, and ling trawl fishery with relevant trawl surveys 22 4. SUMMARY AND DISCUSSION 25 5. ACKNOWLEDGMENTS 28 6. REFERENCES 28 TABLES 31 FIGURES 40 APPENDIX A 76 APPENDIX B 107 EXECUTIVE SUMMARY Ballara, S.L.; O’Driscoll, R.L. (2015). Fish and invertebrate bycatch and discards in New Zealand hoki, hake, and ling fisheries from 1990–91 until 2012–13. New Zealand Aquatic Environment and Biodiversity Report No. 163. 120 p. Commercial catch-effort data and fisheries observer records of catch and discards by species were used to estimate the rate and level of fish bycatch and discards in the target hoki, hake, and ling trawl fishery for each fishing year from 1990–91 to 2012–13. Separate estimates, along with estimates of precision, were made for the following categories of catch and discards: all QMS species combined, all non-QMS species combined, all invertebrate species combined. In addition, estimates were made of the annual bycatch of a wide range of individual species. Linear mixed-effect models (LMEs) were used to identify key factors influencing variability in the observed rates of bycatch and discarding. These models consistently identified the hoki fishery areas as having the greatest influence on bycatch rates, therefore area was used to stratify the calculation of annual bycatch and discard totals in each catch category, although the WCSI was further split by fishing method. Ratio estimators were calculated for scaling up observed discard and bycatch rates to the total fishery. Bootstrapping techniques were used to select the most appropriate ratio estimator and to provide confidence limits for annual bycatch and discard estimates. For hoki, hake, and ling target fisheries two ratio estimators were applied, based on number of tows and duration respectively. Annual estimates of bycatch and discards calculated with the two forms of the estimator tended to be similar. Estimated ratios were then multiplied by the total number of trawls in each area stratum, derived from commercial catch-effort data, to make annual estimates for the target hoki, hake, or ling fishery as a whole. Multi-step bootstrap methods, taking into account the effect of auto- correlation between trawls in the same observed trip and area stratum, were used to estimate the variance in the rates and provide confidence intervals for the annual bycatch and discard estimates. Since 1990–91 the annual combined total landed catch of hoki, hake, and ling was between 109 600 and 301 600 t. Hoki, hake and ling have accounted for an average of 91% of the total estimated catch weight recorded by observers in these target fisheries. The remainder of the observed catch comprised mainly two QMS species, silver warehou (1.4% of the total catch), and spiny dogfish (0.9%), and the non-QMS javelinfish (1.4% of the total catch), and rattails (1.1%). Invertebrate species made up only a very small fraction of the overall catch, with arrow squid (0.1% of the total catch) the main species caught. All but a few edible invertebrates (crustaceans and molluscs) were discarded. Total bycatch in the hoki, hake, and ling fishery ranged from about 12 020 t to 37 730 t per year. The main bycatch species were silver warehou, javelinfish, rattails, and spiny dogfish. Bycatch ratios of QMS species were highest in Puysegur and lowest in Cook Strait. Bycatch ratios of non-QMS species were highest on the Chatham Rise and lowest for Cook Strait. Bycatch of invertebrates was low in all areas. Total annual discard estimates ranged from about 3699 to 16 633 t per year. Discards increased in the 1990s, peaked in 2000, and have since decreased. The main species being discarded were spiny dogfish, rattails, javelinfish, hoki, and shovelnose dogfish. Discard ratios of QMS species were highest in Cook Strait and the Sub-Antarctic and discard ratios of non-QMS and invertebrate species were lowest in Cook Strait. Discarding of hoki, hake, and ling accounted for 0.7% of total observed discards. There was an average of 0.05 kg of observed species discarded per kilogram of observed hoki, hake, and ling caught. Ministry for Primary Industries Bycatch and discards in hoki, hake, ling fisheries from 1990–91 to 2012–13 •1 The annual catch of 225 individual bycatch species was estimated using the same methods as for the combined species categories, and trends examined. A total of 40 species showed a decreasing trend and 19 species an increasing trend over time, although in some cases detection of trends was confounded by apparent changes over time in the species codes used by observers. Significant trends in bycatch ratios were not strongly supported by trends in relative biomass