Millimeter-Wave Evolution for 5G Cellular Networks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Performance Comparisons of MIMO Techniques with Application to WCDMA Systems
EURASIP Journal on Applied Signal Processing 2004:5, 649–661 c 2004 Hindawi Publishing Corporation Performance Comparisons of MIMO Techniques with Application to WCDMA Systems Chuxiang Li Department of Electrical Engineering, Columbia University, New York, NY 10027, USA Email: [email protected] Xiaodong Wang Department of Electrical Engineering, Columbia University, New York, NY 10027, USA Email: [email protected] Received 11 December 2002; Revised 1 August 2003 Multiple-input multiple-output (MIMO) communication techniques have received great attention and gained significant devel- opment in recent years. In this paper, we analyze and compare the performances of different MIMO techniques. In particular, we compare the performance of three MIMO methods, namely, BLAST, STBC, and linear precoding/decoding. We provide both an analytical performance analysis in terms of the average receiver SNR and simulation results in terms of the BER. Moreover, the applications of MIMO techniques in WCDMA systems are also considered in this study. Specifically, a subspace tracking algo- rithm and a quantized feedback scheme are introduced into the system to simplify implementation of the beamforming scheme. It is seen that the BLAST scheme can achieve the best performance in the high data rate transmission scenario; the beamforming scheme has better performance than the STBC strategies in the diversity transmission scenario; and the beamforming scheme can be effectively realized in WCDMA systems employing the subspace tracking and the quantized feedback approach. Keywords and phrases: BLAST, space-time block coding, linear precoding/decoding, subspace tracking, WCDMA. 1. INTRODUCTION ing power and/or rate over multiple transmit antennas, with partially or perfectly known channel state information [7]. -
IF-Sampling Digital Beamforming with Bit-Stream Processing by Jaehun
IF-Sampling Digital Beamforming with Bit-Stream Processing by Jaehun Jeong A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in the University of Michigan 2015 Doctoral Committee: Professor Michael P. Flynn, Chair Professor Jerome P. Lynch Associate Professor David D. Wentzloff Associate Professor Zhengya Zhang © Jaehun Jeong 2015 TABLE OF CONTENTS LIST OF FIGURES iv LIST OF TABLES vii LIST OF ABBREVIATIONS viii ABSTRACT x CHAPTER 1 Introduction 1 1.1 Beamforming and Its Applications 1 1.2 Narrowband and Wideband Beamforming 2 1.3 Beamforming in Receivers 3 1.4 Beamforming Receiver Architectures 6 1.4.1 Analog Beamforming 7 1.4.2 Digital Beamforming 8 1.5 Finite Complex Weight Resolution Effect on Phase Shifting 10 1.6 Thesis Overview 12 CHAPTER 2 IF-Sampling DBF with CTBPDSMs and BSP 14 2.1 DBF with Direct IF Sampling 16 2.2 Bit-Stream Processing DBF with ΔΣ Modulator Outputs 17 2.3 Mathematical Expressions of DBF with Band-Pass ADCs 20 ii 2.3.1 Beamforming with Single-Tone Inputs 21 2.3.2 Beamforming with Amplitude-Modulated Inputs 23 2.4 Prototype BSP Beamformers 25 2.4.1 MUX-based DDC and Phase Shifting 27 2.4.2 Summation 30 2.4.3 Decimation 30 2.5 Comparison between DSP and BSP 32 CHAPTER 3 Continuous-Time Band-Pass ΔΣ Modulator 35 3.1 Architecture 35 3.2 Circuit Implementation 39 3.2.1 Single Op-Amp Resonator 40 3.2.2 Quantizer 43 3.2.3 Current Steering DAC 44 CHAPTER 4 Measurements 46 4.1 Prototype I 46 4.2 Prototype II 49 CHAPTER 5 Future Work 58 -
Limitations, Performance and Instrumentation of Closed-Loop Feedback Based Distributed Adaptive Transmit Beamforming in Wsns
