A Bioturbation Classification of European Marine Infaunal

Total Page:16

File Type:pdf, Size:1020Kb

A Bioturbation Classification of European Marine Infaunal A bioturbation classification of European marine infaunal invertebrates Ana M. Queiros 1, Silvana N. R. Birchenough2, Julie Bremner2, Jasmin A. Godbold3, Ruth E. Parker2, Alicia Romero-Ramirez4, Henning Reiss5,6, Martin Solan3, Paul J. Somerfield1, Carl Van Colen7, Gert Van Hoey8 & Stephen Widdicombe1 1Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, U.K. 2The Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, NR33 OHT, U.K. 3Department of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, U.K. 4EPOC – UMR5805, Universite Bordeaux 1- CNRS, Station Marine d’Arcachon, 2 Rue du Professeur Jolyet, Arcachon 33120, France 5Faculty of Biosciences and Aquaculture, University of Nordland, Postboks 1490, Bodø 8049, Norway 6Department for Marine Research, Senckenberg Gesellschaft fu¨ r Naturforschung, Su¨ dstrand 40, Wilhelmshaven 26382, Germany 7Marine Biology Research Group, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium 8Bio-Environmental Research Group, Institute for Agriculture and Fisheries Research (ILVO-Fisheries), Ankerstraat 1, Ostend 8400, Belgium Keywords Abstract Biodiversity, biogeochemical, ecosystem function, functional group, good Bioturbation, the biogenic modification of sediments through particle rework- environmental status, Marine Strategy ing and burrow ventilation, is a key mediator of many important geochemical Framework Directive, process, trait. processes in marine systems. In situ quantification of bioturbation can be achieved in a myriad of ways, requiring expert knowledge, technology, and Correspondence resources not always available, and not feasible in some settings. Where dedi- Ana M. Queiros, Plymouth Marine cated research programmes do not exist, a practical alternative is the adoption Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, U.K. Tel: +44 1752 633 of a trait-based approach to estimate community bioturbation potential (BPc). 476; Fax: +44 1752 633 101; This index can be calculated from inventories of species, abundance and E-mail: [email protected] biomass data (routinely available for many systems), and a functional classifica- tion of organism traits associated with sediment mixing (less available). Pres- Funding Information ently, however, there is no agreed standard categorization for the reworking Funding was supported by the Western mode and mobility of benthic species. Based on information from the literature Channel Observatory, part of the UK Natural and expert opinion, we provide a functional classification for 1033 benthic Environmental Research Council’s National Capability (Queiros, Somerfield and invertebrate species from the northwest European continental shelf, as a tool to Widdicombe), the Department of the enable the standardized calculation of BPc in the region. Future uses of this Environment, Food and Rural Affairs under classification table will increase the comparability and utility of large-scale Science-Level Agreement SLA31 assessments of ecosystem processes and functioning influenced by bioturbation (Birchenough), the Conseil Regional (e.g., to support legislation). The key strengths, assumptions, and limitations of d’Aquitaine and the University of Bordeaux 1 BPc as a metric are critically reviewed, offering guidelines for its calculation and (Romero-Ramirez), and the Flemish Fund for application. Scientific Research (Van Colen). Received: 1 May 2013; Revised: 6 August 2013; Accepted: 12 August 2013 Ecology and Evolution 2013; 3(11): 3958– 3985 doi: 10.1002/ece3.769 Introduction terized by a high biomass and diversity of invertebrate organisms that are fundamental to the mediation of a Marine soft-sediment habitats represent some of the most wealth of goods and services (Lotze et al. 2006; White et al. functionally important ecosystems on Earth, being charac- 2010; Widdicombe and Somerfield 2012). Infaunal inverte- 3958 ª 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. A.M. Queiros et al. Marine Invertebrate Bioturbation Classification brates exhibit significant influence over benthic sedimen- munity structure have previously been used to explore tary geochemical environments in soft sediments through possible changes in ecosystem properties like sediment bioturbation, that is, the mixing of sediment and particu- organic carbon at the North Sea scale, based on empiri- late materials carried out during foraging, feeding and bur- cally derived relationships between BPc and sediment row maintenance activities, and the enhancement of pore organic carbon (Fig. 1). Similar uses of BPc could invalu- water and solute advection during burrow ventilation ably contribute to an increased understanding of the role (Richter 1936; Rhoads 1974; Volkenborn et al. 2010). These of ecosystem structure in the sustenance of marine func- processes influence oxygen, pH and redox gradients (Stahl tioning and its resilience to human activities, an urgent