PDF • Data Logger Function Document

Total Page:16

File Type:pdf, Size:1020Kb

PDF • Data Logger Function Document Systems P E T S STEP Systems GmbH Soil Testing Equipment - Professional Systems Catalogue www.stepsystems.de Soil - Water - Climate Testing Equipment Online Catalogue About us Contacts: STEP Systems GmbH Harald Braungardt Marjan Karlovic Duisburger Str. 44 CEO Sales and Technical Manager 90451 Nuremberg e-mail: [email protected] e-mail: [email protected] Germany Languages: German / English / French Languages: German / English / Croatian Phone: +49 911-96 26 05 0 Fax: +49 911-96 26 05 9 e-mail: [email protected] web: www.stepsystems.de Business hours: Mo. - Thu. 8 a.m. to 5 p.m. Fr. 8 a.m. to 1 p.m. VAT-no.: DE 813853567 Tax-no.: 216/137/80065 Register court: Fürth HRB 9582 CEO: Harald Braungardt Anastasia Konarek Yana Murashova Sales and Export Manager M.A. Strategic Marketing Management e-mail: [email protected] e-mail: [email protected] Languages: German / English / Russian Languages: German / English / Russian Copyright STEP Systems GmbH, 2021. Subject to technical changes. Printed in Germany Photos: STEP Systems GmbH, Nuremberg. Image rights for product photos from external suppliers are available (see at www.stepsystems.de). Lovren Brajkovic Carolin Bauriedel Production Manager Office Manager e-mail: [email protected] e-mail: [email protected] Languages: German / English / Croatian Languages: German / English Member of 2 Imprint Content pH and Salinity Light Measurement Phytomonitoring Multi-function Unit COMBI 5000 .......4 Find out more ....................................21 Phyto-Monitoring System ...............34 LUX meter .........................................21 Photosynthesis Monitor .....................34 pH Measurement................................6 PAR / Quantum meter .......................21 pH measurement in soil .......................6 Lighting spectrometer ........................21 pH measurement in solutions ..............6 Moisture Measurement Activity Measurement .......................7 Soil Moisture ....................................36 Climate Control Find out more ......................................7 SWM 5000 .........................................36 Direct measurement of salt content / Internet Weather Stations ...............22 FDR / TDR soil moisture activity..................................................7 T-Warner weather stations ................22 measurement.....................................37 IoT weather stations ..........................23 Tensiometric soil moisture measurement.....................................38 EC Measurement ...............................8 T-Warner sensors ..............................25 EC measurement in solutions..............8 Soil water extraction ..........................38 Weather Stations .............................26 Further soil moisture measurements .38 Flow Measurement ............................9 Wireless weather station ...................26 Moisture Measurement ...................39 pH and EC flow measurement.............9 Rain gauge .......................................26 Material moisture ...............................39 Combination Units ...........................10 Thermo-Hygrometer ........................27 Hay moisture .....................................39 Combo Pocket Tester ..........................8 Digital thermo-hygrometer .................27 Infrared moisture analyser .................39 COMBI 5000: Multi-function units ......10 Hygrometer ........................................27 Grain moisture ..................................39 COMBI 5000: Technical data .............11 USB data logger ................................27 Temperature Sensors ......................28 Soil Properties Temperature measuring sensors .......28 Single Elements Data logger for compost ....................28 Soil Samplers ...................................40 Hand auger equipment ......................40 Analysis of nutritional parameters 12 Gas Measurement............................29 Samplers and accessories ................41 The photometric complete system LASA AGRO 3900 Workstation ........12 Compost Thermometer ...................29 Soil Compaction ..............................42 LASA AGRO 1900 Mobile..................13 Thermometer....................................30 Penetrometer .....................................42 Extraction case ..................................13 Analogue & digital thermometers ......30 Soil compaction probe .......................42 Cuvette tests......................................14 Injection temperature probes .............30 Quality management .........................15 Evaluation ..........................................15 Compact photometer PF-3 ................16 Quick tests .........................................16 Fruit Quality Nitrate measurement .........................17 Fruit quality control .........................31 Nitrogen measurement ......................17 Ethylene Measurement......................31 Food Scanner ....................................31 Sugar content ....................................32 Laboratory Equipment Fruit size ............................................32 Maturity determination .......................32 Laboratory Equipment ....................18 Fruit acid ............................................33 Laboratory devices ............................18 pH meter for juices ............................33 Water treatment .................................18 Colour measurement .........................33 Sample preparation ...........................18 Scales ...............................................19 Magnifying Glasses .........................20 Magnifiers ..........................................20 