Compact Multilayer Yagi-Uda Based Antenna for Iot/5G Sensors

Total Page:16

File Type:pdf, Size:1020Kb

Compact Multilayer Yagi-Uda Based Antenna for Iot/5G Sensors sensors Article Compact Multilayer Yagi-Uda Based Antenna for IoT/5G Sensors Amélia Ramos 1,2,*, Tiago Varum 2 ID and João N. Matos 1,2 ID 1 Universidade de Aveiro, Campus Universitário de Santiago, 3810-135 Aveiro, Portugal; [email protected] 2 Instituto de Telecomunicações, Campus Universitário de Santiago, 3810-135 Aveiro, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-234-377-900 Received: 27 July 2018; Accepted: 30 August 2018; Published: 2 September 2018 Abstract: To increase the capacity and performance of communication systems, the new generation of mobile communications (5G) will use frequency bands in the mmWave region, where new challenges arise. These challenges can be partially overcome by using higher gain antennas, Multiple-Input Multiple-Output (MIMO), or beamforming techniques. Yagi-Uda antennas combine high gain with low cost and reduced size, and might result in compact and efficient antennas to be used in Internet of Thins (IoT) sensors. The design of a compact multilayer Yagi for IoT sensors is presented, operating at 24 GHz, and a comparative analysis with a planar printed version is shown. The stacked prototype reveals an improvement of the antenna’s main properties, achieving 10.9 dBi, 2 dBi more than the planar structure. In addition, the multilayer antenna shows larger bandwidth than the planar; 6.9 GHz compared with 4.42 GHz. The analysis conducted acknowledges the huge potential of these stacked structures for IoT applications, as an alternative to planar implementations. Keywords: Yagi-Uda; multilayered antenna; millimeter-waves; IoT 1. Introduction People’s interconnection was improved by 4G, making the communication more efficient, fluent, and natural. Nowadays, 5G intends to continue that demand and take it to a higher level. In this framework, 5G aims to guarantee people’s interaction, devices interconnection, as well as the connection among people and devices. A network composed of users, daily gadgets, traffic information, personal health conditions, or the status of all the home electronic devices is only a small example of a possible scheme, shown in Figure1, within many 5G scenarios that are not yet discovered. For now, it is known that 5G services will be divided in three categories; namely, enhanced mobile broadband, mission-critical control, and massive Internet of Things (IoT) [1]. Probably the most effective method to fulfil some demands for 5G cellular services, which are expected to be commercially available in 2020, is to increase the bandwidth [2]; hence, the migration to higher frequencies (in the mmWaves) is mandatory, mainly to support the required gigabit data rate service [3]. On the other hand, as a disadvantage, the frequency ranges of mmWaves present higher path-loss resulting in fragile link, due to weak diffractions at these frequency bands. To overcome these issues, high gain antennas and highly directive antenna arrays using several elements, as well as the application of beamforming techniques, can be used, in order to transmit the wave in the right direction. Yagi-Uda antennas present several characteristics that make them suitable for application in sensors or in larger antenna arrays. Sensors 2018, 18, 2914; doi:10.3390/s18092914 www.mdpi.com/journal/sensors Sensors 2018, 18, 2914 2 of 13 Sensors 2018, 18, x 2 of 14 FigureF 1.igureExample 1. Example of 5G of communications5G communications andand a a massive massive Internet Internet of Things of Things (IoT) (IoT)scenario scenario.. Structurally Yagi-Uda antennas are well known. They are composed of a driven dipole, a Structurallyreflector element, Yagi-Uda and a antennas variable number are well of known.directors. They This scheme are composed guarantees of the a driven creation dipole, of an end a- reflector element,fire and beam a variable[Error! Reference number source of directors. not found. This], appropriate scheme guaranteesfor beamforming the creationapplications of. anThis end-fire beam [4antenna], appropriate’s layout forhas beamformingbeen widely analyzed applications., and historically This antenna’s used, mainly layout because has been these widelystructures analyzed, and historicallypresent a used,reasonable mainly bandwidth because and these relatively structures high presentgains at amoderated reasonable costs bandwidth [Error! Refere andnce relatively source not found.]