Radiometry and the Friis Transmission Equation Joseph A

Total Page:16

File Type:pdf, Size:1020Kb

Radiometry and the Friis Transmission Equation Joseph A Radiometry and the Friis transmission equation Joseph A. Shaw Citation: Am. J. Phys. 81, 33 (2013); doi: 10.1119/1.4755780 View online: http://dx.doi.org/10.1119/1.4755780 View Table of Contents: http://ajp.aapt.org/resource/1/AJPIAS/v81/i1 Published by the American Association of Physics Teachers Related Articles The reciprocal relation of mutual inductance in a coupled circuit system Am. J. Phys. 80, 840 (2012) Teaching solar cell I-V characteristics using SPICE Am. J. Phys. 79, 1232 (2011) A digital oscilloscope setup for the measurement of a transistor’s characteristic curves Am. J. Phys. 78, 1425 (2010) A low cost, modular, and physiologically inspired electronic neuron Am. J. Phys. 78, 1297 (2010) Spreadsheet lock-in amplifier Am. J. Phys. 78, 1227 (2010) Additional information on Am. J. Phys. Journal Homepage: http://ajp.aapt.org/ Journal Information: http://ajp.aapt.org/about/about_the_journal Top downloads: http://ajp.aapt.org/most_downloaded Information for Authors: http://ajp.dickinson.edu/Contributors/contGenInfo.html Downloaded 07 Jan 2013 to 153.90.120.11. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission Radiometry and the Friis transmission equation Joseph A. Shaw Department of Electrical & Computer Engineering, Montana State University, Bozeman, Montana 59717 (Received 1 July 2011; accepted 13 September 2012) To more effectively tailor courses involving antennas, wireless communications, optics, and applied electromagnetics to a mixed audience of engineering and physics students, the Friis transmission equation—which quantifies the power received in a free-space communication link—is developed from principles of optical radiometry and scalar diffraction. This approach places more emphasis on the physics and conceptual understanding of the Friis equation than is provided by the traditional derivation based on antenna impedance. Specifically, it shows that the wavelength-squared dependence can be attributed to diffraction at the antenna aperture and illustrates the important difference between the throughput (product of area and solid angle) of a single antenna or telescope and the throughput of a transmitter-receiver pair. VC 2013 American Association of Physics Teachers. [http://dx.doi.org/10.1119/1.4755780] I. INTRODUCTION P A A r ¼ r t : (2) 2 2 It is becoming increasingly common for physics and elec- Pt k R trical engineering students to take courses together in optics, Following his derivation of the transmission equation photonics, and topics in applied electromagnetics such as 1 wireless communications, antennas, or remote sensing. For from geometry and antenna impedance, Friis proposed that effective learning with students from different disciplines, it henceforth antennas should be described in terms of their is helpful to identify examples where principles from one effective area rather than antenna gain or radiation resist- subject area can be applied to another. Exactly such an op- ance, and that antenna radiation should be expressed as portunity arises when students encounter principles of radio- power flow per unit area rather than field strength in Volts metry in optics courses or the free-space Friis transmission per meter. In doing so, he effectively proposed moving from equation in antennas or wireless communications courses. a traditional circuit viewpoint, which deals with current and The Friis transmission equation relates the received power voltage, to a radiometric one, which deals with power, power to the transmitted power, antenna-separation distance, and density, etc. However, in textbooks and classroom presenta- antenna gains in a free-space communication link.1 How- tions, the Friis equation is normally derived or explained in ever, students first encountering the usual textbook deriva- terms of antenna impedance, leading to Eq. (1). Unfortu- tion, based on equivalent dipole antenna impedance, tend to nately, without a deeper understanding of how the antenna gain little physical insight into the Friis equation. Even for gain depends on wavelength, Eq. (1) can be mistakenly inter- students familiar with impedance concepts, the physical ba- preted to mean that the received power increases with wave- sis of the Friis equation becomes more apparent with a deri- length, whereas in fact the opposite occurs. Additional vation based on radiometry2–4 and scalar diffraction confusion often arises because the antenna impedance deri- 5–8 vation is based on the effective area of an infinitesimal theory. Radiometry is the field of science devoted to 10,11 quantifying the amount of power carried by a beam of elec- dipole, but applied broadly to antennas of any shape. tromagnetic radiation using geometric optics, areas, and Several authors have discussed alternate derivations of solid angles. Scalar diffraction theory allows us to use simple the Friis equation. Friis himself presented an argument that Fourier transform relationships