Microscopes ......................................20 Content 3 Multi-function unit COMBI 5000 8 measurements with only 1 device COMBI 5000 The new generation of plant nutrition measurement technology Air temperature, humidity and air pressure measurement The HPT probe enables simultaneous measurement of air temperature, humidity and air pressure. The integrated sensor technology is highly precise and has a very fast response time. Like all COMBI 5000 The COMBI 5000 is an universal instrument Functions: sensors, the air temperature and humidity for the immediate measurement of the most pH measurement sensor is automatically recognised by a important parameters in plant production. special coding as soon as it is connected to pH is one of the most important parameters in the basic unit. Universally applicable the plant nutrition. The absorption of nutrients Wide range of probes for monitoring by the plants is highly dependent on pH. The HPT sensor is especially important in nutritional status of your plants. For this reason, fast, easy and accurate pH greenhouse cultivation with ventilation and measurements are essential in professional shading installations. The extension of the No application errors horticulture. control possibilities of the growing conditions The latest microprocessor technology by measuring air temperature and humidity enables automatic sensor recognition: each EC measurement is a further step in the development of a fully comprehensive multifunctional control time the probe is changed, the instrument Electrical conductivity of an aqueous solution system in professional plant production. automatically switches to the corresponding is directly related to the concentration of the measuring mode. dissolved salts. For plant nutrition control, it is essential to measure EC of process water Easy-to-use and nutrient solution, especially in closed and Data logger function The automatic buffer recognition during hydroponic cultivation. calibration also ensures a high level of operating convenience and additional safety. Activity measurement (salinity) Fast on Salinity is determined by the concentration Simply exchange probes during the of total dissolved salts directly in the soil or measurement without a re-start. substrate, taking into consideration the rele- vant soil properties, like soil moisture, tem- Saves time perature and soil compaction. These factors Simultaneous measurement of different determine the quantity of salts being “active“ parameters. and available to the plants. The basic unit can be ordered with an Always ready to go Moisture measurement integrated data logger, which records all The unit is delivered in a sturdy aluminium The measuring principle is based on the FDR measurements. Using the USB cable, all case, with all accessories stored safely and measuring technology and is not affected by data stored in the device can be transferred within reach. pH and salt content of the soil and substrates. to a computer. Water content data (expressed in Vol%) allow Multilingual immediate statement about the irrigation Easy to understand menu is available in three water requirements. Technical data, component parts and languages: German, English and Russian. configurations see pages 10-11. Smart Soil temperature measurement Evaluation via the COMBI 5000 app provides Temperature measurement is carried out in quick and easy storage and interpretation of the range of -10°C to +50°C by a fast-reacting Video Overview all measured values for different plants. NTC sensor spattered in the probe tip. 4 pH and Salinity Multi-function unit COMBI 5000 8 measurements with only 1 device 8 measurements for rapid control of plant The COMBI 5000 is a perfect tool to provide COMBI 5000 App nutrition with only one device. information about the plant nutrition status for Artificial intelligence in horticulture professional plant
Recommended publications
  • Automatic Temperature Controls
    230900S03 INSTRUMENTATION AND CONTROL FOR HVAC UK Controls Standard SECTION 230900S03 - AUTOMATIC TEMPERATURE CONTROLS PART 1 - GENERAL RELATED DOCUMENTS: Drawings and general provisions of the Contract, including General and Supplementary Conditions, General Mechanical Provisions and General Requirements, Division 1 Specification Sections apply to the work specified in this section. DESCRIPTION OF WORK: Furnish a BACnet system compatible with existing University systems. All building controllers, application controllers, and all input/output devices shall communicate using the protocols and network standards as defined by ANSI/ASHRAE Standard 135-2001, BACnet. This system shall communicate with the University of Kentucky Facility Management’s existing BACnet head-end software using BACnet/IP at the tier 1 level and BACnet/MSTP at the tier 2 level. No gateways shall be used for communication to controllers installed under section. BACnet/MSTP or BACnet/IP shall be used for all other tiers of communication. No servers shall be used for communication to controllers installed under this section. If servers are required, all hardware and operating systems must be approved by the Facilities Management Controls Engineering Manager and/or the Facilities Management Information Technology Manager. All Building Automation Devices should be located behind the University firewall, but outside of the Medical Center Firewall and on the environmental VLAN. Provide all necessary hardware and software to meet the system’s functional specifications. Provide Protocol Implementation Conformance Statement (PICS) for Windows-based control software and every controller in system, including unitary controllers. These must be in compliance with Front End systems PICS and BIBBS and attached Tridium PICS and BIBBS.