Limitations, performance and instrumentation of closed-loop feedback based distributed adaptive transmit beamforming in WSNs Stephan Sigg, Rayan Merched El Masri, Julian Ristau and Michael Beigl Institute of operating systems and computer networks, TU Braunschweig Muhlenpfordtstrasse¨ 23, 38106 Braunschweig, Germany fsigg,[email protected], fj.ristau,[email protected] Abstract—We study closed-loop feedback based approaches to Also, by virtual MIMO techniques in wireless sensor net- distributed adaptive transmit beamforming in wireless sensor works [9], [10], single antenna nodes may establish a dis- networks. For a global random search scheme we discuss the tributed antenna array to generate a MIMO channel. Virtual impact of the transmission distance on the feasibility of the synchronisation approach. Additionally, a quasi novel method MIMO is energy efficient and adjusts to different frequencies for phase synchronisation of distributed adaptive transmit beam- [11], [12]. forming in wireless sensor networks is presented that improves In all these implementations, a dense population of nodes the synchronisation performance. Finally, we present measure- is assumed. A large scale sensor network, however, might be ments from an instrumentation using USRP software radios at sparsely populated by nodes as additional nodes increase the various transmit frequencies and with differing network sizes. installation cost. Alternative solutions are approaches in which a synchronisation among nodes is achieved over a communica- I. INTRODUCTION tion with the remote receiver. This means that communication A much discussed topic related to wireless sensor networks among nodes is not required for synchronisation so that also is the energy consumption of nodes as this impacts the lifetime sparsely populated networks can be supported. -
Compact Multilayer Yagi-Uda Based Antenna for Iot/5G Sensors
sensors Article Compact Multilayer Yagi-Uda Based Antenna for IoT/5G Sensors Amélia Ramos 1,2,*, Tiago Varum 2 ID and João N. Matos 1,2 ID 1 Universidade de Aveiro, Campus Universitário de Santiago, 3810-135 Aveiro, Portugal; [email protected] 2 Instituto de Telecomunicações, Campus Universitário de Santiago, 3810-135 Aveiro, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-234-377-900 Received: 27 July 2018; Accepted: 30 August 2018; Published: 2 September 2018 Abstract: To increase the capacity and performance of communication systems, the new generation of mobile communications (5G) will use frequency bands in the mmWave region, where new challenges arise. These challenges can be partially overcome by using higher gain antennas, Multiple-Input Multiple-Output (MIMO), or beamforming techniques. Yagi-Uda antennas combine high gain with low cost and reduced size, and might result in compact and efficient antennas to be used in Internet of Thins (IoT) sensors. The design of a compact multilayer Yagi for IoT sensors is presented, operating at 24 GHz, and a comparative analysis with a planar printed version is shown. The stacked prototype reveals an improvement of the antenna’s main properties, achieving 10.9 dBi, 2 dBi more than the planar structure. In addition, the multilayer antenna shows larger bandwidth than the planar; 6.9 GHz compared with 4.42 GHz. The analysis conducted acknowledges the huge potential of these stacked structures for IoT applications, as an alternative to planar implementations. Keywords: Yagi-Uda; multilayered antenna; millimeter-waves; IoT 1. Introduction People’s interconnection was improved by 4G, making the communication more efficient, fluent, and natural. -
Low-Profile Wideband Antennas Based on Tightly Coupled Dipole
Low-Profile Wideband Antennas Based on Tightly Coupled Dipole and Patch Elements Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Erdinc Irci, B.S., M.S. Graduate Program in Electrical and Computer Engineering The Ohio State University 2011 Dissertation Committee: John L. Volakis, Advisor Kubilay Sertel, Co-advisor Robert J. Burkholder Fernando L. Teixeira c Copyright by Erdinc Irci 2011 Abstract There is strong interest to combine many antenna functionalities within a single, wideband aperture. However, size restrictions and conformal installation requirements are major obstacles to this goal (in terms of gain and bandwidth). Of particular importance is bandwidth; which, as is well known, decreases when the antenna is placed closer to the ground plane. Hence, recent efforts on EBG and AMC ground planes were aimed at mitigating this deterioration for low-profile antennas. In this dissertation, we propose a new class of tightly coupled arrays (TCAs) which exhibit substantially broader bandwidth than a single patch antenna of the same size. The enhancement is due to the cancellation of the ground plane inductance by the capacitance of the TCA aperture. This concept of reactive impedance cancellation was motivated by the ultrawideband (UWB) current sheet array (CSA) introduced by Munk in 2003. We demonstrate that as broad as 7:1 UWB operation can be achieved for an aperture as thin as λ/17 at the lowest frequency. This is a 40% larger wideband performance and 35% thinner profile as compared to the CSA. Much of the dissertation’s focus is on adapting the conformal TCA concept to small and very low-profile finite arrays. -
