Viruses in the Marine Environment

Total Page:16

File Type:pdf, Size:1020Kb

Viruses in the Marine Environment 2014 Elena Lara de la Casa Casa la de Lara Elena community dynamics, phage-host interactions and genomic structure. genomic and interactions community dynamics, phage-host phage-host dynamics, community interactions and genomic structure. Elena Lara de la Casa, Enero 2014 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA Departamento de Biología D/Dª José Manuel Vergara Martín SECRETARIO DEL DEPARTAMENTO DE BIOLOGÍA DE LA UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA, CERTIFICA, Que el Consejo de Doctores del Departamento en su sesión de fecha.............................tomó el acuerdo de dar el consentimiento para su tramitación, a la tesis doctoral titulada “Viruses in the marine environment: community dynamics, phage-host interactions and genomic structure” presentada por el/la doctorando/a D/Dª Elena Lara de la Casa y dirigida por las Doctoras Dolors Vaqué y Silvia González Acinas. Y para que así conste, y a efectos de lo previsto en el Artº 6 del Reglamento para la elaboración, defensa, tribunal y evaluación de tesis doctorales de la Universidad de Las Palmas de Gran Canaria, firmo la presente en Las Palmas de Gran Canaria, a...de....................................de dos mil............ 3 Viruses in the marine environment: community dynamics, phage-­‐host interactions and genomic structure (Los virus en los ecosistemas marinos: dinámica de la comunidad, interacciones entre fago y hospedador y estructura genómica) Elena Lara de la Casa Tesis Doctoral presentada por Dª Elena Lara de la Casa para obtener el grado de Doctor por la Universidad de las Palmas de Gran Canaria, Departamento de BiologFa, Programa en GceanograHFa (Bienio 2008-­‐2010) Directores: Dra. Dolors Vaqué y Dra. Silvia G. Acinas Universidad de las Palmas de Gran Canaria Institut de Ciències del Mar (ICM-­‐CSIC) La Doctoranda El director El Co-­‐director Elena Lara de la Casa Dolors Vaqué Silvia G. Acinas En Barcelona, a de de 2014 5 This thesis has been funded by the Spanish Ministry of Science and Innovation (MICINN) through a PhD fellowship to Elena Lara de la Casa, under the program “Formación de Personal de virus que infectan a microorganismos marinos-MICROVIS” (Ref. CTM2007-62140/MAR, P.I.Dr Investigador (FPI)”, and was ascribed to the project: “Aislamiento, identificación y especificidad Dolors Vaqué). Other projects that contributed partially to the completion of this thesis were: “Population Ecology of Model Marine Heterotrophic Flagellates–FLAME” (CGL2010-16304, funded by the MICINN, P.I. Dr. Ramón Massana), “Arctic tipping points-ATP” (contract #226248 in the FP7 program of the European Union, P.I.: P.F. Wassman. University of Tromso, (Norway), and P.I. from CSIC, C.M. Duarte. IMEDEA), “The Role and Mechanisms of Genomic Microbial Microdiversity: a perspective integrating genomics and ecological approaches-MICRODIVERSITY” (CGL2008-00762/BOS, funded by the MICINN, P.I. Dr. Silvia G. Acinas) and “Microbial Ocean Pangenomes: from single cell to bacterial population genomics–PANGENOMICS” (CGL2011-26848/BOS, funded by the MICINN, P.I. Dr. Silvia G. Acinas) and. 7 A mis padres. 9 CONTENTS Abstract /Resumen/Resum 13 List of Publications 17 General Introduction 21 Aims and Outline 37 Chapter 1 Absence of seasonality on viral dynamics and salinity as a main driver modulating viral abundance in the NW Mediterranean Sea 43 Chapter 2 Experimental evaluation of the warming effect on viral, bacterial and protistan communities in two contrasting Arctic systems 77 Chapter 3 Pseudoalteromonas sp. 109 phages Marine phage-bacteria interactions at fine-scale within Chapter 4 Life-style and mosaic genome structure of marine Pseudoalteromonas siphovirus B8b isolated from the Northwestern Mediterranean Sea 141 Chapter 5 Comparative genomics and biogeography of Pseudoalteromonas phages 177 Synthesis of results and general discussion 197 Resumen en español/Spanish Summary 213 References (Introduction, Discussion and Spanish summary) 255 Agradecimientos/Acknowledgments 271 11 ABSTRACT There are an estimated 1030 viruses in the world oceans, the majority of which are phages of marine phages on microbial abundance, community structure, genetic exchange and global (viruses that infect bacteria). Extensive research has demonstrated the significant influence biogeochemical