A Note on the Effects of Broadcast Antenna Gain, Beam Width and Height Above Average Terrain
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Radiometry and the Friis Transmission Equation Joseph A
Radiometry and the Friis transmission equation Joseph A. Shaw Citation: Am. J. Phys. 81, 33 (2013); doi: 10.1119/1.4755780 View online: http://dx.doi.org/10.1119/1.4755780 View Table of Contents: http://ajp.aapt.org/resource/1/AJPIAS/v81/i1 Published by the American Association of Physics Teachers Related Articles The reciprocal relation of mutual inductance in a coupled circuit system Am. J. Phys. 80, 840 (2012) Teaching solar cell I-V characteristics using SPICE Am. J. Phys. 79, 1232 (2011) A digital oscilloscope setup for the measurement of a transistor’s characteristic curves Am. J. Phys. 78, 1425 (2010) A low cost, modular, and physiologically inspired electronic neuron Am. J. Phys. 78, 1297 (2010) Spreadsheet lock-in amplifier Am. J. Phys. 78, 1227 (2010) Additional information on Am. J. Phys. Journal Homepage: http://ajp.aapt.org/ Journal Information: http://ajp.aapt.org/about/about_the_journal Top downloads: http://ajp.aapt.org/most_downloaded Information for Authors: http://ajp.dickinson.edu/Contributors/contGenInfo.html Downloaded 07 Jan 2013 to 153.90.120.11. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission Radiometry and the Friis transmission equation Joseph A. Shaw Department of Electrical & Computer Engineering, Montana State University, Bozeman, Montana 59717 (Received 1 July 2011; accepted 13 September 2012) To more effectively tailor courses involving antennas, wireless communications, optics, and applied electromagnetics to a mixed audience of engineering and physics students, the Friis transmission equation—which quantifies the power received in a free-space communication link—is developed from principles of optical radiometry and scalar diffraction. -
25. Antennas II
25. Antennas II Radiation patterns Beyond the Hertzian dipole - superposition Directivity and antenna gain More complicated antennas Impedance matching Reminder: Hertzian dipole The Hertzian dipole is a linear d << antenna which is much shorter than the free-space wavelength: V(t) Far field: jk0 r j t 00Id e ˆ Er,, t j sin 4 r Radiation resistance: 2 d 2 RZ rad 3 0 2 where Z 000 377 is the impedance of free space. R Radiation efficiency: rad (typically is small because d << ) RRrad Ohmic Radiation patterns Antennas do not radiate power equally in all directions. For a linear dipole, no power is radiated along the antenna’s axis ( = 0). 222 2 I 00Idsin 0 ˆ 330 30 Sr, 22 32 cr 0 300 60 We’ve seen this picture before… 270 90 Such polar plots of far-field power vs. angle 240 120 210 150 are known as ‘radiation patterns’. 180 Note that this picture is only a 2D slice of a 3D pattern. E-plane pattern: the 2D slice displaying the plane which contains the electric field vectors. H-plane pattern: the 2D slice displaying the plane which contains the magnetic field vectors. Radiation patterns – Hertzian dipole z y E-plane radiation pattern y x 3D cutaway view H-plane radiation pattern Beyond the Hertzian dipole: longer antennas All of the results we’ve derived so far apply only in the situation where the antenna is short, i.e., d << . That assumption allowed us to say that the current in the antenna was independent of position along the antenna, depending only on time: I(t) = I0 cos(t) no z dependence! For longer antennas, this is no longer true. -
H0 STET LER LQPCKET File Copy ORIGINAL
