DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters

Total Page:16

File Type:pdf, Size:1020Kb

DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters Ezequiel Mabragan˜ a1,2*, Juan Martı´nDı´az de Astarloa1,2, Robert Hanner3, Junbin Zhang4, Mariano Gonza´lez Castro1,2 1 Laboratorio de Biotaxonomı´a Morfolo´gica y Molecular de Peces, Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina, 2 Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, Argentina, 3 Biodiversity Institute of Ontario and Department of Integrative Biology, University of Guelph, Ontario Canada, 4 College of Fisheries and Life Science, Shanghai Ocean University, Shanghai Abstract Background: DNA barcoding has been advanced as a promising tool to aid species identification and discovery through the use of short, standardized gene targets. Despite extensive taxonomic studies, for a variety of reasons the identification of fishes can be problematic, even for experts. DNA barcoding is proving to be a useful tool in this context. However, its broad application is impeded by the need to construct a comprehensive reference sequence library for all fish species. Here, we make a regional contribution to this grand challenge by calibrating the species discrimination efficiency of barcoding among 125 Argentine fish species, representing nearly one third of the known fauna, and examine the utility of these data to address several key taxonomic uncertainties pertaining to species in this region. Methodology/Principal Findings: Specimens were collected and morphologically identified during crusies conducted between 2005 and 2008. The standard BARCODE fragment of COI was amplified and bi-directionally sequenced from 577 specimens (mean of 5 specimens/species), and all specimens and sequence data were archived and interrogated using analytical tools available on the Barcode of Life Data System (BOLD; www.barcodinglife.org). Nearly all species exhibited discrete clusters of closely related haplogroups which permitted the discrimination of 95% of the species (i.e. 119/125) examined while cases of shared haplotypes were detected among just three species-pairs. Notably, barcoding aided the identification of a new species of skate, Dipturus argentinensis, permitted the recognition of Genypterus brasiliensis as a valid species and questions the generic assignment of Paralichthys isosceles. Conclusions/Significance: This study constitutes a significant contribution to the global barcode reference sequence library for fishes and demonstrates the utility of barcoding for regional species identification. As an independent assessment of alpha taxonomy, barcodes provide robust support for most morphologically based taxon concepts and also highlight key areas of taxonomic uncertainty worthy of reappraisal. Citation: Mabragan˜aE,Dı´az de Astarloa JM, Hanner R, Zhang J, Gonza´lez Castro M (2011) DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters. PLoS ONE 6(12): e28655. doi:10.1371/journal.pone.0028655 Editor: Vincent Laudet, Ecole Normale Supe´rieure de Lyon, France Received March 9, 2011; Accepted November 12, 2011; Published December 9, 2011 Copyright: ß 2011 Mabragan˜a et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This research was supported through funding to Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, under the Argentina iBOL funds, Comisio´n de Investigaciones Cientı´ficas and Universidad Nacional de Mardel Plata funds (Argentina), and through funding to the Canadian Barcode of Life Network from Genome (through the Ontario Genomics Institute) and Natural Sciences and Engineering Research Council of Canada. The funders have no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction [6], although it is not intended to replace classical taxonomy [1]. Its purpose is to facilitate species identifications by non-experts and to Despite ongoing scientific debate concerning the role of molecular do so in a rapid and cost-effective manner [7]. The effectiveness of methods in taxonomy DNA barcoding has emerged as a widely barcoding has been demonstrated in diverse taxa, including accepted tool for species identification because of its enhanced focus springtails [8], spiders [9], butterflies [2,3,10–12], flies [13], bivalves on standardization and data validation [1]. Barcoding [2–4] seeks to [14], fishes [15], birds [16,17] and mammals [18–20], with extend species identification capabilities by using short, standardized barcoding systems also now being established for plants [21], gene regions for the efficient and cost-effective identification of macroalgae [22], and bacteria [23]. eukaryotes. Advocating