cycles. In this thesis, we contribute to increase the knowledge about the ecological role of viruses in marine systems, but also we aimed to provide a better understanding about the interactions between phages and their hosts and the genetic pool and biogeography of some the isolated phages genomes. Firstly, we followed the seasonal variability of viral communities in a coastal marine site (Blanes Bay Microbial Observatory, BBMO) and the environmental and biological factors that could modulate them. Our results showed that viral communities did not follow any clear seasonal patterns during the 5 years studied period and that viruses were mainly negatively correlated with salinity. Secondly, given the actual concern of the climate change effects on marine ecosystems, we evaluated experimentally how increasing temperatures would affect the microbial loop via protists respect to via viruses (“viral shunt”) in two contrasting Arctic marine systems. Lytic life strategy dominated instead the lysogenic strategy when we increased the temperature. But, overall the most important factor controlling bacterial abundance was bacterivory. These two studies provide us a general overview regarding viral dynamics at the community level but without knowing who infects whom and who is doing what. To provide inputs into these relevant issues, we used the model of Pseudoalteromonas bacterial strains and its phages. Our results suggest that interactions between phages and hosts are highly complex in terms on infectivity and rank reaching to the family boundaries. marine phages are unrepresented susceptibility at microdiversity level but Pseudoalteromonasalso reflect that phages can infect at larger taxonomic with only 4 genomes public available. Therefore, one of the isolated Pseudoalteromonas phage from BBMO was deeply studied; we investigated its biology, morphology, genomic and proteomic characteristics. Moreover, we carried out a genomic comparison of 3 Pseudoalteromonas phages isolated from the same bacterial specie to get insights into the genome structure and functional diversity. The genomic data analyzed not only contributed to a better understanding of phage- host interactions in marine systems but also demonstrated the complexity of their dynamics and biogeographic patterns. 13 RESUMEN Se estima que hay 1030 virus en los océanos, la mayoría de los cuales son fagos (virus que infectan en la abundancia microbiana, la estructura de la comunidad, el intercambio genético y los ciclos bacterias). Numerosas investigaciones han demostrado la gran influencia de los fagos marinos biogeoquímicos globales. En esta tesis, dividida en cinco capítulos, no solo se contribuye a aumentar el conocimiento sobre el papel ecológico de los virus en los sistemas marinos, sino que también se quiso proporcionar una mejor comprensión de las interacciones entre los fagos y de fagos aislados. Para indigar sobre el papel ecológico de los virus en relación a su abundancia, sus hospedadores, la variedad genética de los virus y la biogeografía de algunos de los genomas en el primer capítulo estudiamos la variabilidad estacional de las comunidades virales en una zona costera y los factores ambientales y biológicos que podrían modular su dinámica. Nuestros resultados mostraron que las comunidades víricas no siguen ningún patrón estacional claro durante los 5 años del período estudiado y se detectó una correlación inversa entre la abundancia vírica y la salinidad. Dada la actual preocupación de los efectos del cambio climático en los ecosistemas marinos, en el segundo capítulo se evaluó experimentalmente cómo el aumento de las temperaturas afectarían al bucle microbiano a través de los protistas (“grazing”) respecto a la “viral shunt” (a través de los virus) en dos sistemas marinos del Ártico. El mecanismo de infección que dominó cuando aumentamos la temperatura fue la lisis en vez de la lisogenia. Sin embargo, el factor más importante que controlaba la abundancia bacteriana era la bacterivoría. En estos dos primeros capítulos el objetivo era tener una visión general con respecto a la dinámica viral a nivel de comunidad, aunque sin saber quién infecta a quién y quién está haciendo qué. Para proporcionar nuevo conocimiento sobre este campo, en el tercer capítulo se utilizó un modelo basado en cepas bacterianas de Pseudoalteromonas y fagos aislados de estas cepas. Nuestros resultados sugirieron