BAKER & H 0 S T E T LER LQPCKET FilE copy ORIGINAL COUNSELLORS AT LAW WASHINGTON SQUARE, SUITE 1100 • 1050 CONNECTICUT AVENUE, N.W. • WASHINGTON, D.C. 20036-5304 • (202) 861-1500 FAX (202) 861-1783 WRITER'S DIRECT DIAL NUMBER (202) 861-1624 December 17, 1997 VIA HAND DELIVERY Ms. Magalie Roman Salas Secretary Federal Communications Commission 1919 M Street, N.W. Room 222 Washington, D.C. 20554 Re: Advanced Television Systems and Their Impact upon the Existing Television Broadcast Service MM Docket No. 87-268 Comments Dear Ms .. Salas: We are transmitting herewith the original and five copies of the comments of Scripps Howard Broadcasting Company in the above captioned proceeding. The comments are filed pursuant to the Commission's Public Notice of December 2, 1997. Please contact the undersigned if you have any questions. Donald Enclosures (JJ-~ No. of Copies rec'd_. _ List ABCDE ORLANDO, FLORIDA CLEVELAND. OHIO COLUMBUS, OHIO DENVER. COLORADO HOUSTON. TEXAS LONG BEACH, CALIFORNIA Los ANGELES. CALIFORNIA (216) 621-0200 (614) 228-1541 (303) 861-0600 (713) 751-1600 (562) 432-2827 (213) 624-2400 (407) 649-4000 Before the DOCKET ALE CQPY ORlGlNAL FEDERAL COMMUNICATIONS COMMISSION Washington, D.C. 20554 In the matter of ) ) FCC SEEKS COMMENTS ON FILINGS ) ADDRESSING DIGITAL ) TV ALLOTMENTS, PUBLIC NOTICE ) dated December 2, 1997 ) TO: The Commission COMMENTS SUBMITTED BY SCRIPPS HOWARD BROADCASTING COMPANY These comments by Scripps Howard Broadcasting Company (SHBC) are in response to the PUBLIC NOTICE from the Federal Communications Commission (FCC) dated December 2, 1997 and signed by Richard M. Smith, Chief, Office ofEngineering and Technology. -
Design and Application of a New Planar Balun
DESIGN AND APPLICATION OF A NEW PLANAR BALUN Younes Mohamed Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS May 2014 APPROVED: Shengli Fu, Major Professor and Interim Chair of the Department of Electrical Engineering Hualiang Zhang, Co-Major Professor Hyoung Soo Kim, Committee Member Costas Tsatsoulis, Dean of the College of Engineering Mark Wardell, Dean of the Toulouse Graduate School Mohamed, Younes. Design and Application of a New Planar Balun. Master of Science (Electrical Engineering), May 2014, 41 pp., 2 tables, 29 figures, references, 21 titles. The baluns are the key components in balanced circuits such balanced mixers, frequency multipliers, push–pull amplifiers, and antennas. Most of these applications have become more integrated which demands the baluns to be in compact size and low cost. In this thesis, a new approach about the design of planar balun is presented where the 4-port symmetrical network with one port terminated by open circuit is first analyzed by using even- and odd-mode excitations. With full design equations, the proposed balun presents perfect balanced output and good input matching and the measurement results make a good agreement with the simulations. Second, Yagi-Uda antenna is also introduced as an entry to fully understand the quasi-Yagi antenna. Both of the antennas have the same design requirements and present the radiation properties. The arrangement of the antenna’s elements and the end-fire radiation property of the antenna have been presented. Finally, the quasi-Yagi antenna is used as an application of the balun where the proposed balun is employed to feed a quasi-Yagi antenna. -
Experimental Results of Network-Assisted Interference Suppression Scheme Using Adaptive Beam-Tilt Switching
Hindawi International Journal of Antennas and Propagation Volume 2017, Article ID 2164038, 10 pages https://doi.org/10.1155/2017/2164038 Research Article Experimental Results of Network-Assisted Interference Suppression Scheme Using Adaptive Beam-Tilt Switching Tomoki Murakami,1 Riichi Kudo,1 Koichi Ishihara,1 Masato Mizoguchi,1 and Naoki Honma2 1 NTT Access Network Service Systems Laboratories, Nippon Telegraph and Telephone Corporation, Yokosuka, Japan 2Faculty of Engineering, Iwate University, Morioka, Japan Correspondence should be addressed to Tomoki Murakami; [email protected] Received 4 October 2016; Accepted 18 April 2017; Published 14 May 2017 Academic Editor: Ahmed Toaha Mobashsher Copyright © 2017 Tomoki Murakami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper introduces a network-assisted interference suppression scheme using beam-tilt switching per frame for wireless local area network systems and its effectiveness in an actual indoor environment. In the proposed scheme, two access points simultaneously transmit to their own desired station by adjusting angle of beam-tilt including transmit power assisted from network server for the improvement of system throughput. In the conventional researches, it is widely known that beam-tilt is effective for ICI suppression in the outdoor scenario. However, the indoor effectiveness of beam-tilt for ICI suppression has not yet been indicated from the experimental evaluation. Thus, this paper indicates the effectiveness of the proposed scheme by analyzing multiple-input multiple- output channel matrices from experimental measurements in an office environment. -