the use of an easily characterized 648 bP The Fish Barcode of Life campaign (FISH-BOL) [24] seeks to fragment from the mitochondrial 59 region of the cytochrome c establish a standard reference sequence library for the molecular oxidase subunit I (COI) gene for animal identification, the primary identification of fishes worldwide [25]. The identification process goal of barcoding focuses on the assembly of reference sequence using COI sequence data for fishes is promising, as supported by libraries derived from expert-identified voucher specimens in order recent examples of its application. DNA barcoding surveys of 207 to develop reliable molecular tools for species identification in nature Australian marine fish species [15] and 210 Australasian shark and [5]. Barcoding has been mischaracterized as molecular taxonomy ray species [26] have concluded that DNA barcoding can be used PLoS ONE | www.plosone.org 1 December 2011 | Volume 6 | Issue 12 | e28655 DNA Barcoding of Argentine Fishes for both teleost and chondricthyan species identification. Hubert et specimens are generally recalcitrant to DNA analyses due to of al. [5] were able to distinguish 93% of 190 Canadian freshwaters their fixation in formalin, a dedicated collecting effort of fresh fishes using the mitochondrial DNA COI gene. Steinke et al. [27] material was required from Argentinean waters. We examined demonstrated that sequence variability in the barcode region the patterns of barcode sequence divergence among 577 permitted discrimination of 98% of 201 fish species from the specimens identified as belonging to 125 fish species, representing Canadian Pacific. Ward and Holmes [28] analysed the DNA nearly one third of the known fauna [33,35,43]. The investigation barcode region in 388 species of fishes, including 4 holocephali not only provides the potential use of DNA barcoding as a tool to and 61 elasmobranchs showing the discrimination of 98–99% of aid traditional taxonomy in the identification of Argentinean fish species examined thus far. In addition, barcodes were marine fish species, but also explores the application of DNA subsequently used to identify marine fish larvae from Australian barcodes to flag overlooked species and discusses the potential [29,30] and Antarctic [31] waters. limitations inherent to the existing morphologically-based taxo- The ichthyofauna of the Argentine continental shelf is well nomic system. known due to information obtained by large foreign expeditions and local research cruises since the early twentieth Century [32– Materials and Methods 35, 36 and references therein]. However, taxonomic resolution remains elusive for some challenging groups, and new species Ethics Statement remain to be discovered as evidenced by the ongoing description All tissue samples were extracted from specimens that were of new species [35,37–42]. collected as part of other biological studies carried out with The aim of this study is to extend barcode coverage to appropriate permissions from local authorities: Comisio´n de Argentine marine and brackish water fishes. Because museum Investigaciones Cientı´ficas de la Provincia de Buenos Aires, Figure 1. Collection sites for specimens examined in this study. Black triangles correspond to northern samples, shelf of Buenos Aires province; green circle correspond to samples collected in Mar Chiquita coastal lagoon; red triangles correspond to samples of inner shelf of Patagonian waters, and blue circles, samples of outer shelf of Patagonian waters. Numbers are provided to facilitate species collection sites of table 2. doi:10.1371/journal.pone.0028655.g001 PLoS ONE | www.plosone.org 2 December 2011 | Volume 6 | Issue 12 | e28655 DNA Barcoding of Argentine Fishes Table 1. Polymorphic nucleotide sites in the COI, haplotype presently studying or has reviewed the group in the region in designation (Hd) and absolute haplotype frequency (n), for question’’ and Level 2: ‘‘identification made with high degree of specimens of Psammobatis normani and P. rudis. confidence at all levels—specimen identified by a trained identifier who had prior knowledge of the group in the region or used available literature to identify the specimen’’. Some of the specimens were deposited in the fish collection of INIDEP; the Hd n Position other specimens studied were kept only as e-voucher (See Table 133 160 457 493 501 S1). All sequence assemblies, electropherogram (trace) files, P. normani 3T T T G T primer sequences and specimen provenance data
Recommended publications
  • The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
    LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11.
