Native Riparian Vegetation in Tasmania 409

Total Page:16

File Type:pdf, Size:1020Kb

Native Riparian Vegetation in Tasmania 409 Cunninghamia 8(4): 2004 Daley & Kirkpatrick, Native riparian vegetation in Tasmania 409 Native riparian vegetation in Tasmania E.A. Daley1 and J.B. Kirkpatrick2 School of Geography and Environmental Studies, University of Tasmania, Private Bag 78 GPO, Hobart 7001, AUSTRALIA. 1Email: [email protected], 2email: [email protected] Abstract: Twenty-one riparian vascular plant communities are defined, mapped and described using presence/absence data from 460 sites from relatively unmodified stretches of rivers and streams on mainland Tasmania. The process of classification involved selection of groups of floristically distinct sites from a sorted table produced by a polythetic divisive process. The communities have strong geographic patterns. Many communities have a wide range of structural expression and/or dominants. Nearly half of the native vascular flora of Tasmania is present in the sites, including a large number of conservation-significant species, some of which are concentrated in riparian vegetation. In the drier, lowland parts of the State there are large areas with little or no native riparian vegetation remaining. Several of the communities that occur in this environment appear to be totally unreserved, while most of the communities from colder and more humid areas are represented within secure reserves. 5 5 5 Cunninghamia (2004) 8(4): 409–430 5 5 5 5 5 5 5 5 5 5 5 55 55 5 5 5 5 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 55 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 Introduction 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 55 5 5 5 Riparian vegetation is thought to be of critical importance 5 5 5 5 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 55 55 5 5 5 5 5 55 for the health of aquatic communities, and as a refugium for 5 5 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 threatened species in the landscape. As elements of 55 5 5 5 5 5 5 5 5 5 5 5 5 5 555 5 5 5 5 5 5 5 5 5 5 5 5 5 biodiversity, riparian vascular plant communities are also of 5 5 5 5 5 5 5 5 5 55 5 5 55 5 5 5 5 5 5 55 5 5 55 5 5 5 5 5 5 5 5 5 555 importance in themselves. Surprisingly, there are relatively 55 5 55 5 55 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 few studies of variation in riparian vegetation at even the large 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 catchment scale, with the studies of Merry et al. (1981) on 5 55 55 5 5 5 5 55 55 5 5 5 55 5 5 5 5 5 5 5 5 5 5 55 the River Wye in England, Curry and Slater (1986) on four 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 Welsh catchments, and that of Wasklewicz (2001) on central 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55 5 Arizonan rivers seeming to exhaust examples in international 5 5 5 55 5 5 5 5 journals. The grey literature is likely to be richer in examples 55 5 5 5 5 5 (e.g. Jarman & Crowden 1978, Kirkpatrick & Glasby, 1981, 5 5 x Kirkpatrick & Harwood 1983, North et al. 1998, Bridle & 5 Kirkpatrick 1998, Woolley 1999, Davidson & Gibbons 2001). H IHH km In Tasmania, most major vegetation types have been sampled on a statewide basis, communities differentiated, and Fig. 1. Riparian vegetation survey sites. their reservation status assessed (Kirkpatrick et al. 1995). Riparian vegetation has been the biggest gap; an unfortunate one given the extent of stream modification for energy Methods production and the exponential taming of Tasmanian streams Site selection under the Water Development Plan of the Tasmanian Government (DPIWE 2001). Kirkpatrick et al. (1995) in their Relatively intact riparian vegetation in each of the 10 × 10 km conspectus of the reservation status of Tasmanian plant national mapping grid squares in mainland Tasmania was communities attempted to use the geographically partial sampled (Daley 2003). Four hundred and sixty riparian sites information on riparian vegetation (Duncan 1983, Jarman et were surveyed. Vegetation was regarded as relatively intact al. 1984, Hughes 1987a, Harris & Kirkpatrick 1991, Askey- if exotic plants constituted less than 20% of the estimated Doran 1993) to provide a typology and reservation overlapping cover and the stream showed no obvious signs assessment, with an inevitably unsatisfactory outcome. of physical modification in the immediate vicinity. It proved not possible to gain access to many of the grid squares in the In the present paper we develop a classification of riparian wilderness areas of the west of the State (Fig. 1). However, plant communities for mainland Tasmania and deduce the sufficient samples were gained from these areas to be reservation status of these communities. We also provide confident that the variation in their riparian vegetation was information on the importance of Tasmanian riparian adequately covered. More significantly, no stands of native vegetation for the conservation of vascular plant species. riparian vegetation that met the selection criteria could be 410 Cunninghamia 8(4): 2004 Daley & Kirkpatrick, Native riparian vegetation in Tasmania found in 44 of the