Four New Arthoniomycetes from Bwindi Impenetrable National Park, Uganda – Supported by Molecular Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomy and New Records of Graphidaceae Lichens in Western Pangasinan, Northern Philippines
PRIMARY RESEARCH PAPER | Philippine Journal of Systematic Biology DOI 10.26757/pjsb2019b13006 Taxonomy and new records of Graphidaceae lichens in Western Pangasinan, Northern Philippines Weenalei T. Fajardo1, 2* and Paulina A. Bawingan1 Abstract There are limited studies on the diversity of Philippine lichenized fungi. This study collected and determined corticolous Graphidaceae from 38 collection sites in 10 municipalities of western Pangasinan province. The study found 35 Graphidaceae species belonging to 11 genera. Graphis is the dominant genus with 19 species. Other species belong to the genera Allographa (3 species) Fissurina (3), Phaeographis (3), while Austrotrema, Chapsa, Diorygma, Dyplolabia, Glyphis, Ocellularia, and Thelotrema had one species each. This taxonomic survey added 14 new records of Graphidaceae to the flora of western Pangasinan. Keywords: Lichenized fungi, corticolous, crustose lichens, Ostropales Introduction described Graphidaceae in the country (Parnmen et al. 2012). Most recent surveys resulted in the characterization of six new Graphidaceae is the second largest family of lichenized species (Lumbsch et al. 2011; Tabaquero et al.2013; Rivas-Plata fungi (Ascomycota) (Rivas-Plata et al. 2012; Lücking et al. et al. 2014). In the northwestern part of Luzon in the Philippines 2017) and is the most speciose of tropical crustose lichens (Region 1), an account on the Graphidaceae lichens was (Staiger 2002; Lücking 2009). The inclusion of the initially conducted only from the Hundred Islands National Park (HINP), separate family Thelotremataceae (Mangold et al. 2008; Rivas- Alaminos City, Pangasinan (Bawingan et al. 2014). The study Plata et al. 2012) in the family Graphidaceae made the latter the reported 32 identified lichens, including 17 Graphidaceae dominant element of lichen communities with 2,161 accepted belonging to the genera Diorygma, Fissurina, Graphis, Thecaria species belonging to 79 genera (Lücking et al. -
Cuivre Bryophytes
Trip Report for: Cuivre River State Park Species Count: 335 Date: Multiple Visits Lincoln County Agency: MODNR Location: Lincoln Hills - Bryophytes Participants: Bryophytes from Natural Resource Inventory Database Bryophyte List from NRIDS and Bruce Schuette Species Name (Synonym) Common Name Family COFC COFW Acarospora unknown Identified only to Genus Acarosporaceae Lichen Acrocordia megalospora a lichen Monoblastiaceae Lichen Amandinea dakotensis a button lichen (crustose) Physiaceae Lichen Amandinea polyspora a button lichen (crustose) Physiaceae Lichen Amandinea punctata a lichen Physiaceae Lichen Amanita citrina Citron Amanita Amanitaceae Fungi Amanita fulva Tawny Gresette Amanitaceae Fungi Amanita vaginata Grisette Amanitaceae Fungi Amblystegium varium common willow moss Amblystegiaceae Moss Anisomeridium biforme a lichen Monoblastiaceae Lichen Anisomeridium polypori a crustose lichen Monoblastiaceae Lichen Anomodon attenuatus common tree apron moss Anomodontaceae Moss Anomodon minor tree apron moss Anomodontaceae Moss Anomodon rostratus velvet tree apron moss Anomodontaceae Moss Armillaria tabescens Ringless Honey Mushroom Tricholomataceae Fungi Arthonia caesia a lichen Arthoniaceae Lichen Arthonia punctiformis a lichen Arthoniaceae Lichen Arthonia rubella a lichen Arthoniaceae Lichen Arthothelium spectabile a lichen Uncertain Lichen Arthothelium taediosum a lichen Uncertain Lichen Aspicilia caesiocinerea a lichen Hymeneliaceae Lichen Aspicilia cinerea a lichen Hymeneliaceae Lichen Aspicilia contorta a lichen Hymeneliaceae Lichen -
Foliicolous Lichens and Their Lichenicolous Fungi Collected During the Smithsonian International Cryptogamic Expedition to Guyana 1996