. With the emergence of printed circuits, several Yagi-like antennas have been high gains at moderated costs [5]. With the emergence of printed circuits, several Yagi-like antennas proposed for different frequencies of operation and a wide number of applications [Error! Reference have beensource proposed not found. for,Error! different Reference frequencies source not of found. operation]. and a wide number of applications [6,7]. In InternetIn Internet of Things of Things (IoT) (IoT) scenarios, scenarios, antennas antennas are are to to be be implemented implemented in every in every small smallgadget gadgetor or wearablewearable gadget, gadget mainly, mainly to assure to assure the the interaction interaction between sensors sensors placed placed in the in most the mostvarious various devices devices and people.and people. Because Because of theirof their widespread widespread us use,e, it is it highly is highly recommended recommended that antennas that antennasare small and are small and compact.compact. Over the years, some effort has been made to find antenna miniaturization techniques that allow Over the years, some effort has been made to find antenna miniaturization techniques that allow reducing antenna size, maintaining or improving its main characteristics. Some of these methods are reducingdescribed antenna in size, the literature maintaining [Error! or Reference improving source its main not characteristics.found.], presented Some in different of these classes, methods are describedincluding in the techniques literature such [8], as presented fractals, metamaterials, in different high classes, dielectric including constant techniques substrates, slow such wave asfractals, metamaterials,structures high, or engineered dielectric ground constant planes. substrates, A miniaturization slow wave technique structures, described or engineered in the literature ground that planes. A miniaturizationis widely used technique because it described also allows in obtaining the literature broadband that characteristics is widely used is the because use of reactive it also allows obtainingimpedance broadband substrates characteristics (RIS) [Error! is Reference the use of source reactive not impedancefound.]. In the substrates works of [ (RIS)Error! [Reference9]. In the works source not found.,Error! Reference source not found.], two patches are presented, designed on an of [10,11RIS,], two which patches convert are them presented, into Ultra designed-wideband on(UWB an) RIS,antennas. which In convertanother work them [Error! into Ultra-widebandReference (UWB) antennas.source not fou In anothernd.], the bandwidth work [10], increases the bandwidth over thanincreases 100 times, overcompared than with 100 times,the conventional compared with the conventionalpatch antenna, patch while antenna, in the work while of [ inError! the Reference work of [ source11], the not bandwidth found.], the is bandwidth increased is byincreased a factor of 16. These solutionsby a factorbased of 16. These on RIS solutions are, however, based on RIS complex are, however, to design complex in millimeter to design in waves,millimeter and waves, are used in antennaand structures are used in with antenna ground structures planes. with ground planes. In addition, for IoT and 5G applications, gain is a concern and even though Yagi antennas In addition, for IoT and 5G applications, gain is a concern and even though Yagi antennas naturally naturally present higher gains than microstrip patch antennas [Error! Reference source not found.], presentthi highers work gains intends than to microstripanalyze the patchadvantages antennas of implementing [4], this work a Yagi intends-Uda antenna to analyze in a themultilayer advantages of implementingconfiguration a Yagi-Uda to further antenna enhance in its a most multilayer important configuration properties, such to furtheras the gain enhance and the itsbandwidth most important. properties, suchMultilayer as the structures gain and have the been bandwidth. tested as an attempt to increase the antenna’s gain. In the works Multilayerof [Error! structuresReference source have beennot found. tested,Error! as an Reference attempt source to increase not found. the antenna’s], two microstrip