FM Transmission Systems

Total Page:16

File Type:pdf, Size:1020Kb

FM Transmission Systems FM Transmission Systems Rockwell Media Services, LLC 158 West 1600 South, Suite 200, St. George, Utah 84770 Reprinted by permission from W.C. Alexander, Crawford Broadcasting, Director Engineering, [email protected] FM Transmission Systems W.C. Alexander Director of Engineering Crawford Broadcasting Company IntroductionAbstract Unfortunately, the real world is very different from this ideal. The real world is The variables in any given FM full of obstructions, manmade and natural, transmission system are many. They include that partially or fully obstruct the path from factors such as antenna height versus ERP, the transmitting to receiving antenna. Real- antenna gain versus transmitter power, world transmitting antennas exhibit some vertical plane radiation patterns, Brewster non-uniformity in the horizontal plane, and angle, Fresnel zone, polarization, site in the vertical plane, half of the energy is location and topography among others. In radiated above the horizon into space, where this paper, we will examine each of these it is wasted. Reflections from objects also variables, the tradeoffs between cost and produce amplitude variations in the received performance, antenna and transmission line signal that cause noise and signal dropouts. types, installation and maintenance The number of variables that go into techniques and procedures. the performance of a particular antenna site is quite large, and many of these factors are 1.0 Antenna Site Considerations beyond the broadcaster=s control. Many can While few of us have much control be mitigated, however, with good site over the location of our antenna sites, selection, and it is on those that we must perhaps there is room for change in some focus when searching for an antenna site. situations. For the rest, the information The goal of the broadcaster is to which we present herein will help us produce a signal of sufficient amplitude to evaluate the performance of our radio overcome noise and provide at least 20 dB stations as a function of site location and of signal-to-noise ratio at as many of the antenna height. receiver locations within the desired service Location, location, location. Those area as possible. How much signal is are the three most important factors in real sufficient to meet this goal is largely estate, and they are equally important for dependent upon the receiver and its antenna. radio transmission systems. This applies In the absence of interference, a signal level equally to AM, FM, TV, MMDS, cellular, of as low as 2 uV/m may be sufficient for PCS, two-way, paging and other RF-based many of today=s automobile receivers. services. Portables may require as much as 500 uV/m. Ideally, the antenna for an FM Interference from co- and adjacent-channel broadcast station would be situated at a stations usually increases the amount of location that would present a clear line-of- signal required for acceptable reception. sight to the entirety of the desired service area. The antenna would have uniform 1.1 Fresnel Zone horizontal- and vertical-plane radiation There is no substitute for a clear line patterns, and there would be no reflections of sight between the transmit and receive from natural or manmade objects. antennas. This is one of the first rules in 2 ROCKWELL MEDIA SERVICES, LLC • FM TRANSMISSION SYSTEMS FM Transmission Systems Alexander/2 VHF transmission. A transmitter site with a This brings us to the conclusion that clear line of sight to virtually all the target height is a very significant factor in most service area is thus superior in most cases to antenna site situations. As a rule, greater one that is blocked by terrain or manmade height is more useful than higher power in obstructions to parts of the area. In some producing higher receive signal strength, all cases, simply having line of sight is not other factors being equal. enough. In engineering our microwave and UHF STL paths, we always consider Fresnel 1.2 Multipath Considerations zone clearance, knowing that a path with Multipath is a nasty word in the less than 60% first Fresnel zone clearance vocabulary of most radio engineers and will be marginal. We often neglect this station managers. It is a good descriptor of consideration in engineering our FM the destructive effect of the same radio transmitting antenna locations. signal arriving at a receive point by multiple For those not familiar with Fresnel paths. When these signals arrive in phase, all zone clearances, they are circular areas is well and the incident field strength is surrounding the direct line-of-sight path that greater than it would be in the case of a vary with frequency and path length. The single signal path. When they arrive out of longer the path and lower the frequency, the phase, however, at least some degree of larger the mid-path clearance required for cancellation will take