grids that were easily accessed. In 16 other Poorly-reserved is defined as presence within a secure reserve, grids that were easily accessed, it was possible that some but failure to satisfy the above criteria. Unreserved isolated stands of riparian vegetation were present, but constitutes absence from a secure reserve. Our analysis of access to potential sites was not possible. reservation status is largely based on the sample of releves. However, general observations of particular communities Data collection within reserves have also been used, as have records from Riparian vegetation was defined as that between the aquatic the literature, where the nature of the community is clear. zone of the stream and the cessation of evidence of flood scouring or deposition. A list of vascular plant taxa Results (nomenclature according to Buchanan 1999) was obtained The Tasmanian riparian vascular flora from this vegetation at each site, with searching for new taxa continuing along the stream on both sides until the nature of A total of 857 native taxa and 89 exotic taxa were recorded the orthogonal patterning, or type, of the vegetation changed, from the releves. The number of native taxa per site ranged or no new taxa were evident. This plotless procedure between 10 at Falls Rivulet in the Southern Ranges bioregion aggregated vegetation zones in the relatively few sites where to 85 along the middle reaches of the Little Swanport River they clearly existed. Following the schema of Specht (1974), in the South East bioregion. A large proportion of the native the structural types that occurred within this releve were riparian species are shrubs (31%) and herbs (27%). A high recorded, as were the dominant taxa in each stratum. Taxa proportion of the State’s species of native trees, shrubs and were regarded as codominant if they had about equal cover ferns were found in the releves (Table 1). The most common in the community. species are Pomaderris apetala and Leptospermum lanigerum. Only 8 species are found in more than half the Data analysis sites and only 84 species in at least 10% of sites (Table 2). Of all native Tasmanian vascular plant species, only two species, A gigantic sorted table was produced using the polythetic Gynatrix pulchella and Phebalium daviesii, both exceedingly divisive classificatory program, TWINSPAN (Hill 1979, rare, are known to occur only in riparian zones (Table 3). Minchin 1990), on the taxon presence/absence data. The There are, however, 76 vascular plant species that are found table was examined in detail to select groups of releves that: predominantly in riparian zones of Tasmania and therefore could be keyed out by combinations of the presences and could be categorized as ‘riparian’ plants (Table 3). Nearly absences of taxa; were relatively uniform within; and were 30% of these riparian plants are listed as threatened. While constituted of at least 5 releves. Twenty-one such groups were not all Tasmania’s riparian plants were detected during the selected from the table. Floristic similarities amongst groups survey, there were forty-six species listed under the were calculated using the Bray-Curtis measure on Tasmanian Threatened Species Protection Act 1995 (as of percentage frequency of species in groups. 2002). The structural/dominance description of each community was derived from the structural/dominance descriptions of all sites Table 1. The number and proportion of observed native taxa within a community.
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • Blue Tier Reserve Background Report 2016File
    Background Report Blue Tier Reserve www.tasland.org.au Tasmanian Land Conservancy (2016). The Blue Tier Reserve Background Report. Tasmanian Land Conservancy, Tasmania Australia. Copyright ©Tasmanian Land Conservancy The views expressed in this report are those of the Tasmanian Land Conservancy and not the Federal Government, State Government or any other entity. This work is copyright. It may be reproduced for study, research or training purposes subject to an acknowledgment of the sources and no commercial usage or sale. Requests and enquires concerning reproduction and rights should be addressed to the Tasmanian Land Conservancy. Front Image: Myrtle rainforest on Blue Tier Reserve - Andy Townsend Contact Address Tasmanian Land Conservancy PO Box 2112, Lower Sandy Bay, 827 Sandy Bay Road, Sandy Bay TAS 7005 | p: 03 6225 1399 | www.tasland.org.au Contents Acknowledgements ................................................................................................................................. 1 Acronyms and Abbreviations .......................................................................................................... 2 Introduction ............................................................................................................................................ 3 Location and Access ................................................................................................................................ 4 Bioregional Values and Reserve Status ..................................................................................................