gain. Inpatch the works of [12,13antennas], two microstripare presented patch in a multilayer antennas configuration. are presented In the in awork multilayer of [Error! configuration. Reference source In not the work found.], an antenna composed of two stacked patches is proposed as a low-cost solution, operating of [12], an antenna composed of two stacked patches is proposed as a low-cost solution, operating around 3 GHz. The antenna’s bandwidth is 14%, but the information about the radiation pattern and aroundthe 3 GHz. gain is The not antenna’sprovided. On bandwidth the other hand is 14%,, in another but the paper information [Error! Reference about the source radiation not found. pattern], and the gainan is antenna not provided. based on Ona microstrip the other patch hand, is presented. in another It is paper formed [ 13by], three an antenna parasitic patches based onworking a microstrip patch isas presented. director
Recommended publications
  • Antenna Tuning for WCDMA RF Front End
    Antenna tuning for WCDMA RF front end Reema Sidhwani School of Electrical Engineering Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 20.11.2012 Thesis supervisor: Prof. Olav Tirkkonen Thesis instructor: MSc. Janne Peltonen Aalto University School of Electrical A’’ Engineering aalto university abstract of the school of electrical engineering master's thesis Author: Reema Sidhwani Title: Antenna tuning for WCDMA RF front end Date: 20.11.2012 Language: English Number of pages:6+64 Department of Radio Communications Professorship: Communication Theory Code: S-72 Supervisor: Prof. Olav Tirkkonen Instructor: MSc. Janne Peltonen Modern mobile handsets or so called Smart-phones are not just capable of commu- nicating over a wide range of radio frequencies and of supporting various wireless technologies. They also include a range of peripheral devices like camera, key- board, larger display, flashlight etc. The provision to support such a large feature set in a limited size, constraints the designers of RF front ends to make compro- mises in the design and placement of the antenna which deteriorates its perfor- mance. The surroundings of the antenna especially when it comes in contact with human body, adds to the degradation in its performance. The main reason for the degraded performance is the mismatch of impedance between the antenna and the radio transceiver which causes part of the transmitted power to be reflected back. The loss of power reduces the power amplifier efficiency and leads to shorter battery life. Moreover the reflected power increases the noise floor of the receiver and reduces its sensitivity.
    [Show full text]
  • Multi Application Antenna for Wi-Fi, Wi-Max and Bluetooth for Better Radiation Efficiency
    International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-4, July 2015 ISSN: 2395-3470 ` www.ijseas.com Multi Application Antenna for Wi-Fi, Wi-max and Bluetooth for better radiation efficiency Hina D.Pal, J.Jenifer, Kavitha Balamurugan, M.E,Suntheravel, PG student, PG student, Associate Prof. Assistant Prof. KCG College of technology, KCG College of technology, KCG College of technology, KCG College of technology, Karapakkam, Karapakkam, Karapakkam, Karapakkam, Chennai-600097 Chennai-600097 Chennai-600097 Chennai-600097 ABSTRACT: Microstrip antenna is a printed type antenna This paper presents the radiation performance of rectangular consisting of a dielectric substrate sandwiched in patch antenna having a two slots. The design is used for between a ground plane and a patch. In this project three different frequencies 2.4, 5 and 7GHz . As a substrate Micro strip patch antenna technology is used for material Cu_clad is used. The simulated results for this different application for different frequencies antenna are obtained by varying the length and width of different materials are used for better efficiency. three dipoles.The results indicate that rectangular patch antenna with two slots offers a good antenna efficiency 41.576 at 2.45 GHz,51.958 at 5 GHz,46.810 at 7 GHz with the input feed 50 Ohm. Desired patch antenna design was simulated by ADS simulator program. ADS supports every step of the design process—schematic capture, layout, frequency-domain and time-domain circuit simulation, and electromagnetic field simulation, allowing the engineer to fully characterize and optimize an RF design without changing tools.