place, resulting in a clear-path reception. As mentioned above, reduced incident field strength, with 60% first Fresnel zone clearance is all that is complete cancellation (zero incident signal) required to meet the clear-path reception taking place in the worst case situations. objective, but that can be quite large at FM To make matters worse, sometimes, frequencies. The first Fresnel zone radius complete cancellation can take place on can be computed using the formula R = frequencies close to carrier while less than 1140 ••d/f, where R is the radius in feet, d is complete cancellation takes place on the path length in miles and f is the sideband frequencies. This in many case frequency in MHz. results in a demodulated sound much more A quick example of 60% first offensive to the listener than the quiet hiss Fresnel zone radius for a few typical of no signal. Motion in an automobile broadcast situations are 267 feet for a class produces a constantly varying multipath A, 378 feet for a class B and 463 feet for a situation, often causing picket-fencing (the class C1. Keep in mind that we=re talking effect of the slats in a picket fence about terrain clearance at the mid-point alternately permitting and then blocking the between the transmitting and receiving signal), which is quite objectionable to the antennas required to produce clear-path listener. reception. These translate to antenna heights The worst-case multipath scenario is above ground of 534 feet, 756 feet and 925 where the transmitting site is located on one feet respectively. With the exception of the side of the service area and a range of class C, the antenna heights are well above mountains or high hills is located on the the maximum height above average terrain other. Receivers within the service area get (HAAT) values for the classes. the direct line-of-sight signal from the 3 ROCKWELL MEDIA SERVICES, LLC • FM TRANSMISSION SYSTEMS FM Transmission Systems Alexander/3 transmitting antenna, but they also get a indicating that a more distant site may be reflected signal from the mountains or hills. preferable. In such a case, there will be few locations within the service area where multipath 1.4 Vertical Radiation Pattern effects will not be a factor. We mentioned early on the vertical- Perhaps the best location for a plane radiation characteristics of real-world transmitting antenna in such a geographic transmitting antennas. Some of these scenario, assuming that a mountaintop characteristics come into play when location is out of the question, is on a hill selecting a transmitting antenna site. near the mountain range. A directional If a transmitting antenna is located at antenna would then be used to reduce a considerable height above the target radiation toward the mountains and service area, the main elevation plane lobe maximize it toward the service area. This may overshoot the target service area, with will result in greatly reduced reflections. the energy being radiated out into space. While it would be impossible to completely The more bays an antenna has, the narrower eliminate reflections, they could be reduced the main elevation plane will be. Antennas so that the ratio of direct-to-reflected signal with a small number of bays (less than four) at most locations throughout the service area exhibit a broad elevation plane lobe, making is sufficiently high to nullify the effects of such overshoot of the target service area less multipath. likely. In those situations where a large 1.3 Grazing Angle number of bays is used and the antenna is Ground reflections play a part in the high above the target service area, it may be overall propagation of FM signals, desirable to employ beam tilt to lower the particularly the vertically-polarized beam angle slightly. Typically, just enough component. Almost all FM signal coverage beam tilt is used to center the main elevation lies between the horizon and 10 degrees plane lobe on the distant edge of the target below the horizon. This is called the grazing service area or on the horizon, whichever is angle, and it lies between the horizontal closer. We will discuss beam tilt in more plane from the transmitting antenna and the detail in a later installment, but mention it earth=s surface. Vertically-polarized energy here because it does impact site selection. is attenuated considerably more than Antennas with a large number of horizontally-polarized energy at angles bays exhibit elevation plane nulls. The more greater than about 2 degrees. As a result, bays an antenna has, the farther away from circularly-polarized signals tend to be the antenna site that these elevation plane reflected more as elliptical rather than nulls hit the ground. If the area within a few circular. It is important in site selection to miles of the antenna site is populated and it avoid grazing angles which are greater than is desirable to provide service to this area, it about 2 degrees (the Brewster angle).