    [Show full text]
  • Parasites As Biological Tags of Fish Stocks
    145 Parasites as biological tags of fish stocks: a meta-analysis of their discriminatory power ROBERT POULIN* and TSUKUSHI KAMIYA Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand (Received 7 July 2013; revised 30 July 2013; accepted 31 July 2013; first published online 24 October 2013) SUMMARY The use of parasites as biological tags to discriminate among marine fish stocks has become a widely accepted method in fisheries management. Here, we first link this approach to its unstated ecological foundation, the decay in the similarity of the species composition of assemblages as a function of increasing distance between them, a phenomenon almost universal in nature. We explain how distance decay of similarity can influence the use of parasites as biological tags. Then, we perform a meta-analysis of 61 uses of parasites as tags of marine fish populations in multivariate discriminant analyses, obtained from 29 articles. Our main finding is that across all studies, the observed overall probability of correct classification of fish based on parasite data was about 71%. This corresponds to a two-fold improvement over the rate of correct classification expected by chance alone, and the average effect size (Zr = 0·463) computed from the original values was also indicative of a medium-to- large effect. However, none of the moderator variables included in the meta-analysis had a significant effect on the proportion of correct classification; these moderators included the total number of fish sampled, the number of parasite species used in the discriminant analysis, the number of localities from which fish were sampled, the minimum and maximum distance between any pair of sampling localities, etc.
    [Show full text]
  • Bugoni 2008 Phd Thesis
    ECOLOGY AND CONSERVATION OF ALBATROSSES AND PETRELS AT SEA OFF BRAZIL Leandro Bugoni Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy, at the Institute of Biomedical and Life Sciences, University of Glasgow. July 2008 DECLARATION I declare that the work described in this thesis has been conducted independently by myself under he supervision of Professor Robert W. Furness, except where specifically acknowledged, and has not been submitted for any other degree. This study was carried out according to permits No. 0128931BR, No. 203/2006, No. 02001.005981/2005, No. 023/2006, No. 040/2006 and No. 1282/1, all granted by the Brazilian Environmental Agency (IBAMA), and International Animal Health Certificate No. 0975-06, issued by the Brazilian Government. The Scottish Executive - Rural Affairs Directorate provided the permit POAO 2007/91 to import samples into Scotland. 2 ACKNOWLEDGEMENTS I was very lucky in having Prof. Bob Furness as my supervisor. He has been very supportive since before I had arrived in Glasgow, greatly encouraged me in new initiatives I constantly brought him (and still bring), gave me the freedom I needed and reviewed chapters astonishingly fast. It was a very productive professional relationship for which I express my gratitude. Thanks are also due to Rona McGill who did a great job in analyzing stable isotopes and teaching me about mass spectrometry and isotopes. Kate Griffiths was superb in sexing birds and explaining molecular methods again and again. Many people contributed to the original project with comments, suggestions for the chapters, providing samples or unpublished information, identifyiyng fish and squids, reviewing parts of the thesis or helping in analysing samples or data.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Atlas of Marine Bony Fish Otoliths (Sagittae) of Southeastern-Southern