Patch Antenna Array for RF Energy Harvesting Systems in 2.4 Ghz WLAN Frequency Band
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 9 Issue 05, May-2020 Patch Antenna Array for RF Energy Harvesting Systems in 2.4 GHz WLAN Frequency Band Akash Kumar Gupta V. Praveen, V. Swetha Sri, Department of ECE CH. Nagavinay Kumar, B. Kishore Raghu Institute of Technology UG-Student, Department of ECE Raghu Visakhapatnam, India Institute of Technology Visakhapatnam, India Abstract—In present days, technology have been emerging harvesting topologies that operates low power devices. It has with significant importance mainly in wireless local area network. three stages receiving antenna, energy conversion into DC In this Energy harvesting is playing a key role. The RF Energy output, utilization of output of output in low power applications. harvesting is the collection of small amounts of ambient energy to power wireless devices, Especially, radio frequency (RF) energy II. RADIO FREQUENCY ENERGY HARVESTING has interesting key attributes that make it very attractive for low- power consumer electronics and wireless sensor networks (WSNs). FOR MICROSTRIP ANTENNA Commercial RF transmitting stations like Wi-Fi, or radar signals Microstrip patch antenna is a metallic patch which is may provide ambient RF energy. Throughout this paper, a specific fabricated on a dielectric substrate. The microstrip patch emphasis is on RFEH, as a green technology that is suitable for antenna is layered structure of ground plane as bottom layer solving power supply to WLAN node-related problems throughout and dielectric substrate as medium layer and radiating patch difficult environments or locations that cannot be reached. For RF harvesting RF signals are extracted using antennas.in this work to as top layer. -
RF Exposure Evaluation Declaration
MRT Technology (Taiwan) Co., Ltd Report No.: 2007TW0001-U3 Phone: +886-3-3288388 Report Version: V01 Web: www.mrt-cert.com Issue Date: 07-10-2020 RF Exposure Evaluation Declaration FCC ID: TE7AX3200 APPLICANT: TP-Link Technologies Co., Ltd. Application Type: Certification Product: AX3200 Tri-Band Wi-Fi 6 Router Model No.: Archer AX3200 Trademark: tp-link FCC Classification: Digital Transmission System (DTS) Unlicensed National Information Infrastructure (NII) Test Procedure(s): KDB 447498 D01v06 Test Date: July 04, 2020 Reviewed By: ( Paddy Chen ) Approved By: (Chenz Ker) The test results relate only to the samples tested. The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein. The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd. Page Number: 1 of 7 Report No.: 2007TW0001-U3 Revision History Report No. Version Description Issue Date Note 2007TW0001-U3 Rev. 01 Initial report 07-10-2020 Valid Page Number: 2 of 7 Report No.: 2007TW0001-U3 1. PRODUCT INFORMATION 1.1. Equipment Description Product Name AX3200 Tri-Band Wi-Fi 6 Router Model No. Archer AX3200 Brand Name: tp-link Wi-Fi Specification: 802.11a/b/g/n/ac/ax 1.2. Description of Available Antennas Antenna Frequency TX Number of Max Beamforming CDD Directional Gain Type Band (MHz) Paths spatial Antenna Directional (dBi) streams Gain Gain For Power For PSD (dBi) (dBi) 2412 ~ 2462 2 1 3.52 6.53 3.52 6.53 Monopole 5150 ~ 5250 2 1 3.54 6.55 3.54 6.55 Antenna 5725 ~ 5850 4 1 3.20 9.22 3.20 9.22 Note: 1. -
Review of Recent Phased Arrays for Millimeter-Wave Wireless Communication