et al. 2006; Pischedda et al. 2008; Queiros et al. 2011), metal need under current European legislation (Marine Strategy cycling (Teal et al. 2009), sediment granulometry (Mont- Framework Directive, 2008/56/EC). serrat et al. 2009), pollutant release (Gilbert et al. 1994), A significant obstacle in the widespread application of macrofauna diversity (Volkenborn et al. 2007), bacterial BPc, however, is the need for a standard classification activity and composition (Mermillod-Blondin and Rosen- scheme that is supported by the benthic research commu- berg 2006; Gilbertson et al. 2012), and ultimately carbon nity. As a first step in fulfilling this research gap, we pres- (Kristensen 2001) and nitrogen cycling (Bertics et al. 2010). ent the findings of the Study Group on Climate Related Hence, in light of anticipated changes to marine systems Benthic Processes in the North Sea, an expert group associated with human activity (Halpern et al. 2008; Hoe- appointed by the International Council for the Explora- gh-Guldberg and Bruno 2010), large-scale assessments of tion of the Sea (ICES SGCBNS). We present the conclu- bioturbation can contribute to a better understanding of how sions of a series of dedicated workshops tasked with of ecosystem functioning is mediated by biological activity. deriving a functional classification of northwest European Community bioturbation potential (BPc) is a metric marine invertebrate species to facilitate the calculation of first described by Solan et al. (2004a), which combines BPc in different regions of the North Atlantic. abundance and biomass data with information about the life traits of individual species or taxonomic groups. This Methods information describes modes of sediment reworking (Ri) The classification of marine invertebrate infauna into bio- and mobility (Mi) of taxa in a dataset, two traits known to regulate biological sediment mixing, a key component turbation groups was carried out using 18 datasets com- = of bioturbation (Solan 2000; and refereces therein; Solan piled from northwest European waters (n 1033 species). Following Swift (1993) and Solan et al. (2004a), each taxon et al. 2004b). BPc is thus not a direct measure of the (1) was scored on categorical scales that reflect increasing process of bioturbation. Rather, BPc provides an estimate of the potential of a community to bioturbate. Hence, mobility (Mi) from 1 (living in a fixed tube) to 4 (free three where macrofauna abundance and biomass data are dimensional movement via burrow system), and increasing available, BP provides a means to estimate the extent to sediment reworking (Ri) from 1 (epifauna that bioturbate c – which benthic communities are likely to affect important at the sediment water interface) to 5 (regenerators that exca- ecosystem properties that underpin ecosystem function- vate holes, transferring sediment at depth to the surface). ing. The consequences of environmentally driven changes Xn pffiffiffiffiffiffiffiffiffiffiffi BPc ¼ Bi=Ai  Ai  Mi  Ri in biodiversity to BPc, and its relation to ecosystem func- ¼ tioning, have been explored in this way in terrestrial (Bun- i 1 ker et al. 2005) and marine habitats (Solan et al. 2004a,b); Bi and Ai are the biomass and abundance of species/taxon i at the local (Lohrer et al. 2010; Teal et al. 2013) and regio- in a sample. Trait scores were derived from an extensive nal scales (Queiros et al. 2011; Birchenough et al. 2012; review of published material and expert knowledge (con- Solan et al. 2012); for different contexts (e.g., habitat sensus of 12 authors), and details of the scoring system are structure and hypoxia, Queiros et al. 2011; Van Colen provided below. Species for which no published informa- et al. 2012; Villn€as et al. 2012); and for a variety of ecosys- tion was available were scored based on descriptions of spe- tem functions including productivity (Solan et al. 2012), cies behavior and information on closely related species at nutrient cycling (Solan et al. 2004a), carbon storage (Bun- the nearest taxonomic level. As BPc captures information ker et al. 2005; Solan et al. 2012), and decomposition (Jo- about sediment particle reworking, pelagic species and sefson et al. 2012). By calculating BPc over time, or for those living on hard substrates were not included. Sedi- different locations or scenarios, changes in the efficiency
Recommended publications
  • Keys to the Hawaiian Marine Gammaridea, 0-30 Meters
    J. LAURENS BARNt Keys to the Hawaiian Marine Gammaridea, 0-30 Meters SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 58 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Z0°l°iy Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. Each publica- tion is distributed by mailing lists to libraries, laboratories, institutes, and interested specialists throughout the world. Individual copies may be obtained from the Smith- sonian Institution Press as long as stocks are available. S. DILLON RIPLEY Secretary Smithsonian Institution SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 58 j.