    Original Article / Artigo Original Conversani et al.: Sagittae from the SouthwestBJOCE Atlantic Ocean Atlas of marine bony fish otoliths (sagittae) of Southeastern-Southern Brazil Part VII: Atheriniformes, Beloniformes, Beryciformes, Zeiformes, Syngnathiformes, Scorpaeniformes and Tetraodontiformes Valéria Regina Martins Conversani1, Marina Rito Brenha-Nunes1, César Santificetur1, Marcella Bockis Giaretta1, Carolina Correia Siliprandi1, Carmen Lucia Del Bianco Rossi-Wongtschowski1* 1 Instituto Oceanográfico da Universidade de São Paulo (Praça do Oceanográfico, 191, 05508-120 São Paulo, SP, Brazil) *Corresponding author: [email protected] ABSTRACT RESUMO In addition to the series of documents that we have Em adição à série de documentos que estamos been publishing on the "Atlas of Teleostei Otoliths publicando sobre o "Atlas de Otólitos para os peixes for the Southeastern-Southern Brazilian region", in Teleósteos da região Sudeste-Sul do Brasil", neste this volume we present the results of species of the volume apresentamos os resultados obtidos para espécies orders Atheriniformes (1 species), Beloniformes (5), das ordens Atheriniformes (1 espécie), Beloniformes Beryciformes (2), Zeiformes (2), Syngnathiformes (5), Beryciformes (2), Zeiformes (2), Syngnathiformes (2), Scorpaeniformes (9) and Tetraodontiformes (6). (2), Scorpaeniformes (9) e Tetraodontiformes (6). Foram Features, measurements and indices were analyzed analisadas as feições, medidas e índices usualmente according to methodology used in anterior series. empregados conforme metodologia
    [Show full text]
  • An Isotope Approach
    Determining Cetacean – Cephalopod Trophic Interactions – An Isotope Approach By Christine Heather Jackson Bachelor of Arts, James Cook University Graduate Diploma (Health Promotion), Curtin University of Technology Master of Science, University of Tasmania Submitted in fulfilment of the requirements for the degree Doctor of Philosophy University of Tasmania (October 2016) ii DECLARATION This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright Signed; _________________________________ Christine H. Jackson iii AUTHORITY OF ACCESS This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Signed; _________________________________ Christine H. Jackson iv ABSTRACT Determining the biotic and abiotic influences on the distribution and abundance of marine mammals is essential for understanding the dynamics of the food chain. The predator-prey relationship can be deterministic in shaping both the community structure and function of marine ecosystems. This is especially pertinent to recovering toothed whale populations given their large size and high prey consumption rates. A greater knowledge of the trophic linkages between toothed whales and their prey will facilitate assessments of their combined impact on the ecosystem since marine food webs are a fusion of bottom-up and top-down energy and nutrient flow.
    [Show full text]
  • Zootaxa, Pachycara, Zoarcidae (Teleostei: Perciformes)
    Zootaxa 1177: 21–26 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1177 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Studies on the Zoarcidae (Teleostei: Perciformes) of the southern hemisphere. IX. A new species of Pachycara from the southwestern Atlantic M. ERIC ANDERSON¹ & MICHAEL MAIA MINCARONE² ¹SAIAB (J.L.B. Smith Institute of Ichthyology), Private Bag 1015, Grahamstown 6140, South Africa. E-mail: [email protected]. ²Museu Oceanográfico do Vale do Itajaí, Univali, CP 360, 88302-202, Itajaí, SC, Brazil. E-mail: [email protected] Abstract A new species of deep-sea eelpout, Pachycara alepidotum, is described from four specimens, 199– 282 mm SL, collected in the upper bathyal zone off Rio Grande do Sul state, southern Brazil, and is the first record of the genus in the southwestern Atlantic. It is characterized by its lack of scales and ventral lateral line, few caudal vertebrae and only 1–2 rakers on the upper limb of the first gill arch. The largest specimen is an adult female. Key words: Pachycara, Zoarcidae, eelpout, Brazil, southwestern Atlantic Introduction Fishes of the eelpout genus Pachycara inhabit the upper slopes and abyssal plains of most regions, but are notably absent in the western Pacific, Mediterranean Sea and Arctic Ocean (Anderson 1989). Seven species have been described since the senior author’s 1989 paper (Møller 2003; Anderson and Fedorov, 2004; Biscoito and Almeida, 2004). Less than half (38%) of the species occur in the bathyal zone; the rest are abyssal. The bathyal ichthyofauna off southern Brazil is poorly known, but a few surveys have been initiated (e.g., Parin and Andriashev 1972; Roux 1973; Post 1978; Haimovici et al.