Recommended publications
  • Radio Communications in the Digital Age
    Radio Communications In the Digital Age Volume 1 HF TECHNOLOGY Edition 2 First Edition: September 1996 Second Edition: October 2005 © Harris Corporation 2005 All rights reserved Library of Congress Catalog Card Number: 96-94476 Harris Corporation, RF Communications Division Radio Communications in the Digital Age Volume One: HF Technology, Edition 2 Printed in USA © 10/05 R.O. 10K B1006A All Harris RF Communications products and systems included herein are registered trademarks of the Harris Corporation. TABLE OF CONTENTS INTRODUCTION...............................................................................1 CHAPTER 1 PRINCIPLES OF RADIO COMMUNICATIONS .....................................6 CHAPTER 2 THE IONOSPHERE AND HF RADIO PROPAGATION..........................16 CHAPTER 3 ELEMENTS IN AN HF RADIO ..........................................................24 CHAPTER 4 NOISE AND INTERFERENCE............................................................36 CHAPTER 5 HF MODEMS .................................................................................40 CHAPTER 6 AUTOMATIC LINK ESTABLISHMENT (ALE) TECHNOLOGY...............48 CHAPTER 7 DIGITAL VOICE ..............................................................................55 CHAPTER 8 DATA SYSTEMS .............................................................................59 CHAPTER 9 SECURING COMMUNICATIONS.....................................................71 CHAPTER 10 FUTURE DIRECTIONS .....................................................................77 APPENDIX A STANDARDS
    [Show full text]
  • Federal Communications Commission § 74.631
    Pt. 74 47 CFR Ch. I (10–1–20 Edition) RULES APPLY TO ALL SERVICES, AM, FM, AND RULES APPLY TO ALL SERVICES, AM, FM, AND TV, UNLESS INDICATED AS PERTAINING TO A TV, UNLESS INDICATED AS PERTAINING TO A SPECIFIC SERVICE—Continued SPECIFIC SERVICE—Continued [Policies of FCC are indicated (*)] [Policies of FCC are indicated (*)] Tender offers and proxy statements .... 73.4266(*) U.S./Mexican Agreement ..................... 73.3570 Territorial exclusivily in non-network 73.658 USA-Mexico FM Broadcast Agree- 73.504 program arrangements; Affiliation ment, Channel assignments under agreements and network program (NCE-FM). practices (TV). Unlimited time ...................................... 73.1710 Territorial exclusivity, (Network)— Unreserved channels, Noncommercial 73.513 AM .......................................... 73.132 educational broadcast stations oper- FM .......................................... 73.232 ating on (NCE-FM). TV .......................................... 73.658 Use of channels, Restrictions on (FM) 73.220 Test authorization, Special field ........... 73.1515 Use of common antenna site— Test stations, Portable ......................... 73.1530 FM .......................................... 73.239 Testing antenna during daytime (AM) 73.157 TV .......................................... 73.635 Tests and maintenance, Operation for 73.1520 Use of multiplex subcarriers— Tests of equipment .............................. 73.1610 FM .......................................... 73.293 Tests, Program ....................................
    [Show full text]
  • Uhf Slot Antenna
    UHF SLOT ANTENNA PROSTAR SERIES Proven performance, quality and reliability Rugged construction Directional patterns standard & custom High power rating to achieve 5 megawatts Custom electrical & mechanical beam tilt Horizontal, circular & elliptical polarization ELECTRICAL SPECIFICATIONS Polarization Horizontal, Elliptical, Circular Power Rating 1 kW to 90 kW Beam Tilt As specified by customer Null Fill As specified by customer Input Impedance 50 or 75 ohm VSWR 1.1:1 or better across band 6340 Sky Creek Dr, Sacramento, CA 95828 | T: 916.383.1177 | F: 916.383.1182 JAMPRO.com UHF SLOT ANTENNA SELECTING YOUR SLOT ANTENNA Compatible with DTV, NTSC and PAL Broadcasts JA-LS: 1 kW JAMPRO’s LOW POWER slot antenna is designed with the needs of low power UHF broadcasters in mind. Aluminum construction ensures excellent weather resistance while residing windload and weight on the tower. The unique design of the low power UHF slot antenna can be configured to provide varying levels of vertically polarized signal. The versatility of the slots allows them to be top, leg or face mounted. JA-MS: 1 to 30 kW JAMPRO’s JA/MS is the harsh environment version of the JA/LS antenna. The JA/MS is also enclosed by white UV resistant radomes for added protection from the environment. The JA/MS is an excellent choice for low power UHF broadcasters located in areas with heavy air pollution or high salt content in the air. JSL-SERIES: 5 to 40 kW JAMPRO’s Premium LOW POWER slot antenna, using marine brass, copper and virgin Teflon in construc- tion, is the finest antenna of its type.