    [Show full text]
  • Mesh-Size Matters in Epibenthic Surveys
    J. Mar. Biol. Ass. U. K. 12002), 82,1^8 Printed in the United Kingdom Mesh-size matters in epibenthic surveys Ruth Callaway*P, Simon JenningsP, John Lancaster* and John CotterO *University ofWales Swansea, School ofBiological Sciences, Singleton Park, Swansea, Wales, SA2 8PP. OCentre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Lowestoft, Norfolk, NR33 0HT. PCorresponding author 1ne¨ eR.Zu« hlke): e-mail: [email protected] This study aimed to identify the e¡ects of di¡erent sieve mesh-sizes on processing time, the number of species retained, diversity measures and multivariate community analysis in the North Sea. Samples were collected at 63 sites throughout the North Sea and washed through two successive sieves, 10-mm and 5-mm mesh respectively. Processing time for whole samples 15- and 10-mm fraction) averaged 91 Æ25 min compared with 55 Æ16 min for the 10-mm mesh fraction. Altogether 40% of free-living species and 9% of attached species were recorded exclusively in the 5-mm fraction. The majority of these species were rare. Spatial gradients of species diversity and community structure were identical, independent ofthe mesh-size used. Multivariate community analysis showed no signi¢cant di¡erence between descriptions ofcommunity structure based on fauna from 10-mm or 5-mm mesh. The use ofcoarser sieving mesh would save time and money, ifthe aims ofan epibenthic survey were to describe broad patterns ofcommunity structure and relative diversity. It would be possible to process approximately 50% more samples, ifthe time saved with 10-mm mesh were allocated to additional sampling. However, ifinformation on single species is required, then sorting with the ¢ner sieve mesh will yield crucial information.
    [Show full text]
  • Additions to and Revisions of the Amphipod (Crustacea: Amphipoda) Fauna of South Africa, with a List of Currently Known Species from the Region
    Additions to and revisions of the amphipod (Crustacea: Amphipoda) fauna of South Africa, with a list of currently known species from the region Rebecca Milne Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa & Charles L. Griffiths* Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa E-mail: [email protected] (with 13 figures) Received 25 June 2013. Accepted 23 August 2013 Three species of marine Amphipoda, Peramphithoe africana, Varohios serratus and Ceradocus isimangaliso, are described as new to science and an additional 13 species are recorded from South Africa for the first time. Twelve of these new records originate from collecting expeditions to Sodwana Bay in northern KwaZulu-Natal, while one is an introduced species newly recorded from Simon’s Town Harbour. In addition, we collate all additions and revisions to the regional amphipod fauna that have taken place since the last major monographs of each group and produce a comprehensive, updated faunal list for the region. A total of 483 amphipod species are currently recognized from continental South Africa and its Exclusive Economic Zone . Of these, 35 are restricted to freshwater habitats, seven are terrestrial forms, and the remainder either marine or estuarine. The fauna includes 117 members of the suborder Corophiidea, 260 of the suborder Gammaridea, 105 of the suborder Hyperiidea and a single described representative of the suborder Ingolfiellidea.