    [Show full text]
  • Wattles of the City of Whittlesea
    Wattles of the City of Whittlesea PROTECTING BIODIVERSITY ON PRIVATE LAND SERIES Wattles of the City of Whittlesea Over a dozen species of wattle are indigenous to the City of Whittlesea and many other wattle species are commonly grown in gardens. Most of the indigenous species are commonly found in the forested hills and the native forests in the northern parts of the municipality, with some species persisting along country roadsides, in smaller reserves and along creeks. Wattles are truly amazing • Wattles have multiple uses for Australian plants indigenous peoples, with most species used for food, medicine • There are more wattle species than and/or tools. any other plant genus in Australia • Wattle seeds have very hard coats (over 1000 species and subspecies). which mean they can survive in the • Wattles, like peas, fix nitrogen in ground for decades, waiting for a the soil, making them excellent cool fire to stimulate germination. for developing gardens and in • Australia’s floral emblem is a wattle: revegetation projects. Golden Wattle (Acacia pycnantha) • Many species of insects (including and this is one of Whittlesea’s local some butterflies) breed only on species specific species of wattles, making • In Victoria there is at least one them a central focus of biodiversity. wattle species in flower at all times • Wattle seeds and the insects of the year. In the Whittlesea attracted to wattle flowers are an area, there is an indigenous wattle important food source for most bird in flower from February to early species including Black Cockatoos December. and honeyeaters. Caterpillars of the Imperial Blue Butterfly are only found on wattles RB 3 Basic terminology • ‘Wattle’ = Acacia Wattle is the common name and Acacia the scientific name for this well-known group of similar / related species.
    [Show full text]
  • Vegetation Benchmarks Rainforest and Related Scrub
    Vegetation Benchmarks Rainforest and related scrub Eucryphia lucida Vegetation Condition Benchmarks version 1 Rainforest and Related Scrub RPW Athrotaxis cupressoides open woodland: Sphagnum peatland facies Community Description: Athrotaxis cupressoides (5–8 m) forms small woodland patches or appears as copses and scattered small trees. On the Central Plateau (and other dolerite areas such as Mount Field), broad poorly– drained valleys and small glacial depressions may contain scattered A. cupressoides trees and copses over Sphagnum cristatum bogs. In the treeless gaps, Sphagnum cristatum is usually overgrown by a combination of any of Richea scoparia, R. gunnii, Baloskion australe, Epacris gunnii and Gleichenia alpina. This is one of three benchmarks available for assessing the condition of RPW. This is the appropriate benchmark to use in assessing the condition of the Sphagnum facies of the listed Athrotaxis cupressoides open woodland community (Schedule 3A, Nature Conservation Act 2002). Benchmarks: Length Component Cover % Height (m) DBH (cm) #/ha (m)/0.1 ha Canopy 10% - - - Large Trees - 6 20 5 Organic Litter 10% - Logs ≥ 10 - 2 Large Logs ≥ 10 Recruitment Continuous Understorey Life Forms LF code # Spp Cover % Immature tree IT 1 1 Medium shrub/small shrub S 3 30 Medium sedge/rush/sagg/lily MSR 2 10 Ground fern GF 1 1 Mosses and Lichens ML 1 70 Total 5 8 Last reviewed – 2 November 2016 Tasmanian Vegetation Monitoring and Mapping Program Department of Primary Industries, Parks, Water and Environment http://www.dpipwe.tas.gov.au/tasveg RPW Athrotaxis cupressoides open woodland: Sphagnum facies Species lists: Canopy Tree Species Common Name Notes Athrotaxis cupressoides pencil pine Present as a sparse canopy Typical Understorey Species * Common Name LF Code Epacris gunnii coral heath S Richea scoparia scoparia S Richea gunnii bog candleheath S Astelia alpina pineapple grass MSR Baloskion australe southern cordrush MSR Gleichenia alpina dwarf coralfern GF Sphagnum cristatum sphagnum ML *This list is provided as a guide only.