estimated from Sub-Antarctic and Chatham trawl survey time-series, although overall QMS and invertebrate groups showed some correlation with Chatham Rise trawl survey biomass trends for these species. The hoki, hake, and ling fishery is very complex, with many confounding factors. Changes in fishing practice in particular are likely to have contributed to variability in annual levels of bycatch and discards. There is a wide scope to take this analysis further. For example, there is potential for further analysis on each area separately focussing on trends within subareas, species groups, individual species, or trophic levels. Changes in bycatch ratios could be compared in more detail to survey biomass estimates for some species on the Chatham Rise and in the Sub-Antarctic, but further validation is required to determine whether estimates of commercial bycatch could provide long-term monitoring approaches for low-value species. 2 • Bycatch and discards in hoki, hake, ling fisheries from 1990–91 to 2012–13 Ministry for Primary Industries 1. INTRODUCTION The Ministry for Primary Industries (MPI) National Deepwater Plan includes the following Environment Outcome related management objective MO2.4: “Identify and avoid or minimise adverse effects of deepwater and middle-depth fisheries on incidental bycatch species”. This project addresses this objective by quantifying the level of bycatch of species or groups of species not managed separately in the QMS system. Significant changes in the relative catch of a species may be used to infer changes in abundance - although these may be due to other causes, such as changes in fishing practices. Bycatch species identified in this way as being in decline can be monitored and remedial action planned. The scampi (Metanephrops challengeri) trawl fishery was assessed in the first year of the programme (Anderson 2012), followed by the arrow squid (Nototodarus spp.) trawl fishery (Anderson 2013), and the ling (Genypterus blacodes) bottom longline fishery (Anderson 2014a) in the second and third years respectively. The hoki (Macruronus novaezelandiae)/hake (Merluccius australis)/ling (Genypterus blacodes) trawl fishery is the main subject of this report. Similar analyses will be carried out in subsequent years for each of the other Ministry for Primary Industries Tier-1 fisheries: jack mackerel (Trachurus spp.) trawl; southern blue whiting (Micromesistius australis) trawl; and orange roughy (Hoplostethus atlanticus)/oreo (Oreosomatidae) trawl. The intention for this analysis was to treat target hoki, hake, or ling tows as a single fishery with three target species, rather than treating each fishery (based on the declared target species) separately. The hoki fishery has historically been New Zealand’s largest, with total reported catches of between 90 000 t and 213 000 t per year for the fishing years 1990–91 to 2012–13 (Ballara & O’Driscoll 2014).
Recommended publications
  • A New Congrid Eel (Teleostei: Anguilliformes: Congridae) from the Western Pacific, with an Analysis of Its Relationships
    Zootaxa 4845 (2): 191–210 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4845.2.2 http://zoobank.org/urn:lsid:zoobank.org:pub:B2DA6D79-874E-48C1-B054-FEC08546223C A new congrid eel (Teleostei: Anguilliformes: Congridae) from the Western Pacific, with an analysis of its relationships DAVID G. SMITH1*, EMMA S. KARMOVSKAYA2 & JOÃO PAULO CAPRETZ BATISTA DA SILVA3 1Smithsonian Institution, Museum Support Center, MRC-534, 4210 Silver Hill Road, Suitland, MD 20746 [email protected]; https://orcid.org/0000-0002-6354-2427 2Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, 117218, Russia [email protected]; https://orcid.org/0000-0002-0636-4265 3Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Castelo Branco, 58051-900, João Pessoa, PB, Brazil [email protected]; https://orcid.org/0000-0002-2373-3421 *Corresponding author Abstract A new species of congrid eel, Bathycongrus villosus sp. nov., is described from the Philippines and Vanuatu. It is similar to some of the small-toothed species currently placed in Bathycongrus and to the species of Bassanago. In this paper we compare the new species to Bassanago albescens (Barnard, 1923) and to Bathycongrus parviporus Karmovskaya, 2011, which it most closely resembles. An analysis of 19 characters shows that it agrees with Bat. parviporus in 16 characters and with Bas. albescens in one. In two characters, the three species are all different. We therefore place it in Bathycongrus. Key words: Taxonomy, Pisces, Bathycongrus, new species Introduction The species described here was discovered independently by two of the authors.