to account for the beam- resembles a simpler form of the antenna derivation that is common in modern antenna textbooks, but he left the result spreading effects induced by the finite size of antenna or op- 14 tical apertures.5–8 (Vector diffraction theory does the same in terms of antenna areas as seen in Eq. (2). Hogg derived thing more accurately by using Maxwell’s equations without the Friis transmission equation using three different 9 approaches—Fresnel zones, Gaussian beams, and modes— the simplifying scalar-field assumptions. ) 15 Textbooks on antennas and communications10–13 often all of which lead to Eq. (2).Bush outlined a derivation write the Friis equation as based on Fraunhofer diffraction integrals but did not com- bine diffraction with radiometry. Shortly thereafter, Heald16 2 2 pointed out that the most significant benefit of Bush’s paper Pr k k was that it removed the oft-confusing antenna impedance ¼ eret DrDt ¼ GorGot; (1) Pt 4pR 4pR from the derivation. The development presented here builds on this back- where P is power in Watts, e is the antenna efficiency, k is ground to provide an even simpler path to the Friis equation the electromagnetic wavelength, R is the far-field line- based on optical radiometry and a simple result of scalar dif- of-sight distance between the antennas, D is the antenna di- fraction theory. Many undergraduate and graduate students rectivity relative to isotropic, G is the antenna gain (G ¼ eD), have been exposed to enough basic optical principles that and the subscripts r and t denote the receiver and transmitter, this development is intuitively appealing, particularly in a respectively. Friis actually developed the transmission equa- mixed class of physics and engineering students. This paper tion in terms of effective areas Ar and At, of receiving and presents a combined discussion of the Friis transmission transmitting antennas, respectively, resulting in equation and optical radiometry, relying on the geometric 33 Am. J. Phys. 81 (1), January 2013 http://aapt.org/ajp VC 2013 American Association of Physics Teachers 33 Downloaded 07 Jan 2013 to 153.90.120.11. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission optics propagation of radiance (power per unit area per unit solid angle) through free space. Beam spreading is intro- duced via scalar diffraction at the antenna aperture. This approach still relies on aperture areas, but in a much more direct manner and without any reference to antenna imped- ance. In this development, it becomes clear that the source of the wavelength-squared dependence is diffraction at the antenna aperture. This discussion also conveniently merges several topics from antenna theory and radiometry. There- fore, for students familiar with radiometry this approach builds on familiar principles to enhance understanding of the Friis equation, and for students not familiar with radiometry this approach teaches radiometry in the practical context of a free-space communication link. Fig. 1. Geometry for radiometric calculations, showing that a solid angle II. BASIC CONCEPTS OF OPTICAL RADIOMETRY always opens away from the area (A) in which incident power is calculated. The radiometric development of the Friis transmission equation relies on the concepts of radiance and throughput, 2,3 radians is defined as the ratio of (circular) arc length to ra- both central to radiometry. As indicated in Table I, radi- dius (s/r), whereas a solid angle in steradians is defined as ance is the power incident on (emitted from) a surface the ratio of (spherical) surface area to the square of the radius per unit area, from (into) a given solid angle, with units of 2 2 (A /r ). In a more complicated situation, we can find a solid W/(m sr). Suggestive of its physical meaning, radiance of- sph angle x by integrating in spherical coordinates over the ten is called brightness in the microwave radiometry and ra- 17,18 appropriate range of polar and azimuthal angles dio astronomy communities. The concepts of radiance and related radiometric quantities can be introduced and used in courses ranging from antennas to photonics and opti- x ¼ ͜ sin h dh d/: (3) cal design because they provide a consistent framework for calculating power transmitted from or received by an optical Although many antenna and physics textbooks use a capi- detector or antenna. While the five quantities in Table I are tal omega (X) for all solid angles, in radiometry a careful dis- sufficient for power flow calculations, radiance is the most tinction is made between solid angle x and projected solid fundamental because it is invariant in a lossless system. Sim- angle X. For a projected solid angle, we replace the spherical ilarly, conservation of energy requires that the product of surface area with a flat cross-sectional area, such as the pro- area and solid angle is invariant, a quantity referred to by op- jected aperture area of a lens, mirror, or antenna. The integral tical scientists and engineers as throughput (sometimes definition of the projected solid angle X is the same as called etendue ).