que las interacciones entre fago y hospedador son altamente complejas en que los fagos pueden infectar en un mayor rango taxonómico de lo descrito actualmente términos de infectividad y susceptibilidad a nivel de microdiversidad, pero también reflejaron ya que pueden llegar a infectar cepas bacterianas de diferente familia. Los fagos marinos de Pseudoalteromonas están representados únicamente con 4 genomas públicos disponibles. Así pues en el cuarto capítulo nos centramos en el estudio de uno de los fagos de Pseudoalteromonas que aislamos. Investigamos sus características biológicas, su morfología, la genómica y la proteómica. Finalmente, en el quinto capítulo, se realizó una comparación genómica de 3 fagos aislados de Pseudoalteromonas de la misma especie bacteriana para entender mejor la estructura de los genomas y la diversidad funcional. Los datos genómicos analizados
Recommended publications
  • Coming-Of-Age Characterization of Soil Viruses: a User's Guide To
    Review Coming-of-Age Characterization of Soil Viruses: A User’s Guide to Virus Isolation, Detection within Metagenomes, and Viromics Gareth Trubl 1,* , Paul Hyman 2 , Simon Roux 3 and Stephen T. Abedon 4,* 1 Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 2 Department of Biology/Toxicology, Ashland University, Ashland, OH 44805, USA; [email protected] 3 DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; [email protected] 4 Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA * Correspondence: [email protected] (G.T.); [email protected] (S.T.A.) Received: 25 February 2020; Accepted: 17 April 2020; Published: 21 April 2020 Abstract: The study of soil viruses, though not new, has languished relative to the study of marine viruses. This is particularly due to challenges associated with separating virions from harboring soils. Generally, three approaches to analyzing soil viruses have been employed: (1) Isolation, to characterize virus genotypes and phenotypes, the primary method used prior to the start of the 21st century. (2) Metagenomics, which has revealed a vast diversity of viruses while also allowing insights into viral community ecology, although with limitations due to DNA from cellular organisms obscuring viral DNA. (3) Viromics (targeted metagenomics of virus-like-particles), which has provided a more focused development of ‘virus-sequence-to-ecology’ pipelines, a result of separation of presumptive virions from cellular organisms prior to DNA extraction. This separation permits greater sequencing emphasis on virus DNA and thereby more targeted molecular and ecological characterization of viruses.
    [Show full text]
  • Motiliproteus Sediminis Gen. Nov., Sp. Nov., Isolated from Coastal Sediment
    Antonie van Leeuwenhoek (2014) 106:615–621 DOI 10.1007/s10482-014-0232-2 ORIGINAL PAPER Motiliproteus sediminis gen. nov., sp. nov., isolated from coastal sediment Zong-Jie Wang • Zhi-Hong Xie • Chao Wang • Zong-Jun Du • Guan-Jun Chen Received: 3 April 2014 / Accepted: 4 July 2014 / Published online: 20 July 2014 Ó Springer International Publishing Switzerland 2014 Abstract A novel Gram-stain-negative, rod-to- demonstrated that the novel isolate was 93.3 % similar spiral-shaped, oxidase- and catalase- positive and to the type strain of Neptunomonas antarctica, 93.2 % facultatively aerobic bacterium, designated HS6T, was to Neptunomonas japonicum and 93.1 % to Marino- isolated from marine sediment of Yellow Sea, China. bacterium rhizophilum, the closest cultivated rela- It can reduce nitrate to nitrite and grow well in marine tives. The polar lipid profile of the novel strain broth 2216 (MB, Hope Biol-Technology Co., Ltd) consisted of phosphatidylethanolamine, phosphatidyl- with an optimal temperature for growth of 30–33 °C glycerol and some other unknown lipids. Major (range 12–45 °C) and in the presence of 2–3 % (w/v) cellular fatty acids were summed feature 3 (C16:1 NaCl (range 0.5–7 %, w/v). The pH range for growth x7c/iso-C15:0 2-OH), C18:1 x7c and C16:0 and the main was pH 6.2–9.0, with an optimum at 6.5–7.0. Phylo- respiratory quinone was Q-8. The DNA G?C content genetic analysis based on 16S rRNA gene sequences of strain HS6T was 61.2 mol %. Based on the phylogenetic, physiological and biochemical charac- teristics, strain HS6T represents a novel genus and The GenBank accession number for the 16S rRNA gene T species and the name Motiliproteus sediminis gen.