sensors Review Review of Recent Phased Arrays for Millimeter-Wave Wireless Communication Aqeel Hussain Naqvi and Sungjoon Lim * School of Electrical and Electronics Engineering, College of Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-820-5827; Fax: +82-2-812-7431 Received: 27 July 2018; Accepted: 18 September 2018; Published: 21 September 2018 Abstract: Owing to the rapid growth in wireless data traffic, millimeter-wave (mm-wave) communications have shown tremendous promise and are considered an attractive technique in fifth-generation (5G) wireless communication systems. However, to design robust communication systems, it is important to understand the channel dynamics with respect to space and time at these frequencies. Millimeter-wave signals are highly susceptible to blocking, and they have communication limitations owing to their poor signal attenuation compared with microwave signals. Therefore, by employing highly directional antennas, co-channel interference to or from other systems can be alleviated using line-of-sight (LOS) propagation. Because of the ability to shape, switch, or scan the propagating beam, phased arrays play an important role in advanced wireless communication systems. Beam-switching, beam-scanning, and multibeam arrays can be realized at mm-wave frequencies using analog or digital system architectures. This review article presents state-of-the-art phased arrays for mm-wave mobile terminals (MSs) and base stations (BSs), with an emphasis on beamforming arrays. We also discuss challenges and strategies used to address unfavorable path loss and blockage issues related to mm-wave applications, which sets future directions. -
802.11Ac MU-MIMO Bridging the MIMO Gap in Wi-Fi
Title Qualcomm Atheros, Inc. 802.11ac MU-MIMO: Bridging the MIMO Gap in Wi-Fi January, 2015 Qualcomm Atheros, Inc. Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Atheros Inc. Qualcomm, Snapdragon, and VIVE are trademarks of Qualcomm Incorporated, registered in the United States and other countries. All Qualcomm Incorporated trademarks are used with permission. Other product and brand names may be trademarks or registered trademarks of their respective owners. This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S. and international law is strictly prohibited. Qualcomm Atheros, Inc. 1700 Technology Drive San Jose, CA 95110 U.S.A. ©2014-15 Qualcomm Atheros, Inc. All Rights Reserved. MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION Page 2 Table of Contents 1 Executive Summary ................................................................................................................................ 4 2 Why MU-MIMO? ..................................................................................................................................... 5 3 11ac Advanced Features: Transmit Beamforming (TxBF) and MU-MIMO ............................................. 6 3.1 Standardized Closed Loop TxBF .................................................................................................... 6 3.2 MU-MIMO or MU-TxBF .................................................................................................................. -
Directional Beamforming for Millimeter-Wave MIMO Systems
Directional Beamforming for Millimeter-Wave MIMO Systems Vasanthan Raghavan, Sundar Subramanian, Juergen Cezanne and Ashwin Sampath Qualcomm Corporate R&D, Bridgewater, NJ 08807 E-mail: {vraghava, sundars, jcezanne, asampath}@qti.qualcomm.com Abstract—The focus of this paper is on beamforming in a that allows the deployment of a large number of antennas in millimeter-wave (mmW) multi-input multi-output (MIMO) set- a fixed array aperture. up that has gained increasing traction in meeting the high data- Despite the possibility of multi-input multi-output (MIMO) rate requirements of next-generation wireless systems. For a given MIMO channel matrix, the optimality of beamforming communications, mmW signaling differs significantly from with the dominant right-singular vector (RSV) at the transmit traditional MIMO architectures at cellular frequencies. The end and with the matched filter to the RSV at the receive most optimistic antenna configurations1 at cellular frequencies end has been well-understood. When the channel matrix can are on the order of 4 × 8 with a precoder rank (number of be accurately captured by a physical (geometric) scattering layers) of 1 to 4; see, e.g., [9]. Higher rank signaling requires model across multiple clusters/paths as is the case in mmW 2 MIMO systems, we provide a physical interpretation for this multiple radio-frequency (RF) chains which are easier to real- optimal structure: beam steering across the different paths with ize at lower frequencies than at the mmW regime. Thus, there appropriate power allocation and phase compensation. While has been a growing interest in understanding the capabilities of such an explicit physical interpretation has not been provided low-complexity approaches such as beamforming (that require hitherto, practical implementation of such a structure in a mmW only a single RF chain) in mmW systems [10]–[15]. -