Recommended publications
  • Antenna Tuning for WCDMA RF Front End
    Antenna tuning for WCDMA RF front end Reema Sidhwani School of Electrical Engineering Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 20.11.2012 Thesis supervisor: Prof. Olav Tirkkonen Thesis instructor: MSc. Janne Peltonen Aalto University School of Electrical A’’ Engineering aalto university abstract of the school of electrical engineering master's thesis Author: Reema Sidhwani Title: Antenna tuning for WCDMA RF front end Date: 20.11.2012 Language: English Number of pages:6+64 Department of Radio Communications Professorship: Communication Theory Code: S-72 Supervisor: Prof. Olav Tirkkonen Instructor: MSc. Janne Peltonen Modern mobile handsets or so called Smart-phones are not just capable of commu- nicating over a wide range of radio frequencies and of supporting various wireless technologies. They also include a range of peripheral devices like camera, key- board, larger display, flashlight etc. The provision to support such a large feature set in a limited size, constraints the designers of RF front ends to make compro- mises in the design and placement of the antenna which deteriorates its perfor- mance. The surroundings of the antenna especially when it comes in contact with human body, adds to the degradation in its performance. The main reason for the degraded performance is the mismatch of impedance between the antenna and the radio transceiver which causes part of the transmitted power to be reflected back. The loss of power reduces the power amplifier efficiency and leads to shorter battery life. Moreover the reflected power increases the noise floor of the receiver and reduces its sensitivity.
    [Show full text]
  • Multi Application Antenna for Wi-Fi, Wi-Max and Bluetooth for Better Radiation Efficiency
    International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-4, July 2015 ISSN: 2395-3470 ` www.ijseas.com Multi Application Antenna for Wi-Fi, Wi-max and Bluetooth for better radiation efficiency Hina D.Pal, J.Jenifer, Kavitha Balamurugan, M.E,Suntheravel, PG student, PG student, Associate Prof. Assistant Prof. KCG College of technology, KCG College of technology, KCG College of technology, KCG College of technology, Karapakkam, Karapakkam, Karapakkam, Karapakkam, Chennai-600097 Chennai-600097 Chennai-600097 Chennai-600097 ABSTRACT: Microstrip antenna is a printed type antenna This paper presents the radiation performance of rectangular consisting of a dielectric substrate sandwiched in patch antenna having a two slots. The design is used for between a ground plane and a patch. In this project three different frequencies 2.4, 5 and 7GHz . As a substrate Micro strip patch antenna technology is used for material Cu_clad is used. The simulated results for this different application for different frequencies antenna are obtained by varying the length and width of different materials are used for better efficiency. three dipoles.The results indicate that rectangular patch antenna with two slots offers a good antenna efficiency 41.576 at 2.45 GHz,51.958 at 5 GHz,46.810 at 7 GHz with the input feed 50 Ohm. Desired patch antenna design was simulated by ADS simulator program. ADS supports every step of the design process—schematic capture, layout, frequency-domain and time-domain circuit simulation, and electromagnetic field simulation, allowing the engineer to fully characterize and optimize an RF design without changing tools.