    [Show full text]
  • Marine Microplankton Ecology Reading
    Marine Microplankton Ecology Reading Microbes dominate our planet, especially the Earth’s oceans. The distinguishing feature of microorganisms is their small size, usually defined as less than 200 micrometers (µm); they are all invisible to the naked eye. As a group, sea microbes are extremely diverse, and extremely versatile with respect to their abilities to make and eat food. All marine microbes are too small to swim against the current and are therefore classified as plankton. First we will discuss several ways to classify marine microbes. 1. Size Planktonic marine organisms can be divided into the following size categories: Category Size femtoplankton <0.2 µm picoplankton 0.2-2 µm nanoplankton 2-20 µm microplankton 20-200 µm mesoplankton 200-2000 µm In this laboratory we are concerned with the microscopic portion of the plankton, less than 200 µm. These organisms are not visible to the naked eye (Figure 1). Figure 1. Size classes of marine plankton 2. Type A. Viruses Viruses are the smallest and simplest microplankton. They range from 0.01 to 0.3 um in diameter. Externally, viruses have a capsid, or protein coat. Viruses can also have simple or complex external morphologies with tail fibers and structures that are used to inject DNA or RNA into their host. Viruses have little internal morphology. They do not have a nucleus or organelles. They do not have chlorophyll. Inside a virus there is only nucleic acid, either DNA or RNA. Viruses do not grow and have no metabolism. Marine viruses are highly abundant. There are up to 10 billion in one liter of seawater! B.
    [Show full text]
  • Marine Microbiology at Scripps
    81832_Ocean 8/28/03 7:18 PM Page 67 Special Issue—Scripps Centennial Marine Microbiology at Scripps A. Aristides Yayanos Scripps Institution of Oceanography, University of California, • San Diego, California USA Marine microbiology is the study of the smallest isolated marine bioluminescent bacteria, isolated and organisms found in the oceans—bacteria and archaea, characterized sulfate-reducing bacteria, and showed many eukaryotes (among the protozoa, fungi, and denitrifying bacteria could both produce and consume plants), and viruses. Most microorganisms can be seen nitrous oxide, now known to be an important green- only with a microscope. Microbes pervade the oceans, house gas. Beijerinck also founded the field of virology its sediments, and some hydrothermal fluids and through his work on plant viruses (van Iterson et al., exhibit solitary life styles as well as complex relation- 1983). Mills (1989) describes the significance of the ships with animals, other microorganisms, and each work of Beijerink and Winogradsky to plankton other. The skeletal remains of microorganisms form the research and marine chemistry. largest component of sedimentary fossils whose study Around 1903, bacteriology in California was reveals Earth’s history. The enormous morphological, emerging in the areas of medicine and public health physiological, and taxonomic diversity of marine and accordingly was developing into an academic dis- microorganisms remains far from adequately cipline in medical schools (McClung and Meyer, 1974). described and studied. Because the sea receives terres- Whereas the branch of microbiology dealing with bac- trial microorganisms from rivers, sewage outfalls, and teria and viruses was just beginning, the branch con- other sources, marine microbiology also includes the cerning protozoa and algae was a relatively more estab- study of alien microorganisms.
    [Show full text]
  • EMBRIC (Grant Agreement No
    Deliverable D6.1 EMBRIC (Grant Agreement No. 654008) Grant Agreement Number: 654008 EMBRIC European Marine Biological Research Infrastructure Cluster to promote the Blue Bioeconomy Horizon 2020 – the Framework Programme for Research and Innovation (2014-2020), H2020-INFRADEV-1-2014-1 Start Date of Project: 01.06.2015 Duration: 48 Months Deliverable D6.1 EMBRIC showcases: prototype pipelines from the microorganism to product discovery (M36) HORIZON 2020 - INFRADEV Deliverable D6.1 EMBRIC showcases: prototype pipelines from the microorganism to product discovery Page 1 of 85 Deliverable D6.1 EMBRIC (Grant Agreement No. 654008) Implementation and operation of cross-cutting services and solutions for clusters of ESFRI Grant agreement no.: 654008 Project acronym: EMBRIC Project website: www.embric.eu Project full title: European Marine Biological Research Infrastructure cluster to promote the Bioeconomy Project start date: June 2015 (48 months) Submission due date : May 2018 Actual submission date: May 2018 Work Package: WP 6 Microbial pipeline from environment to active compounds Lead Beneficiary: CABI Version: 9.0 Authors: SMITH David GOSS Rebecca OVERMANN Jörg BRÖNSTRUP Mark PASCUAL Javier BAJERSKI Felizitas HENSLER Michael WANG Yunpeng ABRAHAM Emily Deliverable D6.1 EMBRIC showcases: prototype pipelines from the microorganism to product discovery Page 2 of 85 Deliverable D6.1 EMBRIC (Grant Agreement No. 654008) Project funded by the European Union’s Horizon 2020 research and innovation programme (2015-2019) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission X Services Deliverable D6.1 EMBRIC showcases: prototype pipelines from the microorganism to product discovery Page 3 of 85 Deliverable D6.1 EMBRIC (Grant Agreement No.