Uhf Slot Antenna
UHF SLOT ANTENNA PROSTAR SERIES Proven performance, quality and reliability Rugged construction Directional patterns standard & custom High power rating to achieve 5 megawatts Custom electrical & mechanical beam tilt Horizontal, circular & elliptical polarization ELECTRICAL SPECIFICATIONS Polarization Horizontal, Elliptical, Circular Power Rating 1 kW to 90 kW Beam Tilt As specified by customer Null Fill As specified by customer Input Impedance 50 or 75 ohm VSWR 1.1:1 or better across band 6340 Sky Creek Dr, Sacramento, CA 95828 | T: 916.383.1177 | F: 916.383.1182 JAMPRO.com UHF SLOT ANTENNA SELECTING YOUR SLOT ANTENNA Compatible with DTV, NTSC and PAL Broadcasts JA-LS: 1 kW JAMPRO’s LOW POWER slot antenna is designed with the needs of low power UHF broadcasters in mind. Aluminum construction ensures excellent weather resistance while residing windload and weight on the tower. The unique design of the low power UHF slot antenna can be configured to provide varying levels of vertically polarized signal. The versatility of the slots allows them to be top, leg or face mounted. JA-MS: 1 to 30 kW JAMPRO’s JA/MS is the harsh environment version of the JA/LS antenna. The JA/MS is also enclosed by white UV resistant radomes for added protection from the environment. The JA/MS is an excellent choice for low power UHF broadcasters located in areas with heavy air pollution or high salt content in the air. JSL-SERIES: 5 to 40 kW JAMPRO’s Premium LOW POWER slot antenna, using marine brass, copper and virgin Teflon in construc- tion, is the finest antenna of its type. -
R&D Report 1965-08
-- --------~ ---~------------'"-~~~~-----~ -----..:.-....-~---------"'--'---~--:~~---~-- RESEARCH DEPARTMENT SPECIFICATION OF THE IMPEDANCE OF TRANSMITTING AERIALS FOR MONOCHROME AND COLOUR TELEVISION SIGNALS Technological Report No. E-ll5 (1965/8) D.J. Why the , B.Sc.(Eng.), A.M.LE.E. for Head of Research Department --~-~ ------~:..~-~-~- ---- --------------- -- --------~-------- This Report Is the property ot the British Broadcasting Corporation and may not be reproduced in any form .ithout the written permission o~ the Corporation. - --". - - ~ ---------~------------- ~---~--.----------~~ -.:-'-. Technological Report No. E-115 SPECIFICATION OF mE IMPEDANCE OF TRANSMITTING AERIALS FOR MONOCHROME AND COLOUR TELEVISION SIGNALS Section Title Page SUMMARY ... 1 1. INTRODUCTION 1 2. 405-LINE MONOaIROME SYSTEM 2 2.1. Short-delay Reflexions. 2 2.2. Long-delay Reflexions . 2 3. 625-LINE MONOaIROME SYSTEM 3 3.1. Application of 405-line Results 3 3.2. Short-delay Reflexions 3 3.3. Long-delay Reflexions 4 4. 625-LINE COLOUR SYSTEM 4 4.1. General . 4 4.2. Short-delay Reflexions 5 4.3. Long-delay Reflexions 5 4.3.1. General 5 4.3.2. Subj ecti ve Tests 5 4.3.3. Results of Subjective Tests. 8 4.3.4. Resulting Specification 10 5. REFLEXIONS DUE TO FEEDER IRREGULARITIES 11 6. APPLICATION TO PRACTICAL INSTALLATIONS 12 6.1. The Aerial Impedance Specification . 12 6.1.1. The Effect of Loss in the Feeder and Combining Filters. 12 6.1.2. The Effect of Loss in Re-reflexion at the Transmitter. 12 C~~~~_~~_~ ________: ______ ~ ________ ~~~ ___ ~~ _______ ~ __ ~~ _______ ~ __ ~ _______ ~~ __ _ Section Title Page 6.2. Specification of Reflexions due to Feeder Irregulari ties,. 14 6.2.1. -
Regulation on Collective Frequencies for Licence-Exempt Radio Transmitters and on Their Use