    [Show full text]
  • Radio Antennas and Broadcast Components
    Radio Antennas and Broadcast Components Engineering Excellence since 1942 Radio Antennas and Broadcast Components Table of Contents HD RadioTM* Antennas HDR Series Interleaved Antenna .......................................4 Multi-station HDFMVee .............................................................5 HDFDM ...............................................................8 HDCBR ...............................................................11 FMVee ...............................................................13 CBR .................................................................16 Products contained in this catalog may Multi-station Antennas be covered by one or more of the following patents: DCR-Q ...................................................................18 6,917,264; 6,887,093; 6,882,224; 6,870,443; DCR-S / HDR-S ..........................................................20 6,867,743; 6,816,040; 6,703,984; 6,703,911; DCR-MFE Funky Elbow ...................................................23 6,677,916; 6,650,300; 6,650,209; 6,617,940; 6,538,529; 6,373,444; 6,320,555; 5,999,145; DCR-M / HDR-M .........................................................25 5,861,858; 5,455,548; 5,418,545; 5,401,173; DCR-MT ..................................................................28 5,167,510; 4,988,961; 4,951,013; 4,899,165; 4,723,307; 4,654,962; 4,602,227; 7,084,822; DCR-C / HDR-C .........................................................29 7,081,860; 7,061,441; 7,034,545; 7,012,574; DCR-H / HDR-H .........................................................32
    [Show full text]
  • The Impact of a Traffic Alert and Collision Avoidance System on The
    DOT/FM/PM-84/30 The Impact of a Traffic Alert and Program Engineering Collision Avoidance System on the and Maintenance Service Air Traffic Control Radar Beacon Washington, D.C. 20591 System and Mode S System in the Los Angeles Basin ] G. Patrick J. Ludlam C. Gilchrist liT Research Institute Under Contract to Department of Defense Electromagnetic Compatibility Analysis Center Annapolis, MD 21402 May 1985 This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. Technical Report Documentat1on Page 1 Report No. 2. Government Accat~ion No. 3. Aacipoant's Catalog No. DOT/FAA/PM-84/30 •· Title and Subtitle 5. Report Data THE IMPACT OF A TRAFFIC ALERT AND COLLISION AVOIDANCE MAY 1985 SYSTEM ON THE AIR TRAFFIC CONTROL RADAR BEACON SYSTEM 6. Performing Organizatoon Coda A!ID THE MODE S SYSTEM IN THE LOS ANGELES BASIN P0328 7 Authorl•l 8. Performing Organization Report No. ECAC-PR-84-003 9 P<!rformonq Organizat•on Nama and Addra11 10. Work Unit No. !TRAISI DoD Electromagnetic Compatibility Analysis Center North Severn 11. Conttac;t or Grant No. Annapolis, MD 21402 F-19628-80-C-0042 CDRL #lOP 12. Sponsorong Agency Name and Address 13. Type of Report and Period Covered US Department of Transportation Federal Aviation Administration FINAL-1/15/81 to 7/15/84 Program Engineering & Maintenance Service 14.