    [Show full text]
  • Bassanago Albescens (Barnard, 1923) En El Atlántico Sudoccidental (35º's-45º's)
    Ecología trófica del congrio de profundidad Bassanago albescens (Barnard, 1923) en el Atlántico Sudoccidental (35º'S-45º'S) Item Type Theses and Dissertations Authors Izzo, L.P. Publisher UNMdP Download date 26/09/2021 09:19:12 Item License http://creativecommons.org/licenses/by-nc/3.0/ Link to Item http://hdl.handle.net/1834/5157 Autorización para Publicar en un E-Repositorio de Acceso Abierto Apellido y nombres: IZZO, Luciano P. DNI: Correo electrónico: [email protected] AUTORIZO por la presente a la Biblioteca y Servicio de Documentación INIDEP a publicar en texto completo el trabajo final de Tesis/Monografía/Informe de mi autoría que se detalla, permitiendo la consulta de la misma por Internet, así como la entrega por Biblioteca de copias unitarios a los usuarios que lo soliciten con fines de investigación y estudio. Título del trabajo: "Ecología trófica del congrio de profundidad Bassanago albescens(Barnard, 1923) en el Atlántico 5udoccidental(35°5 - 45°5)" ,40 p. Año: 2010 Título y/o grado que opta: Tesis (licenciatura) Facultad: Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales. Firma: Fecha: ~/7~1, ' / , I .' ASFAAN: OceanDocs: http://hdl.handle.net/1834/ Universidad Nacional de Mar del Plata Facultad de Ciencias Exactas y Naturales Departamento de Ciencias Marinas TESIS DE GRADO LICENCIATURA EN CIENCIAS BIOLÓGICAS Ecología trófica del congrio de profundidad Bassanago albescens (Barnard, 1923) en el Atlántico Sudoccidental (35°S - 45°S). Luciano P. Izzo Mar del Plata – Argentina 2010 Director:
    [Show full text]
  • Hyperoglyphe Antarctica) Fisheries Information Relating to the South Pacific Regional Fisheries Management Organisation
    Information describing bluenose (Hyperoglyphe antarctica) fisheries information relating to the South Pacific Regional Fisheries Management Organisation WORKING DRAFT 22 June 2007 1 Overview...........................................................................................................................2 2 Taxonomy.........................................................................................................................3 2.1 Phylum......................................................................................................................3 2.2 Class..........................................................................................................................3 2.3 Order.........................................................................................................................3 2.4 Family.......................................................................................................................3 2.5 Genus and species......................................................................................................3 2.6 Scientific synonyms...................................................................................................3 2.7 Common names.........................................................................................................3 2.8 Molecular (DNA or biochemical) bar coding..............................................................3 3 Species Characteristics.....................................................................................................4
    [Show full text]
  • DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters
    DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters Ezequiel Mabragan˜ a1,2*, Juan Martı´nDı´az de Astarloa1,2, Robert Hanner3, Junbin Zhang4, Mariano Gonza´lez Castro1,2 1 Laboratorio de Biotaxonomı´a Morfolo´gica y Molecular de Peces, Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina, 2 Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, Argentina, 3 Biodiversity Institute of Ontario and Department of Integrative Biology, University of Guelph, Ontario Canada, 4 College of Fisheries and Life Science, Shanghai Ocean University, Shanghai Abstract Background: DNA barcoding has been advanced as a promising tool to aid species identification and discovery through the use of short, standardized gene targets. Despite extensive taxonomic studies, for a variety of reasons the identification of fishes can be problematic, even for experts. DNA barcoding is proving to be a useful tool in this context. However, its broad application is impeded by the need to construct a comprehensive reference sequence library for all fish species. Here, we make a regional contribution to this grand challenge by calibrating the species discrimination efficiency of barcoding among 125 Argentine fish species, representing nearly one third of the known fauna, and examine the utility of these data to address several key taxonomic uncertainties pertaining to species in this region. Methodology/Principal Findings: Specimens were collected and morphologically identified during crusies conducted between 2005 and 2008. The standard BARCODE fragment of COI was amplified and bi-directionally sequenced from 577 specimens (mean of 5 specimens/species), and all specimens and sequence data were archived and interrogated using analytical tools available on the Barcode of Life Data System (BOLD; www.barcodinglife.org).