    [Show full text]
  • Radiometry and the Friis Transmission Equation Joseph A
    Radiometry and the Friis transmission equation Joseph A. Shaw Citation: Am. J. Phys. 81, 33 (2013); doi: 10.1119/1.4755780 View online: http://dx.doi.org/10.1119/1.4755780 View Table of Contents: http://ajp.aapt.org/resource/1/AJPIAS/v81/i1 Published by the American Association of Physics Teachers Related Articles The reciprocal relation of mutual inductance in a coupled circuit system Am. J. Phys. 80, 840 (2012) Teaching solar cell I-V characteristics using SPICE Am. J. Phys. 79, 1232 (2011) A digital oscilloscope setup for the measurement of a transistor’s characteristic curves Am. J. Phys. 78, 1425 (2010) A low cost, modular, and physiologically inspired electronic neuron Am. J. Phys. 78, 1297 (2010) Spreadsheet lock-in amplifier Am. J. Phys. 78, 1227 (2010) Additional information on Am. J. Phys. Journal Homepage: http://ajp.aapt.org/ Journal Information: http://ajp.aapt.org/about/about_the_journal Top downloads: http://ajp.aapt.org/most_downloaded Information for Authors: http://ajp.dickinson.edu/Contributors/contGenInfo.html Downloaded 07 Jan 2013 to 153.90.120.11. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission Radiometry and the Friis transmission equation Joseph A. Shaw Department of Electrical & Computer Engineering, Montana State University, Bozeman, Montana 59717 (Received 1 July 2011; accepted 13 September 2012) To more effectively tailor courses involving antennas, wireless communications, optics, and applied electromagnetics to a mixed audience of engineering and physics students, the Friis transmission equation—which quantifies the power received in a free-space communication link—is developed from principles of optical radiometry and scalar diffraction.
    [Show full text]
  • Performance Comparisons of MIMO Techniques with Application to WCDMA Systems
    EURASIP Journal on Applied Signal Processing 2004:5, 649–661 c 2004 Hindawi Publishing Corporation Performance Comparisons of MIMO Techniques with Application to WCDMA Systems Chuxiang Li Department of Electrical Engineering, Columbia University, New York, NY 10027, USA Email: [email protected] Xiaodong Wang Department of Electrical Engineering, Columbia University, New York, NY 10027, USA Email: [email protected] Received 11 December 2002; Revised 1 August 2003 Multiple-input multiple-output (MIMO) communication techniques have received great attention and gained significant devel- opment in recent years. In this paper, we analyze and compare the performances of different MIMO techniques. In particular, we compare the performance of three MIMO methods, namely, BLAST, STBC, and linear precoding/decoding. We provide both an analytical performance analysis in terms of the average receiver SNR and simulation results in terms of the BER. Moreover, the applications of MIMO techniques in WCDMA systems are also considered in this study. Specifically, a subspace tracking algo- rithm and a quantized feedback scheme are introduced into the system to simplify implementation of the beamforming scheme. It is seen that the BLAST scheme can achieve the best performance in the high data rate transmission scenario; the beamforming scheme has better performance than the STBC strategies in the diversity transmission scenario; and the beamforming scheme can be effectively realized in WCDMA systems employing the subspace tracking and the quantized feedback approach. Keywords and phrases: BLAST, space-time block coding, linear precoding/decoding, subspace tracking, WCDMA. 1. INTRODUCTION ing power and/or rate over multiple transmit antennas, with partially or perfectly known channel state information [7].
    [Show full text]
  • Development of Earth Station Receiving Antenna and Digital Filter Design Analysis for C-Band VSAT
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 6, JUNE 2014 ISSN 2277-8616 Development of Earth Station Receiving Antenna and Digital Filter Design Analysis for C-Band VSAT Su Mon Aye, Zaw Min Naing, Chaw Myat New, Hla Myo Tun Abstract: This paper describes the performance improvement of C-band VSAT receiving antenna. In this work, the gain and efficiency of C-band VSAT have been evaluated and then the reflector design is developed with the help of ICARA and MATLAB environment. The proposed design meets the good result of antenna gain and efficiency. The typical gain of prime focus parabolic reflector antenna is 30 dB to 40dB. And the efficiency is 60% to 80% with the good antenna design. By comparing with the typical values, the proposed C-band VSAT antenna design is well optimized with gain of 38dB and efficiency of 78%. In this paper, the better design with compromise gain performance of VSAT receiving parabolic antenna using ICARA software tool and the calculation of C-band downlink path loss is also described. The particular prime focus parabolic reflector antenna is applied for this application and gain of antenna, radiation pattern with far field, near field and the optimized antenna efficiency is also developed. The objective of this paper is to design the downlink receiving antenna of VSAT satellite ground segment with excellent gain and overall antenna efficiency. The filter design analysis is base on Kaiser window method and the simulation results are also presented in this paper. Index Terms: prime focus parabolic reflector antenna, satellite, efficiency, gain, path loss, VSAT.