    [Show full text]
  • Parasitic in Mullus Argentinae (Perciformes: Mullidae) from the Atlantic Coast of South America
    Ahead of print online version FOLIA PARASITOLOGICA 59 [1]: 64–70, 2012 © Institute of Parasitology, Biology Centre ASCR ISSN 0015-5683 (print), ISSN 1803-6465 (online) http://folia.paru.cas.cz/ A new species of Neoascarophis (Nematoda: Cystidicolidae) parasitic in Mullus argentinae (Perciformes: Mullidae) from the Atlantic coast of South America Aldenice N. Pereira1, Juan T. Timi2, Fabiano M. Vieira1 and José L. Luque1 1 Curso de Pós-Graduação em Ciências Veterinárias and Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Caixa Postal 74.508, CEP 23851-970, Seropédica, RJ, Brasil; 2 Laboratorio de Parasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata – Consejo Nacional de Investigaciones Científicas yTécnicas (CONICET), Funes 3350, (7600) Mar del Plata, Argentina Abstract: A new nematode species (Neoascarophis mariae n. sp.) is described based on specimens collected from the Argentine goatfishMullus argentinae (Hubbs et Marini) from coastal waters off the state of Rio de Janeiro, Brazil. In the genus, the new species belongs to the group of species with females that have the vulva near the posterior end of the body. Only males of Neoascarophis longispicula Moravec et Klimpel, 2009 are known and can be distinguished from those of the new species by their larger body, devel- oped and somewhat dorsoventrally expanded flat inner part of the pseudolabia, bifurcate deirids and larger spicules (the left one with a rounded tip) with a different length ratio. Other species with females that have the vulva near the equatorial region are N. yarihige Machida, 1976 and N.
    [Show full text]
  • Peixes Estuarinos E Costeiros
    PEIXES ESTUARINOS E COSTEIROS 2ª edição Versão em formato eletrônico (pdf), pode ser livremente distribuída. Não pode ser comercializada. Luciano Gomes Fischer Luiz Eduardo Dias Pereira João Paes Vieira Rio Grande Luciano Gomes Fischer 2011 Copyright © 2011 - Luciano Gomes Fischer e João Paes Vieira A versão eletrônica deste livro pode ser acessada no site http://www.dominiopublico.gov.br/ ou solicitada aos autores. O conteúdo deste livro pode ser transcrito ou reproduzido, desde que utilizado para fins não comerciais, bastando citar a fonte e seus As ilustrações em formato digital podem ser solicitadas ao primeiro autores. autor através de e-mail. LUCIANO GOMES FISCHER JOÃO PAES VIEIRA F533p Fischer, Luciano Gomes Peixes estuarinos e costeiros / Luciano Gomes Fischer, Instituto de Oceanografia - Instituto de Oceanografia - Luiz Eduardo Dias Pereira, João Paes Vieira. - 2. ed. - Rio FURG, Rio Grande, RS FURG, Rio Grande, RS Grande : Luciano Gomes Fischer, 2011. Cx.p. 474 Cx.p. 474 131 p. : il. ; 21 cm Lab. de Recursos Pesqueiros Lab. de Ictiologia ISBN 978-85-912095-1-4 Demersais e Cefalópodes [email protected] [email protected] (53) 3233 6515 1. Peixes 2. Taxonomia 3. Ictiologia 4. Lagoa dos Patos [email protected] 5. Oceanografia I. Pereira, Luiz Eduardo Dias II. Vieira, João (53) 3233 6525 Paes III. Título CDU 597 Ficha catalográfica: Clarice Pilla de Azevedo e Souza – CRB10/923 Capa: Luciano Gomes Fischer, ilustração de Balistes capriscus. Impresso no Brasil pela Gráfica Pallotti em 2011. Editor: Luciano Gomes Fischer AGRADECIMENTOS À Dra. Marlise de Azevedo Bemvenuti, curadora da Coleção Ic- tiológica da FURG, por facilitar o acesso à coleção, pelas valiosas sugestões ao manuscrito e por testar as chaves de identificação com Aos nossos pais, as turmas do curso de Oceanologia.