    [Show full text]
  • FAR 2018/39 – Trawl Survey of Hoki and Middle-Depth Speciesin the Southland and Sub-Antarctic Areas, November–December 2016
    Trawl survey of hoki and middle-depth species in the Southland and Sub-Antarctic areas, November–December 2016 (TAN1614) New Zealand Fisheries Assessment Report 2018/39 R. L. O’Driscoll S.L. Ballara D.J. MacGibbon A.C.G. Schimel ISSN 1179-5352 (online) ISBN 978-1-98-857113-3 (online) November 2018 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites http://www.mpi.govt.nz/news-and-resources/publications http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright – Fisheries New Zealand TABLE OF CONTENTS EXECUTIVE SUMMARY ........................................................................................................... 1 1. INTRODUCTION ........................................................................................................... 2 1.1 Project objectives ............................................................................................. 3 2. METHODS .................................................................................................................... 3 2.1 Survey design .................................................................................................. 3 2.2 Vessel and equipment ..................................................................................... 4 2.3 Trawling procedure and biological sampling ...................................................
    [Show full text]
  • DERICHTHYIDAE Longneck Eels by D.G
    click for previous page Anguilliformes: Muraenesocidae 1671 DERICHTHYIDAE Longneck eels by D.G. Smith iagnostic characters: Body moderately elongate (size to about 60 cm, usually smaller), tail not Dfilamentous, ending in a small caudal fin. Head variable in form, snout either short or markedly elongate; eye well developed; upper jaw extends beyond lower, cleft of mouth ends under or slightly behind eye; lips without upturned or downturned flanges; teeth small, conical, multiserial. Gill opening small, slit-like, located just in front of and below pectoral fin. Dorsal and anal fins confluent with caudal fin; dorsal fin begins on anterior third of body, slightly behind tip of appressed pectoral fins; anal fin begins immediately behind anus, at or slightly behind midbody; dorsal and anal fins both become distinctly reduced near end of tail; pectoral fins present. Scales absent. Lateral line complete, pore system on head well developed. Colour: brown, with paler fins; 1 species with a dark midventral streak; no spots, lines, or other distinct markings. Derichthys (after Goode and Bean, 1896) Nessorhamphus (after Robins, 1989) Habitat, biology, and fisheries: The Derichthyidae includes 2 genera and 3 species of small, seldom-seen, midwater eels. Derichthys has a short snout, a constricted neck, and a series of short, longitudinal dermal ridges on the head (presumably sensory in nature). Nessorhamphus has a long, somewhat flattened snout, with the posterior nostril located far forward; it lacks the dermal ridges, and its neck is not constricted. Derichthyids are without the strong morphological specializations of the other midwater eels (Nemichthyidae, Serrivomeridae, and Saccopharyngiformes). They spend their entire lives in the open ocean; adults live at depths of several hundred meters.