    [Show full text]
  • Interactions Between Marine Picoeukaryotes and Their Viruses One Cell at a Time
    Interactions between marine picoeukaryotes and their viruses one cell at a time Interacciones entre picoeucariotas marinos y sus virus célula a célula Yaiza M. Castillo de la Peña Aquesta tesi doctoral està subjecta a la llicència Reconeixement 4.0. Espanya de Creative Commons . Esta tesis doctoral está sujeta a la licencia Reconocimiento 4.0. España de Creative Commons . This doctoral thesis is licensed under the Creative Commons Attribution 4.0. Spain License . Interactions between marine picoeukaryotes and their viruses one cell at a time (Interacciones entre picoeucariotas marinos y sus virus célula a célula) Yaiza M. Castillo de la Peña Tesis doctoral presentada por Dª Yaiza M. Castillo de la Peña para obtener el grado de Doctora por la Universitat de Barcelona y el Institut de Ciències del Mar, programa de doctorado en Biotecnología, Facultat de Farmàcia i Ciències de l’Alimentació . Directoras: Dra. Mª Dolors Vaqué Vidal y Dra. Marta Sebastián Caumel Tutora: Dra. Josefa Badía Palacín Universitat de Barcelona (UB) Institut de Ciències del Mar (ICM-CSIC) La doctoranda La directora La co -directora La tutora Yaiza M. Castillo Dolors Vaqué Marta Sebastián Josefa Badía En Barcelona, a 25 de noviembre de 2019 Cover design and images: © Yaiza M. Castillo. TEM images from Derelle et al ., 2008 This thesis has been funded by the Spanish Ministry of Economy and competitivity (MINECO) through a PhD fellowship to Yaiza M. Castillo de la Peña (BES-2014- 067849), under the program “Formación de Personal Investigador (FPI)”, and adscribed to the project: “Impact of viruses on marine microbial communities using virus-host models and metagenomic analyzes.” MEFISTO (Ref.
    [Show full text]
  • A Distinct Lineage of Giant Viruses Brings a Rhodopsin Photosystem to Unicellular Marine Predators
    A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators David M. Needhama,1, Susumu Yoshizawab,1, Toshiaki Hosakac,1, Camille Poiriera,d, Chang Jae Choia,d, Elisabeth Hehenbergera,d, Nicholas A. T. Irwine, Susanne Wilkena,2, Cheuk-Man Yunga,d, Charles Bachya,3, Rika Kuriharaf, Yu Nakajimab, Keiichi Kojimaf, Tomomi Kimura-Someyac, Guy Leonardg, Rex R. Malmstromh, Daniel R. Mendei, Daniel K. Olsoni, Yuki Sudof, Sebastian Sudeka, Thomas A. Richardsg, Edward F. DeLongi, Patrick J. Keelinge, Alyson E. Santoroj, Mikako Shirouzuc, Wataru Iwasakib,k,4, and Alexandra Z. Wordena,d,4 aMonterey Bay Aquarium Research Institute, Moss Landing, CA 95039; bAtmosphere & Ocean Research Institute, University of Tokyo, Chiba 277-8564, Japan; cLaboratory for Protein Functional & Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan; dOcean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany; eDepartment of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; fGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan; gLiving Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4SB, United Kingdom; hDepartment of Energy Joint Genome Institute, Walnut Creek, CA 94598; iDaniel K. Inouye Center for Microbial Oceanography, University of Hawaii, Manoa, Honolulu, HI 96822; jDepartment of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106; and kDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan Edited by W. Ford Doolittle, Dalhousie University, Halifax, Canada, and approved August 8, 2019 (received for review May 27, 2019) Giant viruses are remarkable for their large genomes, often rivaling genomes that range up to 2.4 Mb (Fig.