    [Show full text]
  • Proceedings of the United States National Museum
    Proceedings of the United States National Museum SMITHSONIAN INSTITUTION . WASHINGTON, B.C. Volume 117 Number 3516 MARINE AMPHIPODA OF ATOLLS IN MICRONESIA By J. Laurens Barnard Associate Curator, Division of Crustacea Introduction Two large collections of intertidal and sublittoral Amphipoda were made on several atolls of Micronesia, one containing material coUected by Dr. D. P. Abbott of Stanford University and Dr. F. M. Bayer of the Smithsonian Institution on Ifaluk Atoll, and by Dr. Cadet Hand of the University of California on Kapingamarangi Atoll, and the other by Dr. D. J. Reish of Long Beach State CoUege, California, on Eniwetok, Majm-o, and Bikini atolls. The Abbott-Bayer-Hand collection was made avaUable to me by Dr. Fenner A. Chace, Jr. of the U.S. National Museum, and a small grant was provided' from the National Research Council for initial sorting of the specimens. The coUections of Dr. Reish were made possible by help from the Atomic Energy Commission. All specimens have been deposited m the U.S. National Museum. I am most grateful to the Beaudette Foundation for my support during this investigation. Dr. Abbott very kmdly reviewed the manuscript and made several valuable suggestions. Previous studies.— Tropical Pacific amphipods have not been studied extensively but the fauna would be expected to contam species common to other parts of the tropics, such as the Indian Ocean and Red Sea. Therefore, few of the common species in the coUections proved to be new, especially since Schellenberg (1938a) had already reported on coUections from Fiji, GUbert, EUice, MarshaU and 459 460 PROCEEDINGS OF THE NATIONAL MUSEUM vol.
    [Show full text]
  • Facts and Arguments for Darwin
    22102077550 Med K3642 #• Digitized by the Internet Archive in 2017 with funding from Wellcome Library https://archive.org/details/b29338426 FACTS AND ARGUMENTS FOR DARWIN. BY FRITZ MÜLLER. WITH ADDITIONS BY THE AUTHOR TRANSLATED FROM THE GERMAN By W. S. DALLAS, F.L.S., ASSISTANT SECRETARY TO THE GEOLOGICAL SOCIETY OF LONDON. WITH ILLUSTRATIONS. LONDON: JOHN MURRAY, ALBEMARLE STREET. 1869. EI'/fL.U TT Cblj T« til ! 1a^: MB. DARWIN’S WORKS. A NATURALIST’S VOYAGE ROUND THE WORLD ; being a Journal of Researches into the Natural History and Geology of Couktries Visited. Post 8vo. 9s. THE ORIGIN of SPECIES, by MEANS of NATURAL SELECTION"; or, The Preservation of Favoured Races in the Struggle for Life. Woodcuts. Post 8vo. 15s. THE VARIOUS CONTRIVANCES by wbicb BRITISH and FOREIGN ORCHIDS are FERTILIZED by INSECTS, and on the GOOD EFFECTS of INTERCROSSING. Woodcuts. Post 8vo. 9s. THE VARIATION OF ANIMALS AND PLANTS UNDER DOMESTICATION. Illustrations. 2 vols., 8vo. 28s. TRANSLATOR’S PREFACE. My principal reason for undertaking the translation of Dr. Fritz Muller’s admirable work on the Crustacea, entitled ‘Für Darwin,’ was that it was still, although published as long ago as 1864, and highly esteemed by the author’s scientific countrymen, absolutely unknown to a great number of English naturalists, including some who have occupied themselves more or less specially with the subjects of which it treats. It possesses a value quite independent of its reference to Darwinism, due to the number of highly interesting and important facts in the natural history and par¬ ticularly the developmental history of the Crustacea, which its distinguished author, himself an unwearied and original investigator of these matters, has brought together in it.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • Title CUMACEAN CRUSTACEA from AKKESHI BAY, HOKKAIDO Author(S) Gamo, Sigeo Citation PUBLICATIONS of the SETO MARINE BIOLOGICAL LA