    [Show full text]
  • Chapter 22 Fundamentalfundamental Propertiesproperties Ofof Antennasantennas
    ChapterChapter 22 FundamentalFundamental PropertiesProperties ofof AntennasAntennas ECE 5318/6352 Antenna Engineering Dr. Stuart Long 1 .. IEEEIEEE StandardsStandards . Definition of Terms for Antennas . IEEE Standard 145-1983 . IEEE Transactions on Antennas and Propagation Vol. AP-31, No. 6, Part II, Nov. 1983 2 ..RadiationRadiation PatternPattern (or(or AntennaAntenna Pattern)Pattern) “The spatial distribution of a quantity which characterizes the electromagnetic field generated by an antenna.” 3 ..DistributionDistribution cancan bebe aa . Mathematical function . Graphical representation . Collection of experimental data points 4 ..QuantityQuantity plottedplotted cancan bebe aa . Power flux density W [W/m²] . Radiation intensity U [W/sr] . Field strength E [V/m] . Directivity D 5 . GraphGraph cancan bebe . Polar or rectangular 6 . GraphGraph cancan bebe . Amplitude field |E| or power |E|² patterns (in linear scale) (in dB) 7 ..GraphGraph cancan bebe . 2-dimensional or 3-D most usually several 2-D “cuts” in principle planes 8 .. RadiationRadiation patternpattern cancan bebe . Isotropic Equal radiation in all directions (not physically realizable, but valuable for comparison purposes) . Directional Radiates (or receives) more effectively in some directions than in others . Omni-directional nondirectional in azimuth, directional in elevation 9 ..PrinciplePrinciple patternspatterns . E-plane . H-plane Plane defined by H-field and Plane defined by E-field and direction of maximum direction of maximum radiation radiation (usually coincide with principle planes of the coordinate system) 10 Coordinate System Fig. 2.1 Coordinate system for antenna analysis. 11 ..RadiationRadiation patternpattern lobeslobes . Major lobe (main beam) in direction of maximum radiation (may be more than one) . Minor lobe - any lobe but a major one . Side lobe - lobe adjacent to major one .
    [Show full text]
  • A Technical Assessment of Aperture-Coupled Antenna Technology
    Running head: APERTURE-COUPLED ANTENNA TECHNOLOGY 1 A Technical Assessment of Aperture-coupled Antenna Technology Justin Obenchain A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2014 APERTURE-COUPLED ANTENNA TECHNOLOGY 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ Carl Pettiford, Ph.D. Thesis Chair ______________________________ Kyung K. Bae, Ph.D. Committee Member ______________________________ James Cook, Ph.D. Committee Member ______________________________ Brenda Ayres, Ph.D. Honors Director ______________________________ Date APERTURE-COUPLED ANTENNA TECHNOLOGY 3 Abstract Aperture coupling refers to a method of construction for patch antennas, which are specific types of microstrip antennas. These antennas are used in a variety of applications including cellular telephones, military radios, and other communications devices. The purpose of this thesis is to assess the benefits and drawbacks of aperture- coupled antenna technology. To develop a successful analysis of the patch antenna construction technique known as aperture coupling, this assessment begins by examining basic antenna theory and patch antenna design. After uncovering some of the fundamental principles that govern aperture-coupled antenna technology, a hypothesis is created and assessed based on the positive and negative aspects
    [Show full text]
  • 25. Antennas II
    25. Antennas II Radiation patterns Beyond the Hertzian dipole - superposition Directivity and antenna gain More complicated antennas Impedance matching Reminder: Hertzian dipole The Hertzian dipole is a linear d << antenna which is much shorter than the free-space wavelength: V(t) Far field: jk0 r j t 00Id e ˆ Er,, t j sin 4 r Radiation resistance: 2 d 2 RZ rad 3 0 2 where Z 000 377 is the impedance of free space. R Radiation efficiency: rad (typically is small because d << ) RRrad Ohmic Radiation patterns Antennas do not radiate power equally in all directions. For a linear dipole, no power is radiated along the antenna’s axis ( = 0). 222 2 I 00Idsin 0 ˆ 330 30 Sr, 22 32 cr 0 300 60 We’ve seen this picture before… 270 90 Such polar plots of far-field power vs. angle 240 120 210 150 are known as ‘radiation patterns’. 180 Note that this picture is only a 2D slice of a 3D pattern. E-plane pattern: the 2D slice displaying the plane which contains the electric field vectors. H-plane pattern: the 2D slice displaying the plane which contains the magnetic field vectors. Radiation patterns – Hertzian dipole z y E-plane radiation pattern y x 3D cutaway view H-plane radiation pattern Beyond the Hertzian dipole: longer antennas All of the results we’ve derived so far apply only in the situation where the antenna is short, i.e., d << . That assumption allowed us to say that the current in the antenna was independent of position along the antenna, depending only on time: I(t) = I0 cos(t) no z dependence! For longer antennas, this is no longer true.