45 Tropical Bryology 15: 45-76, 1998 Foliicolous lichens and their lichenicolous fungi collected during the Smithsonian International Cryptogamic Expedition to Guyana 1996 Robert Lücking Lehrstuhl für Pflanzensystematik, Universität Bayreuth, D-95447 Bayreuth, Germany Abstract: A total of 233 foliicolous lichen species and 18 lichenicolous fungi are reported from Guyana as a result of the Smithsonian „International Cryptogamic Expedition to Guyana“ 1996. Three lichens and two lichenicolous fungi are new to science: Arthonia grubei sp.n., Badimia subelegans sp.n., Calopadia pauciseptata sp.n., Opegrapha matzeri sp.n. (lichenicolous on Amazonomyces sprucei), and Pyrenidium santessonii sp.n. (lichenicolous on Bacidia psychotriae). The new combination Strigula janeirensis (Bas.: Phylloporina janeirensis; syn.: Raciborskiella janeirensis) is proposed. Apart from Amazonomyces sprucei and Bacidia psychotriae, Arthonia lecythidicola (with the lichenicolous A. pseudopegraphina) and Byssolecania deplanata (with the lichenicolous Opegrapha cf. kalbii) are reported as new hosts for lichenicolous fungi. Arthonia pseudopegraphina growing on A. lecythidicola is the first known case of adelphoparasitism at generic level in foliicolous Arthonia. Arthonia flavoverrucosa, Badimia polillensis, and Byssoloma vezdanum are new records for the Neotropics, and 115 species are new for Guyana, resulting in a total of c. 280 genuine foliicolous species reported for that country, while Porina applanata and P. verruculosa are excluded from its flora. The foliicolous lichen flora of Guyana is representative for the Guianas (Guyana, Suriname, French Guiana) and has great affinities with the Amazon region, while the degree of endemism is low. A characteristic species for this area is Amazonomyces sprucei. Species composition is typical of Neotropical lowland to submontane humid forests, with a dominance of the genera Porina, Strigula, and Mazosia. -
Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A. -
Three Challenges to Contemporaneous Taxonomy from a Licheno-Mycological Perspective
Megataxa 001 (1): 078–103 ISSN 2703-3082 (print edition) https://www.mapress.com/j/mt/ MEGATAXA Copyright © 2020 Magnolia Press Review ISSN 2703-3090 (online edition) https://doi.org/10.11646/megataxa.1.1.16 Three challenges to contemporaneous taxonomy from a licheno-mycological perspective ROBERT LÜCKING Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany �[email protected]; https://orcid.org/0000-0002-3431-4636 Abstract Nagoya Protocol, and does not need additional “policing”. Indeed, the Nagoya Protocol puts the heaviest burden on This paper discusses three issues that challenge contempora- taxonomy and researchers cataloguing biodiversity, whereas neous taxonomy, with examples from the fields of mycology for the intended target group, namely those seeking revenue and lichenology, formulated as three questions: (1) What is gain from nature, the protocol may not actually work effec- the importance of taxonomy in contemporaneous and future tively. The notion of currently freely accessible digital se- science and society? (2) An increasing methodological gap in quence information (DSI) to become subject to the protocol, alpha taxonomy: challenge or opportunity? (3) The Nagoya even after previous publication, is misguided and conflicts Protocol: improvement or impediment to the science of tax- with the guidelines for ethical scientific conduct. Through onomy? The importance of taxonomy in society is illustrated its implementation of the Nagoya Protocol, Colombia has using the example of popular field guides and digital me- set a welcome precedence how to exempt taxonomic and dia, a billion-dollar business, arguing that the desire to name systematic research from “access to genetic resources”, and species is an intrinsic feature of the cognitive component of hopefully other biodiversity-rich countries will follow this nature connectedness of humans. -
Lichens and Associated Fungi from Glacier Bay National Park, Alaska
The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O. -
The Fungi Constitute a Major Eukary- Members of the Monophyletic Kingdom Fungi ( Fig