    [Show full text]
  • Aquatic Microbial Ecology 79:1
    Vol. 79: 1–12, 2017 AQUATIC MICROBIAL ECOLOGY Published online March 28 https://doi.org/10.3354/ame01811 Aquat Microb Ecol Contribution to AME Special 6 ‘SAME 14: progress and perspectives in aquatic microbial ecology’ OPENPEN ACCESSCCESS REVIEW Exploring the oceanic microeukaryotic interactome with metaomics approaches Anders K. Krabberød1, Marit F. M. Bjorbækmo1, Kamran Shalchian-Tabrizi1, Ramiro Logares2,1,* 1University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, 0316 Oslo, Norway 2Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, Barcelona, Spain ABSTRACT: Biological communities are systems composed of many interacting parts (species, populations or single cells) that in combination constitute the functional basis of the biosphere. Animal and plant ecologists have advanced substantially our understanding of ecological inter- actions. In contrast, our knowledge of ecological interaction in microbes is still rudimentary. This represents a major knowledge gap, as microbes are key players in almost all ecosystems, particu- larly in the oceans. Several studies still pool together widely different marine microbes into broad functional categories (e.g. grazers) and therefore overlook fine-grained species/population-spe- cific interactions. Increasing our understanding of ecological interactions is particularly needed for oceanic microeukaryotes, which include a large diversity of poorly understood symbiotic rela- tionships that range from mutualistic to parasitic. The reason for the current state of affairs is that determining ecological interactions between microbes has proven to be highly challenging. How- ever, recent technological developments in genomics and transcriptomics (metaomics for short), coupled with microfluidics and high-performance computing are making it increasingly feasible to determine ecological interactions at the microscale.
    [Show full text]
  • Corals and Sponges Under the Light of the Holobiont Concept: How Microbiomes Underpin Our Understanding of Marine Ecosystems
    fmars-08-698853 August 11, 2021 Time: 11:16 # 1 REVIEW published: 16 August 2021 doi: 10.3389/fmars.2021.698853 Corals and Sponges Under the Light of the Holobiont Concept: How Microbiomes Underpin Our Understanding of Marine Ecosystems Chloé Stévenne*†, Maud Micha*†, Jean-Christophe Plumier and Stéphane Roberty InBioS – Animal Physiology and Ecophysiology, Department of Biology, Ecology & Evolution, University of Liège, Liège, Belgium In the past 20 years, a new concept has slowly emerged and expanded to various domains of marine biology research: the holobiont. A holobiont describes the consortium formed by a eukaryotic host and its associated microorganisms including Edited by: bacteria, archaea, protists, microalgae, fungi, and viruses. From coral reefs to the Viola Liebich, deep-sea, symbiotic relationships and host–microbiome interactions are omnipresent Bremen Society for Natural Sciences, and central to the health of marine ecosystems. Studying marine organisms under Germany the light of the holobiont is a new paradigm that impacts many aspects of marine Reviewed by: Carlotta Nonnis Marzano, sciences. This approach is an innovative way of understanding the complex functioning University of Bari Aldo Moro, Italy of marine organisms, their evolution, their ecological roles within their ecosystems, and Maria Pia Miglietta, Texas A&M University at Galveston, their adaptation to face environmental changes. This review offers a broad insight into United States key concepts of holobiont studies and into the current knowledge of marine model *Correspondence: holobionts. Firstly, the history of the holobiont concept and the expansion of its use Chloé Stévenne from evolutionary sciences to other fields of marine biology will be discussed.
    [Show full text]
  • Picoplankton Distribution and Activity in the Deep Waters of the Southern Adriatic Sea
    water Article Picoplankton Distribution and Activity in the Deep Waters of the Southern Adriatic Sea Danijela Šanti´c 1,* , Vedrana Kovaˇcevi´c 2, Manuel Bensi 2, Michele Giani 2 , Ana Vrdoljak Tomaš 1 , Marin Ordulj 3 , Chiara Santinelli 2, Stefanija Šestanovi´c 1, Mladen Šoli´c 1 and Branka Grbec 1 1 Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovi´ca63, POB 500, 21000 Split, Croatia 2 National Institute of Oceanography and Applied Geophysics, Borgo Grotta Gigante 42/c, 34010 Sgonico (Ts), Italy 3 University of Split, University Department of Marine Studies, Ruđera Boškovi´ca37, 21000 Split, Croatia * Correspondence: [email protected]; Tel.: +385-21-408-006; Fax: +385-21-358-650 Received: 19 July 2019; Accepted: 8 August 2019; Published: 10 August 2019 Abstract: Southern Adriatic (Eastern Mediterranean Sea) is a region strongly dominated by large-scale oceanographic processes and local open-ocean dense water formation. In this study, picoplankton biomass, distribution, and activity were examined during two oceanographic cruises and analyzed in relation to environmental parameters and hydrographic conditions comparing pre and post-winter phases (December 2015, April 2016). Picoplankton density with the domination of autotrophic biomasses was higher in the pre-winter phase when significant amounts of picoaoutotrophs were also found in the meso-and bathy-pelagic layers, while Synechococcus dominated the picoautotrophic group. Higher values of bacterial production and domination of High Nucleic Acid content bacteria (HNA bacteria) were found in deep waters, especially during the post-winter phase, suggesting that bacteria can have an active role in the deep-sea environment. Aerobic anoxygenic phototrophic bacteria accounted for a small proportion of total heterotrophic bacteria but contributed up to 4% of bacterial carbon content.