    [Show full text]
  • Download ATSC 3.0 Implementation Guide
    ATSC 3.0 Transition and Implementation Guide INTRODUCTION This document was developed to provide broadcasters with ATSC 3.0 information that can inform investment and technical decisions required to move from ATSC 1.0 to ATSC 3.0. It also guides broadcasters who are planning for its adoption while also planning for channel changes during the FCC Spectrum Repack Program. This document, finalized September 9, 2016, will be updated periodically as insight and additional information is made available from industry testing and implementation of the new standard. This document was developed by the companies and organizations listed in the Appendix. Updates to the Guide are open to input from all companies and individuals that wish to contribute. Those interested in suggesting changes or updates to this document can do so at [email protected]. 2 ATSC 3.0 Transition and Implementation Guide EXECUTIVE SUMMARY Television service continues to evolve as content distributors – from traditional cable operators to internet-delivered services – utilize the latest technologies to reach viewers and offer a wide variety of program choices. New receiving devices are easily connected to the internet, which relies on the language of Internet Protocol (IP) to transport content. Now terrestrial broadcasters are preparing both for the adoption of an IP-ready next-generation digital TV (DTV) standard and a realignment of the U.S. TV spectrum. Viewers are already buying high-quality displays that respond to 4K Ultra HDTV signals and High Dynamic Range (HDR) capabilities. Immersive and personalized audio is also emerging, with the ability to enhance the quality and variety of audio.
    [Show full text]
  • Am Revitalization
    AM REVITALIZATION Sponsored by February 2016 From the Publishers of Radio World NEW! NXSeries The Industry’s Most Advanced 5 and 10 kW AM Transmitters Outstanding Control 86% Efficiency Compact Proven NX Series Technology with over 20 Megawatts Deployed Learn more at Nautel.com AM Radio’s Unique AM Opportunity REVITALIZATION Stations licensed to the U.S. AM radio band are in a time Sponsored by February 2016 From the Publishers of dramatic change and challenge. In October the Federal of Radio World Communications Commission took action with a report and order that implements a number of important rule changes. It also laid out additional moves it intends to 4 take. AM’s Problems Won’t Paul McLane This eBook will help you untangle the details and implications of the big order and understand what else Be Solved Overnight Editor in Chief might be coming. Commissioner Pai writes, “It is important that the discussion about Radio World invited Commissioner Ajit Pai to share with you his thoughts the future of the AM band continue” about the revitalization effort to date. I can think of no commissioner since Jim Quello who has taken such an active interest in radio — and AM specifically — as he has. The translator aspects of the FCC order have been well reported, but how 6 does the situation look now that the first of the four-part window process Of Windows, has begun? Communications attorney and translator guru John Garziglia Waivers and Auctions helps us understand. John Garziglia on what’s next for The October order enacted more than just translator windows, though, FM translators in AM revitalization so we turned to AM expert Ron Rackley to dig into the less publicized aspects and analyze them.
    [Show full text]
  • 18-295 EIBASS Comments FINAL
    Before the FEDERAL COMMUNICATIONS COMMISSION Washington, D.C. 20554 In the Matter of ) ) ) ET Docket No. 18-295 Unlicensed Use of the 6 GHz Band ) ) Expanding Flexible Use in Mid-Band ) GN Docket 17-283 Spectrum Between 3.7 and 24 GHz ) To: The Commission Comments of EIBASS Engineers for the Integrity of Broadcast Auxiliary Services Spectrum (EIBASS) hereby respectfully submits its comments in the above-captioned Notice of Proposed Rulemaking (NPRM) relating to unlicensed use of the "6 GHz" band, or 5.925 GHz to 7.125 GHz. This includes the 6.425-6.525 GHz and 6.875-7.125 GHz Part 74, Subpart F, TV Broadcast Auxiliary Service (BAS) bands. The NPRM was published in the Federal Register on December 17, 2018, giving a February 15, 2019, comment deadline, so these comments are timely filed. I. Comments Pertain To Just the 6.5 GHz and 7 GHz TV BAS Bands 1. EIBASS is only commenting on Part B of the NPRM, applying to "lower power" indoor unlicensed devices operating at 6.425–6.525 GHz (the Unlicensed National Information Infrastructure Band 6 (U-NII-6)) and at 6.875–7.125 GHz, U-NII Band 8 (U-NII-8). These are also know as the 6.5 GHz and 7 GHz TV BAS bands. II. The Number of Mobile TV Pickup Licenses Is Not a Valid Metric for the Number of Mobile TV Pickup Transmitters Actually In Use 2. At Paragraph 74, the NPRM notes that mobile TV Pickup licenses in the U-NII-6 6.5 GHz TV BAS band are 43% of the licenses, and in the U-NII-8 7 GHz TV BAS band are only 2% of the licenses, implying that protecting TV Pickup mobile operations at 7 GHz would not be difficult.