    [Show full text]
  • Teleostei, Clupeiformes)
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Fall 2019 Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes) Tiffany L. Birge Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Birge, Tiffany L.. "Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes)" (2019). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/8m64-bg07 https://digitalcommons.odu.edu/biology_etds/109 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) by Tiffany L. Birge A.S. May 2014, Tidewater Community College B.S. May 2016, Old Dominion University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY December 2019 Approved by: Kent E. Carpenter (Advisor) Sara Maxwell (Member) Thomas Munroe (Member) ABSTRACT GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) Tiffany L. Birge Old Dominion University, 2019 Advisor: Dr. Kent E.
    [Show full text]
  • Fish and Invertebrate Bycatch and Discards in New Zealand Hoki, Hake, and Ling Fisheries from 1990–91 Until 2012–13
    Fish and invertebrate bycatch and discards in New Zealand hoki, hake, or ling trawl fisheries from 1990–91 until 2012–13 New Zealand Aquatic Environment and Biodiversity Report No. 163 S.L. Ballara R.L. O’Driscoll ISSN 1179-6480 (online) ISBN 978-1-77665-111-5 (online) November 2015 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries Table of Contents EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 2. METHODS 5 2.1 Definition of terms 5 2.2 Observer data 5 2.2.1 Data preparation and grooming 6 2.3 Commercial fishing return data 8 2.4 Analysis of factors influencing bycatch and discards 9 2.5 Calculation of bycatch and discard rates 9 2.6 Analysis of temporal trends in bycatch and discards 10 2.7 Comparison of trends in bycatch with data from trawl surveys 11 2.8 Discard information from Catch Landing Returns 11 2.9 Observer-authorised discarding 12 3. RESULTS 12 3.1 Distribution and representativeness of observer data 12 3.2 Comparison of estimators 13 3.3 Bycatch data (excluding discards) 14 3.3.1 Overview of raw bycatch data 14 3.3.2 Regression modelling and stratification of bycatch data 15 3.4 Discard data 15 3.4.1 Overview of
    [Show full text]
  • A New Congrid Eel (Teleostei: Anguilliformes: Congridae) from the Western Pacific, with an Analysis of Its Relationships
    Zootaxa 4845 (2): 191–210 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4845.2.2 http://zoobank.org/urn:lsid:zoobank.org:pub:B2DA6D79-874E-48C1-B054-FEC08546223C A new congrid eel (Teleostei: Anguilliformes: Congridae) from the Western Pacific, with an analysis of its relationships DAVID G. SMITH1*, EMMA S. KARMOVSKAYA2 & JOÃO PAULO CAPRETZ BATISTA DA SILVA3 1Smithsonian Institution, Museum Support Center, MRC-534, 4210 Silver Hill Road, Suitland, MD 20746 [email protected]; https://orcid.org/0000-0002-6354-2427 2Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, 117218, Russia [email protected]; https://orcid.org/0000-0002-0636-4265 3Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Castelo Branco, 58051-900, João Pessoa, PB, Brazil [email protected]; https://orcid.org/0000-0002-2373-3421 *Corresponding author Abstract A new species of congrid eel, Bathycongrus villosus sp. nov., is described from the Philippines and Vanuatu. It is similar to some of the small-toothed species currently placed in Bathycongrus and to the species of Bassanago. In this paper we compare the new species to Bassanago albescens (Barnard, 1923) and to Bathycongrus parviporus Karmovskaya, 2011, which it most closely resembles. An analysis of 19 characters shows that it agrees with Bat. parviporus in 16 characters and with Bas. albescens in one. In two characters, the three species are all different. We therefore place it in Bathycongrus. Key words: Taxonomy, Pisces, Bathycongrus, new species Introduction The species described here was discovered independently by two of the authors.
    [Show full text]