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository CUMACEAN CRUSTACEA FROM AKKESHI BAY, Title HOKKAIDO Author(s) Gamo, Sigeo PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1965), 13(3): 187-219 Issue Date 1965-10-30 URL http://hdl.handle.net/2433/175407 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University 1 CUMACEAN CRUSTACEA FROM AKKESHI BAY, HOKKAID0 ) SIGEO GAMO Faculty of Liberal Arts and Education, Yokohama National University, Kamakura, Kanagawa-Ken With 12 Text-figures Our knowledge of the Cumacea of Hokkaido and its adjacent waters is due to the contributions of DERZHA VIN (1923, 1926), U:ENo (1933, 1936), ZIMMER (1929, 1939, 1940, 1943) and LOMAKINA (1955 a-b; 1958 a-b). + Tomata Sempoji krn Fig. 1. Map of Akkeshi Bay. Solid circles with numbers indicate the stations where the cumaceans were collected by the Ekman-Berge bottom-sampling grab, 19-21 show the places where the subsurface towing of plankton-net was made at night. "~---------- ---- ---"---~- 1) Contributions from the Akkeshi Marine Biological Station, No. 126. Publ. Seto Mar. Biol. Lab., XIII (3), 187-219, 1965. (Article 10) f-l ~ Table 1. Occurrence of cumaceans in Akkeshi Bay. Station number 1_1_ _:__3___ 4 ___ 5 ___ 6 ___7 ___8_1_9_ 10 11-12~_::_~~~~ 18 19120121 Depth (m) 2 1 3 8 2 0.3 9 11 11 14 8-12 6 13 14 15 0.3 0.3 night ______B_o_t_t-om_c_h-aracter ~~~~~sis~~~~ sM s andMI s ~s~ss ~~~~~~ Srecies of cumaceans Bodotriidae I I I I I I I I I I I I I I I I .
    [Show full text]
  • Tsmm.Pdf 5.573 Mb
    ANÀLISI DELS DESCARTAMENTS EFECTUATS PER LA FLOTA D’ARROSSEGAMENT EN EL GOLF DE LLEÓ Sandra MALLOL MARTÍNEZ ISBN: 84-689-4625-7 Dipòsit legal: GI-1170-2005 Anàlisi dels descartaments efectuats per la fl ota d’arrossegament en el Golf de Lleó Sandra Mallol i Martínez Memòria redactada per Sandra Mallol i Martínez, 2005 inscrita al programa de doctorat de Biologia Ambiental, del Departament de Ciències Ambientals, per optar al grau de Doctor en Biologia per la Universitat de Girona. Aquest treball s’ha realitzat a l’Àrea de Zoologia del Departament de Ciències Ambientals de la Universitat de Girona sota la direcció de la Dra. Margarida Casadevall Masó i el Dr. Emili García-Berthou. coberta_SMallol.indd 1 23/05/2005, 11:49 Tesi Doctoral Anàlisi dels descartaments efectuats per la flota d’arrossegament en el Golf de Lleó Memòria redactada per Sandra Mallol i Martínez, inscrita al programa de doctorat de Biologia Ambiental del Departament de Ciències Ambientals, per a optar al grau de Doctora en Biologia per la Universitat de Girona. El present treball s’ha realitzat a l’Àrea de Zoologia de la Universitat de Girona sota la codirecció de la Dra. Margarida Casadevall Masó i el Dr. Emili García-Berthou. Sandra Mallol i Martínez Vist-i-plau dels directors, Dra. Margarida Casadevall Masó Dr. Emili García-Berthou Professora titular Professor titular Àrea de Zoologia Àrea d’Ecologia Departament de Ciències Ambientals Departament de Ciències Ambientals Universitat de Girona Universitat de Girona Girona, 2005 Al meu avi Falet, per haver-me ensenyat a estimar tant la mar Agraïments Quan un arriba al final de l’odissea de la tesi es fa difícil escriure aquest apartat sobretot per la por a obliadar-te d’algú, perdoneu si es dóna el cas.