MIMO Technology in Wifi Systems
MIMO in WiFi Systems Rohit U. Nabar Smart Antenna Workshop Aug. 1, 2014 WiFi • Local area wireless technology that allows communication with the internet using 2.4 GHz or 5 GHz radio waves per IEEE 802.11 • Proliferation in the number of devices that use WiFi today: smartphones, tablets, digital cameras, video-game consoles, TVs, etc • Devices connect to the internet via wireless network access point (AP) Advantages • Allows convenient setup of local area networks without cabling – rapid network connection and expansion • Deployed in unlicensed spectrum – no regulatory approval required for individual deployment • Significant competition between vendors has driven costs lower • WiFi governed by a set of global standards (IEEE 802.11) – hardware compatible across geographical regions WiFi IC Shipment Growth 1.25x 15x Cumulative WiFi Devices in Use Data by Local Access The IEEE 802.11 Standards Family Standard Year Ratified Frequency Modulation Channel Max. Data Band Bandwidth Rate 802.11b 1999 2.4 GHz DSSS 22MHz 11 Mbps 802.11a 1999 5 GHz OFDM 20 MHz 54 Mbps 802.11g 2003 2.4 GHz OFDM 20 MHz 54 Mbps 802.11n 2009 2.4/5 GHz MIMO- 20,40 MHz 600 Mbps OFDM 802.11ac 2013 5 GHz MIMO- 20, 40, 80, 6.93 Gbps OFDM 160 MHz 802.11a/ac PHY Comparison 802.11a 802.11ac Modulation OFDM MIMO-OFDM Subcarrier spacing 312.5 KHz 312.5 KHz Symbol Duration 4 us (800 ns guard interval) 3.6 us (400 ns guard interval) FFT size 64 64(20 MHz)/512 (160 MHz) FEC BCC BCC or LDPC Coding rates 1/2, 2/3, 3/4 1/2, 2/3, 3/4, 5/6 QAM BPSK, QPSK, 16-,64-QAM BPSK, QPSK, 16-,64-,256- QAM Factors Driving the Data Rate Increase 6.93 Gbps QAM 802.11ac (1.3x) FEC rate (1.1x) MIMO (8x) 802.11a Bandwidth (8x) 54 Mbps 802.11 Medium Access Control (MAC) Contention MEDIUM BUSY DIFS PACKET Window • Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) • A wireless node that wants to transmit performs the following sequence 1. -
Litepoint's Complete Guide to 5G OTA Testing
ARTICLE LitePoint’s Complete Guide to 5G OTA Testing UPDATED: MAY 20, 2019 © 2019 LitePoint, A Teradyne Company. All rights reserved. Introduction To help engineers navigate the challenges of 5G OTA testing, LitePoint has put together this comprehensive guide to 5G OTA testing, featuring articles previously published at EDN, Microwaves & RF and RF Globalnet. Link-budget Calculations: Needed for 5G OTA Testing (page 3) In his article at EDN, LitePoint’s Jeorge Hurtarte explores how to calculate the total link budget for OTA test. Over-the-Air Testing for 5G mmWave Devices: DFF or CATR? (page 8) At Microwaves & RF Hurtarte and LitePoint’s Middle Wen explain the differences between DFF and CATR chambers and the tradeoffs in cost and path-loss performance between the two types of chambers. Understanding 5G Millimeter Wave Beamforming Test (page 14) Finally, in the article at RF Globalnet, Jeorge Hurtarte and LitePoint’s Vito Liao explain beamforming in the context of 5G NR specifications, and introduces beamforming characterization and beamforming verification test. Updated: May 20, 2019 LitePoint’s Complete Guide to 5G OTA Testing 2 Link-budget Calculations: Needed for 5G OTA Testing Previously published at EDN on January 22, 2019 5G millimeter wave (mmWave) devices operating above 24 GHz incorporate millimeter-sized patch antenna arrays or dipole antennas that become an integral part of the device module packaging. Testing these assemblies requires over-the-air tests inside a chamber. But, a mmWave test chamber can introduce significant path loss, more than from cables and connectors. Understanding how to calculate the total link budget for over-the-air testing is a critical step in 5G mmWave OTA test.