    [Show full text]
  • Larvae in the Sargasso Sea: a Molecular Approach Hanna Alfredsson
    Prey Selection of European Eel ( Anguilla anguilla) Larvae in the Sargasso Sea: a Molecular Approach Hanna Alfredsson Master Thesis in Aquatic Ecology No: 2009:MBi1 University of Kalmar School of Pure & Applied Natural Sciences Degree project works made at the University of Kalmar, School of Pure and Applied Natural Sciences, can be ordered from: www.hik.se/student or University of Kalmar School of Pure and Applied Natural Sciences SE-391 82 KALMAR SWEDEN Phone + 46 480-44 62 00 Fax + 46 480-44 73 05 e-mail: [email protected] This is a degree project work and the student is responsible for the results and discussions in the report. 2 Prey Selection of European Eel ( Anguilla anguilla ) Larvae in the Sargasso Sea: a Molecular Approach Hanna Alfredsson Master of Science in Aquatic Ecology 120 hp Master Thesis, Aquatic Ecology : 60 hp for Master of Science Supervisor: Associate Professor Lasse Riemann, University of Kalmar Examiner: Associate Professor Catherine Legrand, University of Kalmar Abstract The European eel ( Anguilla anguilla ) migrates to the Sargasso Sea to spawn. Even though the biology of A. anguilla leptocephali in the Sargasso Sea has been studied for several decades, information regarding their diet has remained unknown until now. Previous dietary studies concerning other species of leptocephali in the Pacific Ocean have been limited to the recognition of identifiable prey remains amongst gut contents. Hence, in this study a molecular approach relying on the detection of prey DNA amongst gut contents was used to study dietary profiles of A. anguilla leptocephali in the Sargasso Sea. Leptocephali were collected during the circumglobal Galathea 3 expedition in spring 2007 to the Sargasso Sea.
    [Show full text]
  • Carapace Length-Body Weight Relationship and Condition Factor of Painted Rock Lobster Panulirus Versicolor in Sorong Waters, West Papua, Indonesia 1Yuni M
    Carapace length-body weight relationship and condition factor of painted rock lobster Panulirus versicolor in Sorong waters, West Papua, Indonesia 1Yuni M. L. Situmorang, 2Sharifuddin B. A. Omar, 2Joeharnani Tresnati 1 Master Program of Fishery Science, Postgraduate School, Hasanuddin University, Makassar, South Sulawesi, Indonesia; 2 Aquatic Resources Management Study Program, Hasanuddin University, Makassar, South Sulawesi, Indonesia. Corresponding author: S. B. A. Omar, [email protected] Abstract. Painted rock lobster (Panulirus versicolor) is a superior commodity with an important economic value, also being the most dominant species found in the waters of the Sorong region. Sampling was conducted from March to August 2020 in Tanjung Kasuari waters, Sorong City and Makbon waters, Sorong Regency. During the study, 365 lobster samples were captured from Tanjung Kasuari waters and 460 from Makbon waters. The results showed that in the waters of Tanjung Kasuari male lobsters had a hypoallometric growth pattern and female lobsters had an isometric growth pattern. The mean condition factors were 1.0049 for males and 0.9865 for females. On the other hand, both male and female lobsters in Makbon waters have a hypoallometric growth pattern with a mean condition factor of 0.9948 for males and 0.9875 for females. Key Words: spiny lobster, growth pattern, hypoallometric. Introduction. Lobster is a leading export commodity that has important economic value and has significantly contributed to the country's fishery sector and foreign exchange (Hasrun & Kasmawati 2018). Lobster is included in the genus Panulirus which has 21 species, 7 of which are found in Indonesian waters (Holthuis 1991; Chan 1998, 2010; Chang et al 2010; Ernawaty et al 2014; Wardiatno et al 2016; Wahyudin et al 2017a,b): P.