    [Show full text]
  • Development of Earth Station Receiving Antenna and Digital Filter Design Analysis for C-Band VSAT
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 6, JUNE 2014 ISSN 2277-8616 Development of Earth Station Receiving Antenna and Digital Filter Design Analysis for C-Band VSAT Su Mon Aye, Zaw Min Naing, Chaw Myat New, Hla Myo Tun Abstract: This paper describes the performance improvement of C-band VSAT receiving antenna. In this work, the gain and efficiency of C-band VSAT have been evaluated and then the reflector design is developed with the help of ICARA and MATLAB environment. The proposed design meets the good result of antenna gain and efficiency. The typical gain of prime focus parabolic reflector antenna is 30 dB to 40dB. And the efficiency is 60% to 80% with the good antenna design. By comparing with the typical values, the proposed C-band VSAT antenna design is well optimized with gain of 38dB and efficiency of 78%. In this paper, the better design with compromise gain performance of VSAT receiving parabolic antenna using ICARA software tool and the calculation of C-band downlink path loss is also described. The particular prime focus parabolic reflector antenna is applied for this application and gain of antenna, radiation pattern with far field, near field and the optimized antenna efficiency is also developed. The objective of this paper is to design the downlink receiving antenna of VSAT satellite ground segment with excellent gain and overall antenna efficiency. The filter design analysis is base on Kaiser window method and the simulation results are also presented in this paper. Index Terms: prime focus parabolic reflector antenna, satellite, efficiency, gain, path loss, VSAT.
    [Show full text]
  • Design and Implementation of T-Shaped Planar Antenna for MIMO Applications
    Computers, Materials & Continua Tech Science Press DOI:10.32604/cmc.2021.018793 Article Design and Implementation of T-Shaped Planar Antenna for MIMO Applications T. Prabhu1,* and S. Chenthur Pandian2 1Department of ECE, SNS College of Technology, Coimbatore, 641035, Tamil Nadu, India 2Department of EEE, SNS College of Technology, Coimbatore, 641035, Tamil Nadu, India *Corresponding Author: T. Prabhu. Email: [email protected] Received: 21 March 2021; Accepted: 26 April 2021 Abstract: This paper proposes, demonstrates, and describes a basic T-shaped Multi-Input and Multi-Output (MIMO) antenna with a resonant frequency of 3.1 to 10.6 GHz. Compared with the U-shaped antenna, the mutual coupling is minimized by using a T-shaped patch antenna. The T-shaped patch antenna shapes filter properties are tested to achieve separation over the 3.1 to 10.6 GHz frequency range. The parametric analysis, including width, duration, and spacing, is designed in the MIMO applications for good isolation. On the FR4 substratum, the configuration of MIMO is simulated. The appropriate dielec- tric material εr = 4.4 is introduced using this contribution and application array feature of the MIMO systems. In this paper, FR4 is used due to its high dielectric strength and low cost. For 3.1 to 10.6 GHz and 3SRR, T-shaped patch antennas are used in the field to increase bandwidth. The suggested T- shaped MIMO antenna is calculated according to the HFSS 13.0 program simulation performances. The antenna suggested is, therefore, a successful WLAN candidate. Keywords: Multi-input and multi-output; FR4 substratum; t-shaped patch antennas; ISM band; HFSS 13.0; WLAN 1 Introduction Multiple Input and Multiple Output (MIMO) devices can send and receive simultaneous signaling at the same power level and maximize high data rate demands in modern communication systems.