    [Show full text]
  • Design and Implementation of T-Shaped Planar Antenna for MIMO Applications
    Computers, Materials & Continua Tech Science Press DOI:10.32604/cmc.2021.018793 Article Design and Implementation of T-Shaped Planar Antenna for MIMO Applications T. Prabhu1,* and S. Chenthur Pandian2 1Department of ECE, SNS College of Technology, Coimbatore, 641035, Tamil Nadu, India 2Department of EEE, SNS College of Technology, Coimbatore, 641035, Tamil Nadu, India *Corresponding Author: T. Prabhu. Email: [email protected] Received: 21 March 2021; Accepted: 26 April 2021 Abstract: This paper proposes, demonstrates, and describes a basic T-shaped Multi-Input and Multi-Output (MIMO) antenna with a resonant frequency of 3.1 to 10.6 GHz. Compared with the U-shaped antenna, the mutual coupling is minimized by using a T-shaped patch antenna. The T-shaped patch antenna shapes filter properties are tested to achieve separation over the 3.1 to 10.6 GHz frequency range. The parametric analysis, including width, duration, and spacing, is designed in the MIMO applications for good isolation. On the FR4 substratum, the configuration of MIMO is simulated. The appropriate dielec- tric material εr = 4.4 is introduced using this contribution and application array feature of the MIMO systems. In this paper, FR4 is used due to its high dielectric strength and low cost. For 3.1 to 10.6 GHz and 3SRR, T-shaped patch antennas are used in the field to increase bandwidth. The suggested T- shaped MIMO antenna is calculated according to the HFSS 13.0 program simulation performances. The antenna suggested is, therefore, a successful WLAN candidate. Keywords: Multi-input and multi-output; FR4 substratum; t-shaped patch antennas; ISM band; HFSS 13.0; WLAN 1 Introduction Multiple Input and Multiple Output (MIMO) devices can send and receive simultaneous signaling at the same power level and maximize high data rate demands in modern communication systems.
    [Show full text]
  • IF-Sampling Digital Beamforming with Bit-Stream Processing by Jaehun
    IF-Sampling Digital Beamforming with Bit-Stream Processing by Jaehun Jeong A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in the University of Michigan 2015 Doctoral Committee: Professor Michael P. Flynn, Chair Professor Jerome P. Lynch Associate Professor David D. Wentzloff Associate Professor Zhengya Zhang © Jaehun Jeong 2015 TABLE OF CONTENTS LIST OF FIGURES iv LIST OF TABLES vii LIST OF ABBREVIATIONS viii ABSTRACT x CHAPTER 1 Introduction 1 1.1 Beamforming and Its Applications 1 1.2 Narrowband and Wideband Beamforming 2 1.3 Beamforming in Receivers 3 1.4 Beamforming Receiver Architectures 6 1.4.1 Analog Beamforming 7 1.4.2 Digital Beamforming 8 1.5 Finite Complex Weight Resolution Effect on Phase Shifting 10 1.6 Thesis Overview 12 CHAPTER 2 IF-Sampling DBF with CTBPDSMs and BSP 14 2.1 DBF with Direct IF Sampling 16 2.2 Bit-Stream Processing DBF with ΔΣ Modulator Outputs 17 2.3 Mathematical Expressions of DBF with Band-Pass ADCs 20 ii 2.3.1 Beamforming with Single-Tone Inputs 21 2.3.2 Beamforming with Amplitude-Modulated Inputs 23 2.4 Prototype BSP Beamformers 25 2.4.1 MUX-based DDC and Phase Shifting 27 2.4.2 Summation 30 2.4.3 Decimation 30 2.5 Comparison between DSP and BSP 32 CHAPTER 3 Continuous-Time Band-Pass ΔΣ Modulator 35 3.1 Architecture 35 3.2 Circuit Implementation 39 3.2.1 Single Op-Amp Resonator 40 3.2.2 Quantizer 43 3.2.3 Current Steering DAC 44 CHAPTER 4 Measurements 46 4.1 Prototype I 46 4.2 Prototype II 49 CHAPTER 5 Future Work 58
    [Show full text]
  • Limitations, Performance and Instrumentation of Closed-Loop Feedback Based Distributed Adaptive Transmit Beamforming in Wsns