    [Show full text]
  • Rachor, E., Bönsch, R., Boos, K., Gosselck, F., Grotjahn, M., Günther, C
    Rachor, E., Bönsch, R., Boos, K., Gosselck, F., Grotjahn, M., Günther, C.-P., Gusky, M., Gutow, L., Heiber, W., Jantschik, P., Krieg, H.J., Krone, R., Nehmer, P., Reichert, K., Reiss, H., Schröder, A., Witt, J. & Zettler, M.L. (2013): Rote Liste und Artenlisten der bodenlebenden wirbellosen Meerestiere. – In: Becker, N.; Haupt, H.; Hofbauer, N.; Ludwig, G. & Nehring, S. (Red.): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 2: Meeresorganismen. – Münster (Landwirtschaftsverlag). – Na- turschutz und Biologische Vielfalt 70 (2): S. 81-176. Die Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 2: Meeres- organismen (ISBN 978-3-7843-5330-2) ist zu beziehen über BfN-Schriftenvertrieb – Leserservice – im Landwirtschaftsverlag GmbH 48084 Münster Tel.: 02501/801-300 Fax: 02501/801-351 http://www.buchweltshop.de/bundesamt-fuer-naturschutz.html bzw. direkt über: http://www.buchweltshop.de/nabiv-heft-70-2-rote-liste-gefahrdeter-tiere-pflanzen-und- pilze-deutschlands-bd-2-meeresorganismen.html Preis: 39,95 € Naturschutz und Biologische Vielfalt 70 (2) 2013 81 –176 Bundesamtfür Naturschutz Rote Liste und Artenlisten der bodenlebenden wirbellosen Meerestiere 4. Fassung, Stand Dezember 2007, einzelne Aktualisierungenbis 2012 EIKE RACHOR,REGINE BÖNSCH,KARIN BOOS, FRITZ GOSSELCK, MICHAEL GROTJAHN, CARMEN- PIA GÜNTHER, MANUELA GUSKY, LARS GUTOW, WILFRIED HEIBER, PETRA JANTSCHIK, HANS- JOACHIM KRIEG,ROLAND KRONE, PETRA NEHMER,KATHARINA REICHERT, HENNING REISS, ALEXANDER SCHRÖDER, JAN WITT und MICHAEL LOTHAR ZETTLER unter Mitarbeit von MAREIKE GÜTH Zusammenfassung Inden hier vorgelegten Listen für amMeeresbodenlebende wirbellose Tiere (Makrozoo- benthos) aus neun Tierstämmen wurden 1.244 Arten bewertet. Eszeigt sich, dass die Verhältnis- se in den deutschen Meeresgebietender Nord-und Ostsee (inkl.
    [Show full text]
  • A Bioturbation Classification of European Marine Infaunal
    A bioturbation classification of European marine infaunal invertebrates Ana M. Queiros 1, Silvana N. R. Birchenough2, Julie Bremner2, Jasmin A. Godbold3, Ruth E. Parker2, Alicia Romero-Ramirez4, Henning Reiss5,6, Martin Solan3, Paul J. Somerfield1, Carl Van Colen7, Gert Van Hoey8 & Stephen Widdicombe1 1Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, U.K. 2The Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, NR33 OHT, U.K. 3Department of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, U.K. 4EPOC – UMR5805, Universite Bordeaux 1- CNRS, Station Marine d’Arcachon, 2 Rue du Professeur Jolyet, Arcachon 33120, France 5Faculty of Biosciences and Aquaculture, University of Nordland, Postboks 1490, Bodø 8049, Norway 6Department for Marine Research, Senckenberg Gesellschaft fu¨ r Naturforschung, Su¨ dstrand 40, Wilhelmshaven 26382, Germany 7Marine Biology Research Group, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium 8Bio-Environmental Research Group, Institute for Agriculture and Fisheries Research (ILVO-Fisheries), Ankerstraat 1, Ostend 8400, Belgium Keywords Abstract Biodiversity, biogeochemical, ecosystem function, functional group, good Bioturbation, the biogenic modification of sediments through particle rework- environmental status, Marine Strategy ing and burrow ventilation, is a key mediator of many important geochemical Framework Directive, process, trait. processes in marine systems. In situ quantification of bioturbation can be achieved in a myriad of ways, requiring expert knowledge, technology, and Correspondence resources not always available, and not feasible in some settings. Where dedi- Ana M. Queiros, Plymouth Marine cated research programmes do not exist, a practical alternative is the adoption Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, U.K.