    [Show full text]
  • Species Acromycter Nezumi (Asano, 1958)
    FAMILY Congridae Kaup, 1856 - conger eels SUBFAMILY Congrinae Kaup, 1856 - conger eels [=Atteridi, Ophioides, Leptocephalini, Congeridae, Macrocephenchelyidae, Scalanogoinae, Urocongrinae] GENUS Acromycter Smith & Kanazawa, 1977 - conger eels Species Acromycter alcocki (Gilbert & Cramer, 1897) - Alcock's congrid eel Species Acromycter atlanticus Smith, 1989 - Atlantic conger eel Species Acromycter longipectoralis Karmovskaya, 2004 - longfinned conger eel Species Acromycter nezumi (Asano, 1958) - Nezumi's conger eel Species Acromycter perturbator (Parr, 1932) - perturbator conger eel GENUS Bassanago Whitley, 1948 - conger eels Species Bassanago albescens (Barnard, 1923) - hairy conger Species Bassanago bulbiceps Whitley, 1948 - swollen-headed conger eel Species Bassanago hirsutus (Castle, 1960) - deepsea conger Species Bassanago nielseni (Karmovskaya, 1990) - Nielsen's conger eel GENUS Bathycongrus Ogilby, 1898 - conger eels [=Congrina, Microcephalocongrus, Pseudoxenomystax, Rhechias, Uranoconger] Species Bathycongrus aequoreus (Gilbert & Cramer, 1897) - Kaiwi bathycongrus [=armiger] Species Bathycongrus bertini (Poll, 1953) - Poll's conger Species Bathycongrus bleekeri Fowler, 1934 - Bleeker's bathycongrus Species Bathycongrus bullisi (Smith & Kanazawa, 1977) - bullish conger Species Bathycongrus dubius (Breder, 1927) - dubius conger Species Bathycongrus guttulatus (Günther, 1887) - lined conger [=roosendaali, stimpsoni] Species Bathycongrus longicavis Karmovskaya, 2009 - Vanuatu conger Species Bathycongrus macrocercus (Alcock, 1894) -
    [Show full text]
  • Informe-Taller-Peces.Pdf
    Taller Regional de Evaluación del Estado de Conservación de Especies para el Mar Patagónico según criterios de la Lista Roja de UICN: PECES ÓSEOS. Buenos Aires, ARGENTINA Diciembre 2019 Results of the 2019 IUCN Regional Red List Workshop for Species of the Patagonian Sea: BONY FISHES. Agosto 2020 Con el apoyo de: 1 EXPERTOS: Claudio Buratti INIDEP- Argentina Juan Martín Díaz de Astarloa IIMyC UNMdP CONICET Mathías Hüne Fundación Ictiológica Chile Alejo Irigoyen CENPAT CONICET Mauricio Landaeta Universidad de Valparaíso Chile Cecilia Riestra INIDEP Argentina Joâo Vieira Fundacao Universidade do Río Grande do Sul - Brasil COLABORADORES EXPERTOS: Juan Martín Díaz de Astarloa y Mathías Hüne EXPERTOS IUCN: Christi Linardich REVISION Y EDICIÓN: Christi Linardich y Valeria Falabella DISEÑO Y ARTE Victoria Zavattieri Wildlife Conservation Society DIRECCIÓN: Claudio Campagna Wildlife Conservation Society COORDINACIÓN: Valeria Falabella Wildlife Conservation Society CITA: Buratti, C., Díaz de Astarloa, J.M., Falabella, V., Hüne, M., Irigoyen, Al; Landaeta, M., Linardich, C., Riestra, C., Vieira, J. Campagna, C. 2020. Informe del Taller Regional de Evaluación del Estado de Conservación de Especies para el Mar Patagónico según criterios de la Lista Roja de UICN: Peces óseos. Foro para la Conservación del Mar Patagónico y áreas de influencia. 117 pp. Citation: Buratti, C., Díaz de Astarloa, J.M., Falabella, V., Hüne, M., Irigoyen, Al; Landaeta, M., Linardich, C., Riestra, C., Vieira, J. Campagna, C. 2020. Informe del Taller Regional de Evaluación del Estado de Conservación de Especies para el Mar Patagónico según criterios de la Lista Roja de UICN: Peces óseos. Foro para la Conservación del Mar Patagónico y áreas de influencia.