    [Show full text]
  • Edition 2 from Forest to Fjaeldmark the Vegetation Communities Highland Treeless Vegetation
    Edition 2 From Forest to Fjaeldmark The Vegetation Communities Highland treeless vegetation Richea scoparia Edition 2 From Forest to Fjaeldmark 1 Highland treeless vegetation Community (Code) Page Alpine coniferous heathland (HCH) 4 Cushion moorland (HCM) 6 Eastern alpine heathland (HHE) 8 Eastern alpine sedgeland (HSE) 10 Eastern alpine vegetation (undifferentiated) (HUE) 12 Western alpine heathland (HHW) 13 Western alpine sedgeland/herbland (HSW) 15 General description Rainforest and related scrub, Dry eucalypt forest and woodland, Scrub, heathland and coastal complexes. Highland treeless vegetation communities occur Likewise, some non-forest communities with wide within the alpine zone where the growth of trees is environmental amplitudes, such as wetlands, may be impeded by climatic factors. The altitude above found in alpine areas. which trees cannot survive varies between approximately 700 m in the south-west to over The boundaries between alpine vegetation communities are usually well defined, but 1 400 m in the north-east highlands; its exact location depends on a number of factors. In many communities may occur in a tight mosaic. In these parts of Tasmania the boundary is not well defined. situations, mapping community boundaries at Sometimes tree lines are inverted due to exposure 1:25 000 may not be feasible. This is particularly the or frost hollows. problem in the eastern highlands; the class Eastern alpine vegetation (undifferentiated) (HUE) is used in There are seven specific highland heathland, those areas where remote sensing does not provide sedgeland and moorland mapping communities, sufficient resolution. including one undifferentiated class. Other highland treeless vegetation such as grasslands, herbfields, A minor revision in 2017 added information on the grassy sedgelands and wetlands are described in occurrence of peatland pool complexes, and other sections.
    [Show full text]
  • Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Pollination Ecology and Evolution of Epacrids
    Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes.
    [Show full text]
  • An Investigation of Phyllode Variation in Acacia Verniciflua and A. Leprosa
    CSIRO PUBLISHING www.publish.csiro.au/journals/asb Australian Systematic Botany 18, 383–398 An investigation of phyllode variation in Acacia verniciflua and A. leprosa (Mimosaceae), and implications for taxonomy Stuart K. GardnerA, Daniel J. MurphyB,C, Edward NewbiginA, Andrew N. DrinnanA and Pauline Y. LadigesA ASchool of Botany, The University of Melbourne, Vic. 3010, Australia. BRoyal Botanic Gardens Melbourne, Private Bag 2000, South Yarra, Vic. 3141, Australia. CCorresponding author. Email: [email protected] Abstract. Acacia verniciflua A.Cunn. and A. leprosa Sieber ex DC. are believed to be closely related, although strict interpretation of the current sectional classification of subgenus Phyllodineae places them in separate sections based on main nerve number. Six populations, comprised of the common and the southern variants of A. verniciflua and the large phyllode variant of A. leprosa, were sampled to test the value of nerve number as a taxonomic character and the current delimitation of these geographically variable species. Morphometrics, microscopy and the AFLP technique were used to compare and contrast populations. Phyllode nerve development was investigated and the abaxial nerve was found to be homologous with the mid-rib of a simple leaf. Three taxa were differentiated, two that are consistently two-nerved and one taxon that is variably one-nerved, two-nerved or both within a single plant. The first two-nerved taxon, characterised by smaller phyllodes, matches the type specimen of A. verniciflua. The second two-nerved taxon, characterised by large phyllodes, is apparently endemic to Mt William. The third taxon, with variable main nerve number, also has large phyllodes, and combines large phyllode variant A.
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • Phytophthora Resistance and Susceptibility Stock List
    Currently known status of the following plants to Phytophthora species - pathogenic water moulds from the Agricultural Pathology & Kingdom Protista. Biological Farming Service C ompiled by Dr Mary Cole, Agpath P/L. Agricultural Consultants since 1980 S=susceptible; MS=moderately susceptible; T= tolerant; MT=moderately tolerant; ?=no information available. Phytophthora status Life Form Botanical Name Family Common Name Susceptible (S) Tolerant (T) Unknown (UnK) Shrub Acacia brownii Mimosaceae Heath Wattle MS Tree Acacia dealbata Mimosaceae Silver Wattle T Shrub Acacia genistifolia Mimosaceae Spreading Wattle MS Tree Acacia implexa Mimosaceae Lightwood MT Tree Acacia leprosa Mimosaceae Cinnamon Wattle ? Tree Acacia mearnsii Mimosaceae Black Wattle MS Tree Acacia melanoxylon Mimosaceae Blackwood MT Tree Acacia mucronata Mimosaceae Narrow Leaf Wattle S Tree Acacia myrtifolia Mimosaceae Myrtle Wattle S Shrub Acacia myrtifolia Mimosaceae Myrtle Wattle S Tree Acacia obliquinervia Mimosaceae Mountain Hickory Wattle ? Shrub Acacia oxycedrus Mimosaceae Spike Wattle S Shrub Acacia paradoxa Mimosaceae Hedge Wattle MT Tree Acacia pycnantha Mimosaceae Golden Wattle S Shrub Acacia sophorae Mimosaceae Coast Wattle S Shrub Acacia stricta Mimosaceae Hop Wattle ? Shrubs Acacia suaveolens Mimosaceae Sweet Wattle S Tree Acacia ulicifolia Mimosaceae Juniper Wattle S Shrub Acacia verniciflua Mimosaceae Varnish wattle S Shrub Acacia verticillata Mimosaceae Prickly Moses ? Groundcover Acaena novae-zelandiae Rosaceae Bidgee-Widgee T Tree Allocasuarina littoralis Casuarinaceae Black Sheoke S Tree Allocasuarina paludosa Casuarinaceae Swamp Sheoke S Tree Allocasuarina verticillata Casuarinaceae Drooping Sheoak S Sedge Amperea xipchoclada Euphorbaceae Broom Spurge S Grass Amphibromus neesii Poaceae Swamp Wallaby Grass ? Shrub Aotus ericoides Papillionaceae Common Aotus S Groundcover Apium prostratum Apiaceae Sea Celery MS Herb Arthropodium milleflorum Asparagaceae Pale Vanilla Lily S? Herb Arthropodium strictum Asparagaceae Chocolate Lily S? Shrub Atriplex paludosa ssp.