    [Show full text]
  • In Worms Geoff Read NIWA New Zealand
    Brussels, 28-30 September Polychaeta (Annelida) in WoRMS Geoff Read NIWA New Zealand www.marinespecies.org/polychaeta/index.php Context interface Swimming — an unexpected skill of Polychaeta Acrocirridae Alciopidae Syllidae Nereididae Teuthidodr ilus = squidworm Acrocirridae Polynoidae Swima bombiviridis Syllidae Total WoRMS Polychaeta records, excluding fossils 91 valid families. Entries >98% editor checked, except Echiura (69%) Group in WoRMS all taxa all species valid species names names names Class Polychaeta 23,872 20,135 11,615 Subclass Echiura 296 234 197 Echiura were recently a Subclass Errantia 12,686 10,849 6,210 separate phylum Subclass Polychaeta incertae sedis 354 265 199 Subclass Sedentaria 10,528 8,787 5,009 Non-marine Polychaeta 28 16 (3 terrestrial) Class Clitellata* 1601 1086 (279 Hirudinea) *Total valid non-leech clitellates~5000 spp, 1700 aquatic. (Martin et al. 2008) Annelida diversity "It is now clear that annelids, in addition to including a large number of species, encompass a much greater disparity of body plans than previously anticipated, including animals that are segmented and unsegmented, with and without parapodia, with and without chaetae, coelomate and acoelomate, with straight guts and with U-shaped digestive tracts, from microscopic to gigantic." (Andrade et al. 2015) Andrade et al (2015) “Articulating “archiannelids”: Phylogenomics and annelid relationships, with emphasis on meiofaunal taxa.” Molecular Biology and Evolution, efirst Myzostomida (images Summers et al)EV Nautilus: Riftia Semenov: Terebellidae Annelida latest phylogeny “… it is now well accepted that Annelida includes many taxa formerly considered different phyla or with supposed affiliations with other animal groups, such as Sipuncula, Echiura, Pogonophora and Vestimentifera, Myzostomida, or Diurodrilida (Struck et al.
    [Show full text]
  • Await in Deep-Pelagic Habitats the Remarkable Squidworm Is An
    Downloaded from rsbl.royalsocietypublishing.org on November 24, 2010 The remarkable squidworm is an example of discoveries that await in deep-pelagic habitats Karen J. Osborn, Laurence P. Madin and Greg W. Rouse Biol. Lett. published online 24 November 2010 doi: 10.1098/rsbl.2010.0923 Supplementary data "Data Supplement" http://rsbl.royalsocietypublishing.org/content/suppl/2010/11/19/rsbl.2010.0923.DC1.ht ml References This article cites 12 articles, 1 of which can be accessed free http://rsbl.royalsocietypublishing.org/content/early/2010/11/19/rsbl.2010.0923.full.html #ref-list-1 P<P Published online 24 November 2010 in advance of the print journal. Subject collections Articles on similar topics can be found in the following collections taxonomy and systematics (299 articles) evolution (2221 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication. To subscribe to Biol. Lett. go to: http://rsbl.royalsocietypublishing.org/subscriptions This journal is © 2010 The Royal Society Downloaded from rsbl.royalsocietypublishing.org on November 24, 2010 Biol. Lett. mixing with basin water, resulting in long residence doi:10.1098/rsbl.2010.0923 times for water below 1500 m [2].
    [Show full text]