American Journal of Botany 98(3): 426–438. 2011. T HE FUNGI: 1, 2, 3 … 5.1 MILLION SPECIES? 1 Meredith Blackwell 2 Department of Biological Sciences; Louisiana State University; Baton Rouge, Louisiana 70803 USA • Premise of the study: Fungi are major decomposers in certain ecosystems and essential associates of many organisms. They provide enzymes and drugs and serve as experimental organisms. In 1991, a landmark paper estimated that there are 1.5 million fungi on the Earth. Because only 70 000 fungi had been described at that time, the estimate has been the impetus to search for previously unknown fungi. Fungal habitats include soil, water, and organisms that may harbor large numbers of understudied fungi, estimated to outnumber plants by at least 6 to 1. More recent estimates based on high-throughput sequencing methods suggest that as many as 5.1 million fungal species exist. • Methods: Technological advances make it possible to apply molecular methods to develop a stable classifi cation and to dis- cover and identify fungal taxa. • Key results: Molecular methods have dramatically increased our knowledge of Fungi in less than 20 years, revealing a mono- phyletic kingdom and increased diversity among early-diverging lineages. Mycologists are making signifi cant advances in species discovery, but many fungi remain to be discovered. • Conclusions: Fungi are essential to the survival of many groups of organisms with which they form associations. They also attract attention as predators of invertebrate animals, pathogens of potatoes and rice and humans and bats, killers of frogs and crayfi sh, producers of secondary metabolites to lower cholesterol, and subjects of prize-winning research. -
Komunitas Lumut Kerak (Lichens) Di Taman Wisata Alam Suranadi Kabupaten Lombok Barat
Komunitas Lumut Kerak (Lichens) Di Taman Wisata Alam Suranadi Kabupaten Lombok Barat Fitrianti*1, Faturrahman1, Sukiman1 1Department of Biology, Faculty of Mathematics and Natural Sciences, University of Mataram, Jl. Majapahit No. 62, Mataram 83125, West Nusa Tenggara, Indonesia Tlp/Fax. 0370 646506, email: *[email protected] Abstrak Lumut Kerak merupakan simbiosis antara fungi dan alga atau cyanobacterium. yang bermanfaat sebagai bioresource, biondikator serta studi ekosistem. Dalam penelitian ini, beberapa aspek lumut kerak akan diteliti meliputi komposisi jenis, beserta jumlah individu tiap jenisnya dan nilai keanekaragaman lumut kerak. Penelitian ini bersifat deskriptif eksploratif yang telah dilaksanakan pada bulan Oktober-Desember 2016. Pengambilan data dilakukan menggunakan metode stratified random sampling dengan menempatkan 11 unit sampel berbentuk persegi. Pada tiap unit sampel, dipilih 12 pohon yang masing-masing akan dipasang 4 grid berukuran 50x10 cm. Identifikasi sampel dilakukan dengan mencocokkan (profile matching) ciri morfologi serta hasil spot test dengan buku identifikasi. Nilai keanekaragaman lumut kerak dianalisis dengan menggunakan Lichen Diversity Value serta Indeks Shannon dan Pielou. Dari hasil penelitian, 4 spesies ditemukan dari kelas Lecanoromycetes dan kelas Arthoniomycetes. Satu spesies tidak teridentifikasi. Nilai LDVj tertinggi 13,5 dari unit sampel blok perlindungan. Indeks nilai Shannon sebesar 0,57 dan Pielou sebesar 0,32. Kata kunci : TWA Suranadi, Lumut Kerak, Identifikasi, Nilai Keanekaragaman Abstract Lichen is a symbiosis between fungi and algae or cyanobacterium, which are useful as bioresource, bioindicator and ecosystem studies. In this research, several aspects of lichen will be examined including species composition along with the number of individuals of each species and the value of lichen diversity. This research is descriptive explorative which was conducted in October-December 2016. -
Arthonia Pragensis Spec. Nov. (Ascomycetes, Arthoniales), a New Lichenicolous Fungus from the Czech Republic
C z e c h m y c o l . 47 (2), 1994 Arthonia pragensis spec. nov. (Ascomycetes, Arthoniales), a new lichenicolous fungus from the Czech Republic J a n a H o r á k o v á National Museum, Václavské nám. 68, 115 79 Praha 1, Czech Republic Horáková J. (1994): Arthonia pragensis spec. nov. (Ascomycetes, Arthoniales), a new lichenicolous fungus from the Czech Republic. Czech Mycol. 47: 139-143 Arthonia pragensis Horáková, a new lichenicolous fungus (Ascomycetes, Arthoniales) is de scribed from xerothermic area growing on diabase rocks in Prague in the Czech Republic. This is also the first published report of a lichenicolous fungus from the territory of Prague. Key words: Arthonia, lichenicolous fungi, Czech Republic, taxonomy Horáková J. (1994): Arthonia pragensis spec. nov. (Ascomycetes, Arthoniales), nová lichenikolní houba z České republiky. Czech Mycol. 