    [Show full text]
  • Structural and Floristic Variation in the Forest Communities of the West Tamar, Tasmania
    Papers and Proceedings of the Royal Society of Tasmania, Volume 117, 1983. [ms. received 3.9.1982) STRUCTURAL AND FLORISTIC VARIATION IN THE FOREST COMMUNITIES OF THE WEST TAMAR, TASMANIA. by M.J. Brown and R.T. Buckney N.P.W.S., P.O. Box 210, Sandy Bay, Tas. 7005 and School of Life Sciences, N.S.W. Inst. Tech., P.O. Box 123, Broadway, N.S.W. 2007. (with three tables and five text-figures) ABSTRACT BROWN, M.J. & BUCKNEY, R.T., 1983 (31 viii): Structural and floristic variation in the forest communities of the West Tamar, Tasmania. Pap. Proc. R. Soc. Tasm., 117: 135- 152. https://doi.org/10.26749/rstpp.117.135 ISSN 0080-4703. National Parks & Wildlife Service, P.O. Box 210, Sandy Bay, Tasmania and School of Life Sciences, N.S.W. Institute of Technology, P.O. Box 123, Broadway, New South Wales. The forest communities in the West Tamar were sampled by a stratified random process using 55 plots selected after preliminary analy sis of 243 Forestry Commission continuous forest inventory plots, which occur in the area. A total of 13 floristic units were recognised and described. The relationship of the floristic units to changing water availability, drainage, soil fertility and fire frequency are assessed and the problems of structural versus floristic classifications of forest types are discussed. INTRODUCTION The dry forests of Tasmania occupy some of the most heavily utilised areas of the state. Clearing for agriculture and urban development, sawlog extraction, firewood getting and burning combined with stock grazing have all made their mark on this vegeta­ tion.
    [Show full text]
  • Tasmania - from the Wet West to the Dry East
    This collection is maintained with the assistance of the Tasmania - from the wet west to the dry east. Regional Branch of the Australian Plant Society. Influences on the development of the Tasmanian plant mix Montane moorland and cool oceanic heathland When Gondwana existed as a super Geology of Tasmania Vegetation Map of Tasmania The Tasmanian highland vegetation developed in isolation from the Australian Alps. Even during ice continent, Australia and Tasmania, Africa, ages, hundreds of kilometres of lowland vegetation separated the two high altitude environments. South America, New Zealand and Antarctica shared many plant families and some Montane plants have to cope with wide temperature fluctuations, with periods of below 0°C and Genera. exposure to winds. Cold may be prolonged if the ground freezes. Plants may be blanketed by snow or BASS STRAIT the mountains by cloud. Snowmelt or clear weather can cause intense rays of light, resulting in high For example, the protea family has members temperature. Wind or sun can dry the plant and soil. in all those land masses except Antarctica. The Southern Africa panel covers the protea family more fully. Plants require moisture and warmth. Small hard leaves offer Tasmania was the last land mass to break protection from the drying away from Antarctica. The opening of the effects of sun and wind. Low gap between these land masses allowed the ocean to circulate growth avoids wind. Branches around Antarctica, cooling the earth’s climate and so locking up grow close together to shelter vast quantities of water as ice. the parts of each plant.
    [Show full text]