    [Show full text]
  • Path Loss and Shadowing 2017
    Path-loss and Shadowing (Large-scale Fading) PROF. MICHAEL TSAI 2017/10/23 Friis Formula TX Antenna RX Antenna �"�"�- × � ⇒ � = � - 0 4��+ EIRP=�"�" % Power spatial density &' 1 × 4��+ 2 � � � � = � � - Antenna Aperture � 4��+ • Antenna Aperture=Effective Area �� • Isotropic Antenna’s effective area � ≐ �,��� �� • Isotropic Antenna’s Gain=1 �� • � = � �� � � � � �� � � � • Friis Formula becomes: � = � � � = � � � � ��� � ���� 3 � � � �� Friis Formula � = � � � � ��� � �� • is often referred as “Free-Space Path Loss” (FSPL) ��� � • Only valid when d is in the “far-field” of the transmitting antenna • Far-field: when � > ��, Fraunhofer distance ��� • � = , and it must satisfies � ≫ � and � ≫ � � � � � • D: Largest physical linear dimension of the antenna • �: Wavelength • We often choose a �� in the far-field region, and smaller than any practical distance used in the system � � • Then we have � � = � � � � � � � 4 Received Signal after Free-Space Path Loss phase difference due to propagation distance ���� � ������� − � � � = �� �N � ��� ���� � ��� � Free-Space Path Loss Carrier (sinusoid) Complex envelope 5 Example: Far-field Distance • Find the far-field distance of an antenna with maximum dimension of 1m and operating freQuency of 900 MHz (GSM 900) • Ans: • Largest dimension of antenna: D=1m • Operating FreQuency: f=900 MHz � �×��� • Wavelength: � = = = �. �� � ���×��� ��� � • � = = = �. �� (m) � � �.�� 6 Example: FSPL • If a transmitter produces 50 watts of power, express the transmit power in units of (a) dBm and (b) dBW. • If 50 watts
    [Show full text]
  • Design and Application of a New Planar Balun
    DESIGN AND APPLICATION OF A NEW PLANAR BALUN Younes Mohamed Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS May 2014 APPROVED: Shengli Fu, Major Professor and Interim Chair of the Department of Electrical Engineering Hualiang Zhang, Co-Major Professor Hyoung Soo Kim, Committee Member Costas Tsatsoulis, Dean of the College of Engineering Mark Wardell, Dean of the Toulouse Graduate School Mohamed, Younes. Design and Application of a New Planar Balun. Master of Science (Electrical Engineering), May 2014, 41 pp., 2 tables, 29 figures, references, 21 titles. The baluns are the key components in balanced circuits such balanced mixers, frequency multipliers, push–pull amplifiers, and antennas. Most of these applications have become more integrated which demands the baluns to be in compact size and low cost. In this thesis, a new approach about the design of planar balun is presented where the 4-port symmetrical network with one port terminated by open circuit is first analyzed by using even- and odd-mode excitations. With full design equations, the proposed balun presents perfect balanced output and good input matching and the measurement results make a good agreement with the simulations. Second, Yagi-Uda antenna is also introduced as an entry to fully understand the quasi-Yagi antenna. Both of the antennas have the same design requirements and present the radiation properties. The arrangement of the antenna’s elements and the end-fire radiation property of the antenna have been presented. Finally, the quasi-Yagi antenna is used as an application of the balun where the proposed balun is employed to feed a quasi-Yagi antenna.