    [Show full text]
  • Range Calculation for 300Mhz to 1000Mhz Communication Systems
    APPLICATION NOTE Range Calculation for 300MHz to 1000MHz Communication Systems RANGE CALCULATION Description For restricted-power UHF* communication systems, as defined in FCC Rules and Regula- tions Title 47 Part 15 Subpart C “intentional radiators*”, communication range capability is a topic which generates much interest. Although determined by several factors, communica- tion range is quantified by a surprisingly simple equation developed in 1946 by H.T. Friis of Denmark. This paper begins by introducing the Friis Transmission Equation and examining the terms comprising it. Then, real-world-environment factors which influence RF commu- nication range and how they affect a “Link Budget*” are investigated. Following that, some methods for optimizing RF-link range are given. Range-calculation spreadsheets, including the special case of RKE, are presented. Finally, information concerning FCC rules govern- ing “intentional radiators”, FCC-established radiation limits, and similar reference material is provided. Section 7. “Appendix” on page 13 includes definitions (words are marked with an asterisk *) and formulas. Note: “For additional information, two excel spreadsheets, RKE Range Calculation (MF).xls and Generic Range Calculation.xls, have been attached to this PDF. To open the attachments, in the Attachments panel, select the attachment, and then click Open or choose Open Attachment from the Options menu. For addi- tional information on attachments, please refer to Adobe Acrobat Help menu“ 9144C-RKE-07/15 1. The Friis Transmission Equation For anyone using a radio to communicate across some distance, whatever the type of communication, range capability is inevitably a primary concern. Whether it is a cell-phone user concerned about dropped calls, kids playing with their walkie- talkies, a HAM radio operator with VHF/UHF equipment providing emergency communications during a natural disaster, or a driver opening a garage door from their car in the pouring rain, an expectation for reliable communication always exists.
    [Show full text]
  • ATSC 3.0 – Boosting the Signal Strength - MISO
    ATSC 3.0 – Boosting the Signal Strength - MISO John L. Schadler VP Engineering – Dielectric LLC Raymond, ME. Abstract - The new ATSC 3.0 broadcast standard will achieving the requirements of next generation wireless provide new transmission capabilities. Broadcasters will systems in a cost effective way was to increase the have options and flexibility to best serve populations with transmitter complexity and not that of the receiver [3]. In defined, high data rate services. In order to increase the an ATSC 3.0 network, both the main antenna and the probability that indoor, pedestrian, and mobile users will accompanying SFN sites will serve hundreds of thousands receive reliable service, the ATSC 3.0 network will need to of receivers. It is therefore more economical to add saturate the intended coverage area with a signal level equipment at the transmit site rather than the remote units, above the required target level. In previous work, boosting allowing the user devices to have only one antenna, the signal strength with the addition of high null fill in the keeping them small and affordable to promote public main antenna as well as adding a single frequency network acceptance. MISO diversity techniques such as TDCFS (SFN), have been investigated. Various hypothetical and Alamouti coding can be deployed in either a co-located situation were used to analysis the impact of performance or distributed configuration. of these methods on different services. In this paper, the use of diversity at the transit locations will be considered. Specifically, different modes of polarization diversity will be compared. BOOSTING THE SIGNAL STRENTH As discussed in recent papers [1], [2], there are four basic methods of boosting the signal strength in selected areas within the defined FCC 41 dBu contour.