    Limitations, performance and instrumentation of closed-loop feedback based distributed adaptive transmit beamforming in WSNs Stephan Sigg, Rayan Merched El Masri, Julian Ristau and Michael Beigl Institute of operating systems and computer networks, TU Braunschweig Muhlenpfordtstrasse¨ 23, 38106 Braunschweig, Germany fsigg,[email protected], fj.ristau,[email protected] Abstract—We study closed-loop feedback based approaches to Also, by virtual MIMO techniques in wireless sensor net- distributed adaptive transmit beamforming in wireless sensor works [9], [10], single antenna nodes may establish a dis- networks. For a global random search scheme we discuss the tributed antenna array to generate a MIMO channel. Virtual impact of the transmission distance on the feasibility of the synchronisation approach. Additionally, a quasi novel method MIMO is energy efficient and adjusts to different frequencies for phase synchronisation of distributed adaptive transmit beam- [11], [12]. forming in wireless sensor networks is presented that improves In all these implementations, a dense population of nodes the synchronisation performance. Finally, we present measure- is assumed. A large scale sensor network, however, might be ments from an instrumentation using USRP software radios at sparsely populated by nodes as additional nodes increase the various transmit frequencies and with differing network sizes. installation cost. Alternative solutions are approaches in which a synchronisation among nodes is achieved over a communica- I. INTRODUCTION tion with the remote receiver. This means that communication A much discussed topic related to wireless sensor networks among nodes is not required for synchronisation so that also is the energy consumption of nodes as this impacts the lifetime sparsely populated networks can be supported.
    [Show full text]
  • Understanding and Optimizing 802.11N
    Understanding and Optimizing 802.11n Buffalo Technology July 2011 Brian Verenkoff Director of Marketing and Business Development Introduction: Wireless networks have always been difficult to implement and understand for both home users and network administrators. Wireless networking marries two equally complicated yet relatively unrelated technologies: networking technologies with radio frequency (RF) technology. Each technology has exclusive industry professionals, but rarely is expertise in both technologies available. This document is designed to assist computer network users in deploying successful wireless network while sharing the education and reasoning behind the technology. Related Parties: Wi-Fi® is a registered trademark made of the Wi-Fi Alliance created to give an easier to understand name for wireless networking/wireless local area network (WLAN) based on the IEEE 802.11 standard. To assist with the understanding of technologies, the following are brief descriptions of relevant companies, committees and alliances that are involved in specifying technology and policies relating to wireless networking products. • IEEE (Institute of Electrical and Electronics Engineers) – IEEE is a professional association that creates electronics and electrical related technologies with aim to develop industry standards for use by manufacturers across the board. IEEE 802.11 is the standards group created and maintained by the IEEE as it relates to wireless networking. The letter after 802.11 (e.g. 802.11g) shows an amended standard governed under IEEE 802.11. • Wi-Fi Alliance / Wi-Fi CERTIFIED – The Wi-Fi Alliance is a trade association that functions mainly to promote wireless networking and to ensure compatibility via a certification program amongst various wireless networking devices.