FICORA 15 AIH/2015 M 1 (22) Unofficial translation Regulation on collective frequencies for licence-exempt radio transmitters and on their use Issued in Helsinki on 6 February 2015 The Finnish Communications Regulatory Authority (FICORA) has, under section 39(3 and 4) of the Information Society Code of 7 November 2014 (917/2014), laid down: Chapter 1 General provisions Section 1 The oObjective of the Regulation This Regulation lays down provisions on collective frequencies for as well as use and registration of such radio transmitters whose conformity with requirements has been attested in such a way as laid down in the Information Society Code, and for the possession and use of which a radio licence is not required. Section 2 Scope of application This Regulation applies to the following radio transmitters which operate only on the collective frequencies assigned in this Regulation and whose conformity with requirements has been attested in such a way as mentioned in section 257 or section 352 of the Information Society Code: 1) cordless CT1 telephones taken into use on 31 December 2003 at the latest, cordless CT2 telephones taken into use on 31 December 2004 at the latest, and DECT equipment; 2) mobile terminals and other terminals for GSM, UMTS, digital broadband mobile networks and terrestrial systems capable of providing electronic communications services; 3) LA telephones (national Citizen Band equipment) which have been approved according to the regulations of 25 March 1981 by the General Directorate of Posts and Telecommunications -
Antennas for 136Khz Index
ON7YD, longwave, 136kHz, antennas Page 1 of 51 ON7YD Antennas for 136kHz About this page : The main object of this page is to provide information. It has been deliberately kept simple, no fancy and flashy tricks, in order to achieve maximum compatibility for the different browsers and to allow fast downloading. Any comments and/or suggestions are welcome at : [email protected] last updated on 8 July 2004 Index 1. Introduction 2. Short vertical antennas 1. Vertical monopole antenna 2. Short vertical monopole 3. Vertical antenna with capacitive toploading 4. Umbrella antenna 5. Capacitive toploading of single-tower antennas 6. Spiral toploaded antenna 7. Vertical antenna with inductive toploading 8. Vertical antenna with capacitive and inductive toploading 9. Vertical antenna with tuned counterpoise 10. Meander antenna 11. Antenna with multiple vertical elements 12. Using a non isolated antenna-tower as LF-antenna 13. Antennas with a long horizontal section 14. Helical antenna 15. Short vertical dipole 16. Why a horizontal dipole is a rather unefficient antenna on LF 17. Safety precautions 18. Bringing a short vertical monopole to resonance 1. Loading coil 2. Coil losses : the Q-factor 3. Variometer 4. Tapped coil 5. Impedance matching 6. Bandwidth considerations 3. Efficiency of antenna systems on LF (short vertical antennas) 1. Antenna system 2. Efficiency 3. Antenna system efficiency, antenna directivity, ERP, EIRP and EMRP 4. Optimizing the antenna system efficiency 5. Enviromental losses 6. Ground loss 1. Type (composition) of the soil 2. Frequency 3. Shape and dimensions of the antenna 4. Radial system and ground rods 4. Measuring ERP on LF http://www.qsl.net/on7yd/136ant.htm 12/19/2006 ON7YD, longwave, 136kHz, antennas Page 2 of 51 1. -
The Transatlantic on 2200 Meters
The Transatlantic on 2200 Meters Joe Craig, VO1NA and Alan Melia, G3NYK here has been much excite- ment below our so-called top Longing for the days when amateurs built band at 1.8 MHz. At less than T one-tenth this frequency, near their own gear and DX was big news? 136 kHz, you will find many amateurs en- joying QSOs using a variety of modes. Al- They’re back again...on the “top” top band. though US and Canadian amateurs need special permission to transmit here, there is a 2200 meter amateur band in many pared with the thickness (about 30 km) of in north Nova Scotia. Other, regularly heard European countries and in New Zealand. the daytime absorbing D-layer. Unlike HF calls in the early days of tests was the well Aside from its low frequency, the most