    [Show full text]
  • Enhanced Viral Activity in the Surface Microlayer of the Arctic and Antarctic Oceans
    microorganisms Article Enhanced Viral Activity in the Surface Microlayer of the Arctic and Antarctic Oceans Dolors Vaqué 1,*,† , Julia A. Boras 1,† , Jesús Maria Arrieta 2 , Susana Agustí 3 , Carlos M. Duarte 3 and Maria Montserrat Sala 1 1 Institut de Ciències del Mar-Consejo Superior de Investigaciones Científicas (ICM-CSIC), Passeig Marítim de la Barceloneta 37–49, 08003 Barcelona, Spain; [email protected] (J.A.B.); [email protected] (M.M.S.) 2 Centro Oceanográfico de Canarias (Instituto Español de Oceanografía, IEO), Farola del Mar 22, Dársena Pesquera, 38180 Tenerife, Spain; [email protected] 3 Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; [email protected] (S.A.); [email protected] (C.M.D.) * Correspondence: [email protected]; Tel.: +34-932309592 † Contributed equally to the elaboration of the study and manuscript. Abstract: The ocean surface microlayer (SML), with physicochemical characteristics different from those of subsurface waters (SSW), results in dense and active viral and microbial communities that may favor virus–host interactions. Conversely, wind speed and/or UV radiation could adversely affect virus infection. Furthermore, in polar regions, organic and inorganic nutrient inputs from melting ice may increase microbial activity in the SML. Since the role of viruses in the microbial food web of the SML is poorly understood in polar oceans, we aimed to study the impact of viruses on prokaryotic communities in the SML and in the SSW in Arctic and Antarctic waters. We hypothesized that a higher viral activity in the SML than in the SSW in both polar systems would be observed.
    [Show full text]
  • Effects of Virus Infection on Respiration Rates of Marine Phytoplankton and Microplankton Communities
    MARINE ECOLOGY PROGRESS SERIES Vol. 262: 71–80, 2003 Published November 7 Mar Ecol Prog Ser Effects of virus infection on respiration rates of marine phytoplankton and microplankton communities Yoanna Eissler 1,*, Elisabeth Sahlsten3, Renato A. Quiñones1, 2 1Centro de Investigación Oceanográfica en el Pacifico Sur-Oriental (COPAS), and 2Departamento de Oceanografía, Universidad de Concepción, Casilla 160-C, Concepción, Chile 3Swedish Meteorological and Hydrological Institute, Nya Varvet 31, 426 71 Västra Frölunda, Sweden ABSTRACT: The possible influence of viral infection on respiration rates in marine microbial pelagic communities was assessed by means of 3 experiments on respiration rate with viral concentrate addi- tion on single-species cultures of Mantoniella sp. and Micromonas pusilla and another 3 on natural microplankton communities (organisms <200 µm) from the Kattegat Sea (Åstol) and the Baltic Sea. Coastal surface seawater samples were taken during cruises of the RVs ‘Ancylus’ and ‘Argos’ during winter and spring 2000. Approximately 50 to 70 l of seawater were concentrated by ultrafiltration. The experiments were started by adding a viral particle concentrate to a container with algae or a natural microplankton community; a control container was kept free of the viral concentrate addition. Oxygen concentration determinations were carried out on each treatment and control to measure respiration rates throughout the incubation period. The in vivo chlorophyll a fluorescence was also monitored as an indication of algal infection. The rates of respiration indicated that the addition of the viral particle concentrate affected the respective metabolisms of the Mantoniella sp. and Micromonas pusilla cultures as well as natural microplankton communities. Viral infection decreased the Man- toniella sp.
    [Show full text]