    [Show full text]
  • Pregão Presencial Nº 16/2014 Razão Social
    CÂMARA MUNICIPAL DE CAMPINAS Estado de São Paulo www.campinas.sp.gov.br EDITAL PREGÃO PRESENCIAL N° 16/2014 PROCESSO Nº 22.414/2014 OBJETO: Contratação de empresa para fornecimento e instalação de equipamentos de transmissão de TV para a Câmara Municipal de Campinas. TIPO DE LICITAÇÃO: Menor Preço por lote. ENTREGA DOS ENVELOPES E SESSÃO PÚBLICA: 21/08/2014 às 14:00 horas. FUNDAMENTO LEGAL: Lei Federal nº 10.520/02, Lei Federal nº 8.666/93. A Câmara Municipal de Campinas, através do Pregoeiro, nomeado através do Ato da Presidência nº 52/2014, faz público, para conhecimento dos interessados, que realizará a licitação em epígrafe e receberá os envelopes “A” - PROPOSTA e “B” - HABILITAÇÃO, na Sala de Reunião de Licitações, Setor de Compras, na Av. da Saudade, 1004 – Bairro Ponte Preta – Campinas-SP. O edital está afixado no Quadro de Avisos da Câmara de Campinas e disponível para consulta, e consequente retirada, junto ao setor de compras, no endereço acima mencionado, no balcão de atendimento, das 12h00min às 17h30min, a partir do dia 11/08/2014. A critério desta Câmara, o edital poderá também ser disponibilizado, sem ônus, no portal eletrônico www.campinas.sp.leg.br. ou solicitado via e-mail para [email protected]. A sessão do pregão deverá ser suspensa para análise das propostas com as especificações apresentadas, e poderá ser reiniciada no mesmo dia ou ser reaberta em data posterior, dependendo desta análise. E a retomada da sessão, será feita com a apresentação dos laudos para os equipamentos ofertados, com a consequente classificação e desclassificação das propostas apresentadas.
    [Show full text]
  • Antennas - Catalogue 19
    ANTENNAS - CATALOGUE 19 KATHREIN Broadcast GmbH Ing.-Anton-Kathrein-Str. 1–7 83101 Rohrdorf, Germany www.kathrein-bca.com [email protected] TOTAL QUALITY MANAGEMENT INDEX FM Antennas 3 VHF Antennas 39 UHF Antennas 63 Technical Notes 81 1 FM ANTENNAS INDEX FM-03 H 5 FM-03 V 9 FM-04 13 FM-05 H 15 FM-07 19 FM-34 21 FMC-01 22 FMC-01/R 24 FMC-03 26 FMC-05 30 FMC-06 34 FMC-06/R 36 FM ANTENNAS 3 FM-03 (Horizontal polarization) FM PANEL ANTENNA FEATURES • horizontal polarization • broadband 87.5 ÷ 108 MHz • 7.5 dB gain • directional pattern • suitable as a component in various arrays on square towers • stainless steel dipoles • suitable also for vertical polarization RADIATION PATTERNS (Mid Band) ELECTRICAL DATA ANTENNA TYPE FM-03 FREQUENCY RANGE 87.5 ÷ 108 MHz IMPEDANCE 50 ohm CONNECTOR 7/8” EIA MAX POWER 5 kW VSWR ≤ 1.15 POLARIZATION Horizontal GAIN (referred to half wave dipole) 7.5 dB E-Plane ± 34° HALF POWER BEAMWIDTH H-Plane ± 30° LIGHTNING PROTECTION All Metal Parts DC Grounded MECHANICAL DATA 2200 x 2000 x 991 DIMENSIONS mm (in) (86.61 x 78.74 x 39.02) WEIGHT kg (lb) 61 (134.5) 1.40 (15.1) front WIND SURFACE m2 ( ft2) 1.01 (10.9) side WIND LOAD kN (lbf) 1.76 (396) front at 160 km/h (100 mph) 1.25 (281) side MAX WIND VELOCITY km/h (mph) 270 (167.8) Reflector (hot dip galvanized steel) Dipoles (stainless steel) MATERIALS Internal parts (silver plated brass, polished brass, deoxidized aluminium) Radome (fiberglass) ICING PROTECTION Feed point radome RADOME COLOUR Grey (standard) MOUNTING Directly on supporting mast Specifications are subject to change without prior notice FM ANTENNAS 5 FM-03 (Horizontal polarization) FM PANEL ANTENNA FEATURES • radiating systems with FM-03 panel • high power systems • omnidirectional or directional patterns • equal or unequal split ratio power distribution network FM-03/32 (8x4) GUANGZHOU, P.R.C.
    [Show full text]