strik- frequencies, LF has a substantial ground- known MF station of Jack, VE1ZZ and the ing thing about the 135.8-138.8 kHz band is wave service area, with the wave front being late Larry Kayser, VA3LK. its narrow width—only 2.1 kHz, barely wide bent to follow the curvature of the Earth to Daytime propagation is mainly ground enough to admit a single SSB transmission. some extent. In daytime, there is an absorb- wave, but at extreme range (in excess of Huge sources of interference are present ing ionized region, formed by photo-disso- 1500 km) there is a significant daytime in the band. In Greece, the Navy transmitter ciation, which corresponds to the D-layer ionospheric component. -
ANTENNA INTRODUCTION / BASICS Rules of Thumb
ANTENNA INTRODUCTION / BASICS Rules of Thumb: 1. The Gain of an antenna with losses is given by: Where BW are the elev & az another is: 2 and N 4B0A 0 ' Efficiency beamwidths in degrees. G • Where For approximating an antenna pattern with: 2 A ' Physical aperture area ' X 0 8 G (1) A rectangle; X'41253,0 '0.7 ' BW BW typical 8 wavelength N 2 ' ' (2) An ellipsoid; X 52525,0typical 0.55 2. Gain of rectangular X-Band Aperture G = 1.4 LW Where: Length (L) and Width (W) are in cm 3. Gain of Circular X-Band Aperture 3 dB Beamwidth G = d20 Where: d = antenna diameter in cm 0 = aperture efficiency .5 power 4. Gain of an isotropic antenna radiating in a uniform spherical pattern is one (0 dB). .707 voltage 5. Antenna with a 20 degree beamwidth has a 20 dB gain. 6. 3 dB beamwidth is approximately equal to the angle from the peak of the power to Peak power Antenna the first null (see figure at right). to first null Radiation Pattern 708 7. Parabolic Antenna Beamwidth: BW ' d Where: BW = antenna beamwidth; 8 = wavelength; d = antenna diameter. The antenna equations which follow relate to Figure 1 as a typical antenna. In Figure 1, BWN is the azimuth beamwidth and BW2 is the elevation beamwidth. Beamwidth is normally measured at the half-power or -3 dB point of the main lobe unless otherwise specified. See Glossary. The gain or directivity of an antenna is the ratio of the radiation BWN BW2 intensity in a given direction to the radiation intensity averaged over Azimuth and Elevation Beamwidths all directions. -
Radiation Pattern, Gain, and Directivity James Mclean, Robert Sutton, Rob Hoffman, TDK RF Solutions
Interpreting Antenna Performance Parameters for EMC Applications: Part 2: Radiation Pattern, Gain, and Directivity James McLean, Robert Sutton, Rob Hoffman, TDK RF Solutions This article is the second in a three-part tutorial series covering antenna terminology. As noted in the first part, a great deal of effort has been made over the years to standardize antenna terminology. The de facto standard is the IEEE Standard Definitions of Terms for Antennas, published in 1983. However, the EMC community has developed its own distinct vernacular which contains terms not included in the IEEE standard. In the first part of this series, we discussed radiation efficiency and input impedance match. In the second part of this series, we will discuss antenna field regions and antenna gain and how they relate to EMC measurements. Geometrical Considerations In order to quantitatively discuss radiation from antennas, it is necessary to first specify a coordinate system for describing the antenna and the associated electromagnetic fields. The most natural coordinate system for this task is the spherical coordinate system. This is because at a sufficient distance from an antenna (or any localized source of electromagnetic radiation), the electromagnetic fields must decay inversely with radial distance from the antenna (see references 1 and 2). Traditional spherical coordinates consist of a radial distance, an elevation angle, and an azimuthal angle as shown in Figure 1. The elevation angle is taken as the angle between a line drawn from the origin to the point and the z axis. The azimuthal angle is taken as the angle between the projection of this line in the x-y plane and the x axis.