    [Show full text]
  • The Impact of Reduced Conductivity on the Performance of Wire Antennas Morteza Shahpari, Member, IEEE, David V
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 63, NO.11, NOVEMBER 2015 4686 The impact of reduced conductivity on the performance of wire antennas Morteza Shahpari, Member, IEEE, David V. Thiel, Senior Member, IEEE, Abstract—Low cost methods of antenna production primarily There are some advantages in choosing wire rather planar aim to reduce the cost of metalization. This might lead to a structures for these investigations. First, wire antennas have reduction in conductivity. A systematic study on the impact of been studied extensively in the literature. Also, new materials conductivity is presented. The efficiency, gain and bandwidth of cylindrical wire meander line, dipole, and Yagi-Uda antennas like carbon nanotubes are emerging which show promising were compared for materials with conductivities in the range characteristics and naturally have circular cross sections. We 103 to 109 S/m. In this range, the absorption efficiency of performed simulations over 103 109S/m to cover materials − both the dipole and meander line changed little, however the like CNTs which have conductivities in the order of 104 − conductivity significantly impacts on radiation efficiency and 107S/m [2]. the absorption cross section of the antennas. The extinction cross section of the dipole and meander line antennas (antennas The key point in the success of any mass production process that Thevenin equivalent circuit is applicable) also vary with is low cost, that is, circuit manufacturing techniques tend to radiation efficiency. From the point of radiation efficiency, the minimize the total used materials. By tapering the wire in [10], dipole antenna performance is most robust under decreasing the same performance was achieved with a conductor volume conductivity.
    [Show full text]
  • 802.11Ac MU-MIMO Bridging the MIMO Gap in Wi-Fi
    Title Qualcomm Atheros, Inc. 802.11ac MU-MIMO: Bridging the MIMO Gap in Wi-Fi January, 2015 Qualcomm Atheros, Inc. Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Atheros Inc. Qualcomm, Snapdragon, and VIVE are trademarks of Qualcomm Incorporated, registered in the United States and other countries. All Qualcomm Incorporated trademarks are used with permission. Other product and brand names may be trademarks or registered trademarks of their respective owners. This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S. and international law is strictly prohibited. Qualcomm Atheros, Inc. 1700 Technology Drive San Jose, CA 95110 U.S.A. ©2014-15 Qualcomm Atheros, Inc. All Rights Reserved. MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION Page 2 Table of Contents 1 Executive Summary ................................................................................................................................ 4 2 Why MU-MIMO? ..................................................................................................................................... 5 3 11ac Advanced Features: Transmit Beamforming (TxBF) and MU-MIMO ............................................. 6 3.1 Standardized Closed Loop TxBF .................................................................................................... 6 3.2 MU-MIMO or MU-TxBF ..................................................................................................................
    [Show full text]
  • Directional Beamforming for Millimeter-Wave MIMO Systems
    Directional Beamforming for Millimeter-Wave MIMO Systems Vasanthan Raghavan, Sundar Subramanian, Juergen Cezanne and Ashwin Sampath Qualcomm Corporate R&D, Bridgewater, NJ 08807 E-mail: {vraghava, sundars, jcezanne, asampath}@qti.qualcomm.com Abstract—The focus of this paper is on beamforming in a that allows the deployment of a large number of antennas in millimeter-wave (mmW) multi-input multi-output (MIMO) set- a fixed array aperture. up that has gained increasing traction in meeting the high data- Despite the possibility of multi-input multi-output (MIMO) rate requirements of next-generation wireless systems. For a given MIMO channel matrix, the optimality of beamforming communications, mmW signaling differs significantly from with the dominant right-singular vector (RSV) at the transmit traditional MIMO architectures at cellular frequencies. The end and with the matched filter to the RSV at the receive most optimistic antenna configurations1 at cellular frequencies end has been well-understood. When the channel matrix can are on the order of 4 × 8 with a precoder rank (number of be accurately captured by a physical (geometric) scattering layers) of 1 to 4; see, e.g., [9]. Higher rank signaling requires model across multiple clusters/paths as is the case in mmW 2 MIMO systems, we provide a physical interpretation for this multiple radio-frequency (RF) chains which are easier to real- optimal structure: beam steering across the different paths with ize at lower frequencies than at the mmW regime. Thus, there appropriate power allocation and phase compensation. While has been a growing interest in understanding the capabilities of such an explicit physical interpretation has not been provided low-complexity approaches such as beamforming (that require hitherto, practical implementation of such a structure in a mmW only a single RF chain) in mmW systems [10]–[15].
    [Show full text]