    [Show full text]
  • Understanding and Optimizing 802.11N
    Understanding and Optimizing 802.11n Buffalo Technology July 2011 Brian Verenkoff Director of Marketing and Business Development Introduction: Wireless networks have always been difficult to implement and understand for both home users and network administrators. Wireless networking marries two equally complicated yet relatively unrelated technologies: networking technologies with radio frequency (RF) technology. Each technology has exclusive industry professionals, but rarely is expertise in both technologies available. This document is designed to assist computer network users in deploying successful wireless network while sharing the education and reasoning behind the technology. Related Parties: Wi-Fi® is a registered trademark made of the Wi-Fi Alliance created to give an easier to understand name for wireless networking/wireless local area network (WLAN) based on the IEEE 802.11 standard. To assist with the understanding of technologies, the following are brief descriptions of relevant companies, committees and alliances that are involved in specifying technology and policies relating to wireless networking products. • IEEE (Institute of Electrical and Electronics Engineers) – IEEE is a professional association that creates electronics and electrical related technologies with aim to develop industry standards for use by manufacturers across the board. IEEE 802.11 is the standards group created and maintained by the IEEE as it relates to wireless networking. The letter after 802.11 (e.g. 802.11g) shows an amended standard governed under IEEE 802.11. • Wi-Fi Alliance / Wi-Fi CERTIFIED – The Wi-Fi Alliance is a trade association that functions mainly to promote wireless networking and to ensure compatibility via a certification program amongst various wireless networking devices.
    [Show full text]
  • Exp-1: Understand the Pathloss Prediction Formula
    Exp-1: Understand the pathloss prediction formula. Aim To understand the pathloss prediction formula Objectives 1. Calculation of received signal strength as a function of distance of separation between transmitter and receiver. 2. To understand the impact of the following parameters on received signal strength. (a) Transmitter Power (b) Path loss exponent, (c) Carrier frequency, (d) Receiver antenna height, (e) Transmitter antenna height. 1 Theory for Experiment 1:-Understand the pathloss prediction formula. The design of a communication system involves selection of values for several parameters. One of the important parameter is the transmit power. Higher transmit power ensures large allowable separation distance between the transmitter (Tx) and receiver(Rx). Of course the loss in signal power per unit distance depends on the properties of the medium. In case of wireless communication on one hand it is desired to have a very large coverage (large allowable separation between Txand Rx) on the other hand it is also desired that co-channel interference be as low as possible.An understanding of the large scale propagation effects is very important for design of suitable communication system. In terrestrial mobile communication system, electro-magnetic wave propagation is affected by reflection, diffraction and scattering. These lead to dynamic variation of signal strength as a function of time, frequency, distance of separation, antenna height, antenna configuration, local scattering environment etc. Propagation models are necessary in order to predict the received signal strength for a given set of parameters as mentioned above. These models can be broadly considered under:- • Large scale Fading Model. • Small Scale Fading Model.
    [Show full text]
  • Low-Profile Wideband Antennas Based on Tightly Coupled Dipole
    Low-Profile Wideband Antennas Based on Tightly Coupled Dipole and Patch Elements Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Erdinc Irci, B.S., M.S. Graduate Program in Electrical and Computer Engineering The Ohio State University 2011 Dissertation Committee: John L. Volakis, Advisor Kubilay Sertel, Co-advisor Robert J. Burkholder Fernando L. Teixeira c Copyright by Erdinc Irci 2011 Abstract There is strong interest to combine many antenna functionalities within a single, wideband aperture. However, size restrictions and conformal installation requirements are major obstacles to this goal (in terms of gain and bandwidth). Of particular importance is bandwidth; which, as is well known, decreases when the antenna is placed closer to the ground plane. Hence, recent efforts on EBG and AMC ground planes were aimed at mitigating this deterioration for low-profile antennas. In this dissertation, we propose a new class of tightly coupled arrays (TCAs) which exhibit substantially broader bandwidth than a single patch antenna of the same size. The enhancement is due to the cancellation of the ground plane inductance by the capacitance of the TCA aperture. This concept of reactive impedance cancellation was motivated by the ultrawideband (UWB) current sheet array (CSA) introduced by Munk in 2003. We demonstrate that as broad as 7:1 UWB operation can be achieved for an aperture as thin as λ/17 at the lowest frequency. This is a 40% larger wideband performance and 35% thinner profile as compared to the CSA. Much of the dissertation’s focus is on adapting the conformal TCA concept to small and very low-profile finite arrays.
    [Show full text]