    [Show full text]
  • A Biophysical Profile of the Tristan Da Cunha Archipelago (PDF)
    A biophysical profile of Tristan da Cunha -Sue Scott - 2017 A Biophysical Profile of the Tristan da Cunha Archipelago Sue Scott Commissioned and reviewed by The Pew Charitable Trusts 2017 1 A biophysical profile of Tristan da Cunha -Sue Scott - 2017 Contents 1. Key information on Tristan da Cunha 7 2. Geophysical setting 11 2.1. Isolated islands 11 2.2. Geology and topography 11 2.3. Climate 17 3. The ecology and biodiversity of the marine ecosystems of Tristan da Cunha 21 3.1. The pelagic ecosystem 21 3.1.1. Oceanography and ecosystem productivity 21 3.1.2. Plankton and pelagic life 25 3.1.3. Pelagic fishes 27 3.2. Marine biological surveys 29 3.3. The coastal environment 32 3.3.1. The seabed 32 3.3.2. Tides 34 3.3.3. Seashore 35 3.3.4. Intertidal bedrock and stable boulders 35 3.3.5. Rock pools and channels 39 3.3.6. Boulder beaches 42 3.4. Shallow subtidal to 40m depth 43 3.5. Deeper subtidal 45 3.6. Deep sea 48 3.7. Diversity and biogeography of benthic biota 53 3.7.1. Diversity and biogeography of fish communities 53 3.7.2. Diversity and biogeography of invertebrates 57 3.7.3. Diversity and biogeography of macroalgae 60 4. Marine mammals of Tristan da Cunha 67 4.1. Introduction 67 4.2. Seals (order Carnivora) 68 4.2.1. Eared Seals (family Otariidae) 68 4.2.2 True Seals (family Phocidae) 70 4.2.3. Rare vagrant seals 72 4.3.
    [Show full text]
  • Vulnerable Marine Ecosystems of the Louisville
    Vulnerable Marine Ecosystems of the Louisville Seamount Chain: voyage report of a survey to evaluate the efficacy of preliminary habitat suitability models New Zealand Aquatic Environment and Biodiversity Report No. 149 M.R. Clark O.F. Anderson D.A. Bowden C. Chin S.G. George D.A. Glasgow J.M. Guinotte S. Hererra D.M. Osterhage A. Pallentin S. J. Parker A.A. Rowden S.J. Rowley R. Stewart D.M. Tracey S.A. Wood C. Zeng ISSN 1179-6480 (online) ISBN 978-0-477-10561-3 (online) March 2015 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries TABLE OF CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 2 1.1 Voyage objectives: 3 2. METHODS 3 2.1 Survey area 3 2.2 Survey design 4 2.3 Sampling operations 6 Multibeam mapping 6 Photographic sampling 6 Direct faunal sampling 6 Water sampling 8 Live coral collection 8 Station recording 9 3. OBSERVATIONS 9 3.1 Voyage timetable and narrative 9 3.2 Sampling 10 Photographic sampling 10 Benthic sampling 11 3.3 Preliminary site observations 11 Forde Guyot 12 CenSeam Guyot 17 Anvil Seamount 23 39 South Seamount 28 Ghost Seamount 33 Valerie Guyot 38 3.4 Stony coral distribution 43 3.5 Specimen collection 44 Notes on selected taxa 47 Specimen photographs 51 Live coral collection 54 3.6 CTD and water sampling 54 3.7 Seabird observations 55 3.8 Marine Mammal observations 56 3.9 Bathymetry 56 3.10 Voyage Web Page 57 4.
    [Show full text]