47: 139-143 Arthonia pragensis Horáková je nová lichenikolní houba (Ascomycetes, Arthoniales) popsaná z xerothermních diabasových skal v Praze v České republice. Jedná se o první publikovaný údaj lichenikolní houby na území Prahy. I ntroduction At present the genus Arthonia (Ascomycetes) includes 44 lichenicolous or para sitic species (incl. Conida and Celidium). This very rich group needs a new taxonomic revision, which should include the nature of the ascus structure. Only the recent research underline amyloidity of ascoapical structures in some lichenized and lichenicolous species of Arthonia (Coppins 1983, 1989; Triebel 1989; Alstrup et Hawksworth 1990) and it points out two different ascus types in this genus (Alstrup et Hawksworth 1990). The species described below, collected once on sunny diabase rocks from xe rothermic area in Prague at the elevation cca 310 m above sea level, belongs to those species of Arthonia having this aspect of amyloidity. -
New Erythritol Derivatives from the Fertile Form of Roccella Montagnei
New erythritol derivatives from the fertile form of Roccella montagnei Thuc Huy Duong, Bui Linh Chi Huynh, Warinthorn Chavasiri, Marylene Chollet-Krugler, van Kieu Nguyen, Thi Hoai Thu Nguyen, Poul Erik Hansen, Pierre Le Pogam, Holger Thüs, Joël Boustie, et al. To cite this version: Thuc Huy Duong, Bui Linh Chi Huynh, Warinthorn Chavasiri, Marylene Chollet-Krugler, van Kieu Nguyen, et al.. New erythritol derivatives from the fertile form of Roccella montagnei. Phytochemistry, Elsevier, 2017, 137, pp.156-164. 10.1016/j.phytochem.2017.02.012. hal-01501264 HAL Id: hal-01501264 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01501264 Submitted on 23 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. New erythritol derivatives from the fertile form of Roccella montagnei Thuc Huy Duong,a Bui Linh Chi Huynh,b Warinthorn Chavasiri,c Marylene Chollet-Krugler,d Van Kieu Nguyen,c Thi Hoai Thu Nguyen,e Poul Erik Hansen,f Pierre Le Pogam,d,g Holger Thüs,h Joël Boustie,d* and Kim Phi Phung Nguyenb* a Department of Chemistry, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong Street, District 5, Ho Chi Minh City 748342, Vietnam, b Department of Organic Chemistry, University of Science, National University – Ho Chi Minh City, 227 Nguyen Van Cu Str., Dist. -
Shropshire Fungus Checklist 2010
THE CHECKLIST OF SHROPSHIRE FUNGI 2011 Contents Page Introduction 2 Name changes 3 Taxonomic Arrangement (with page numbers) 19 Checklist 25 Indicator species 229 Rare and endangered fungi in /Shropshire (Excluding BAP species) 230 Important sites for fungi in Shropshire 232 A List of BAP species and their status in Shropshire 233 Acknowledgements and References 234 1 CHECKLIST OF SHROPSHIRE FUNGI Introduction The county of Shropshire (VC40) is large and landlocked and contains all major habitats, apart from coast and dune. These include the uplands of the Clees, Stiperstones and Long Mynd with their associated heath land, forested land such as the Forest of Wyre and the Mortimer Forest, the lowland bogs and meres in the north of the county, and agricultural land scattered with small woodlands and copses. This diversity makes Shropshire unique. The Shropshire Fungus Group has been in existence for 18 years. (Inaugural meeting 6th December 1992. The aim was to produce a fungus flora for the county. This aim has not yet been realised for a number of reasons, chief amongst these are manpower and cost. The group has however collected many records by trawling the archives, contributions from interested individuals/groups, and by field meetings. It is these records that are published here. The first Shropshire checklist was published in 1997. Many more records have now been added and nearly 40,000 of these have now been added to the national British Mycological Society’s database, the Fungus Record Database for Britain and Ireland (FRDBI). During this ten year period molecular biology, i.e. DNA analysis has been applied to fungal classification. -
British Lichen Society Bulletin No
1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2010 PRESIDENT S.D. Ward, 14 Green Road, Ballyvaghan, Co. Clare, Ireland, email [email protected]. VICE-PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: position currently vacant.