    [Show full text]
  • High Performance Platforms
    High Performance Platforms Salvatore Orlando High Perfoamnce Computing - S. Orlando 1 Scope of Parallelism: the roadmap towards HPC • Conventional architectures are coarsely comprised of – processor, memory system, I/O • Each of these components presents significant performance bottlenecks. – It is important to understand each of these performance bottlenecks to reduce their effects • Parallelism addresses each of these components in significant ways to improve performance and reduce the bottlenecks • Applications utilize different aspects of parallelism, e.g., – data intensive applications utilize high aggregate memory bandwidth – server applications utilize high aggregate network bandwidth – scientific applications typically utilize high processing and memory system performance High Perfoamnce Computing - S. Orlando 2 Implicit Parallelism: Trends in Microprocessor Architectures • Microprocessor clock speeds have posted impressive gains over the past two decades (two to three orders of magnitude) – there are limits to this increase, also due to power consumption and heat dissipation • Higher levels of device integration have made available a large number of transistors – the issue is how best to transform these large amount of transistors into computational power • Single-core processors use these resources in multiple functional units and execute multiple instructions in the same cycle. • The precise manner in which these instructions are selected and executed provides impressive diversity in architectures. High Perfoamnce Computing - S. Orlando 3 ILP High Perfoamnce Computing - S. Orlando 4 Instruction Level Parallelism • Pipelining overlaps various stages of instruction execution to achieve performance • At a high level of abstraction, an instruction can be executed while the next one is being decoded and the next one is being fetched. • This is akin to an assembly line for manufacture of cars.
    [Show full text]
  • Multiprocessing Contents
    Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References .............................................
    [Show full text]
  • K1DM3 Control System Software User's Guide
    K1DM3 Control System Software User's Guide William Deich University of California Observatories 07 Jan 2020 ver 3.7b Contents 1 Overview 6 1.1 Active Components of K1DM3..........................6 1.1.1 Drum....................................6 1.1.2 Swingarm..................................9 1.2 Position Summary................................. 13 1.3 Motion Controllers................................. 13 1.4 Software....................................... 14 1.4.1 Back-end Services............................. 14 1.4.2 End-User Applications........................... 15 1.5 K1DM3 Private Network.............................. 15 2 Starting, Stopping, Suspending Services 17 2.1 Starting/Stopping................................. 17 2.2 Suspending Dispatchers.............................. 19 2.3 Special No-Dock Engineering Version....................... 19 2.4 Periodic Restarts.................................. 20 3 Components, Assemblies, and Sequencers 21 3.1 Elementary Components.............................. 21 3.2 Compound Keywords............................... 22 3.3 Assemblies...................................... 22 3.4 Sequencers..................................... 23 3.5 The ACTIVATE Sequencer............................ 24 3.6 The M3AGENT Sequencer............................ 27 3.7 Monitoring Sequencer Execution......................... 27 4 Dispatcher Interfaces for Routine Operations 29 4.1 TCS Operations.................................. 31 4.2 M3AGENT..................................... 32 4.3 Hand Paddle...................................
    [Show full text]
  • Computer Structures for Distributed Systems Liam
    COMPUTER STRUCTURES FOR DISTRIBUTED SYSTEMS LIAM MAURICE CASEY C DOCTOR OF PHILOSOPHY UNIVERSITY OF EDINBURGH 1977. - ABSTRPCI: A building block approach to configuring large corruter. iEerns is attractive because the blocks, either primitive processors or small computers, are daily becoming cheaper and because this approach alloiis a close match of the pcwer required to the pciler supplied. This thesis addresses the design goal of an expandable system where there is no premium paid for a minimal configuration and the cost of extra units of capacity is constant. It is shoiin that a distributed system, a system of homogeneous canputers loosely coupled by a cartmunication subsystem, is likely to be the best approach to this design goal. Some consideration is given to the form of the canmunication subsystem but the rain research is directed to.ards the software organisation required to achieve efficient co-operation between the canputers constituting the distributed system. An organisation based on the domain structures of protection schenEs is found to have advantages. Hitherto dcirtain management using capabilities has been centred around systems with shared. primary memory. This is because central tables have been required to implement the capability rrechanism. A model is developed which, by restricting. the sharing of some items and providing a 'global object' managerrent scheme to cover essential sharing, enables central tables to be dispensed with and dcmain managenent to be distributed. The main goal in achieving this extension is to facilitate dynamic and efficient load sharing but the model could equally well be used to provide, in distributed systems, the protection normally associated with danains.
    [Show full text]
  • Stuart Elliot Madnick V37
    STUART ELLIOT MADNICK V37 John Norris Maguire Professor of Information Technology Sloan School of Management and Professor of Engineering Systems Sloan School of Engineering Massachusetts Institute of Technology TABLE OF CONTENTS EDUCATION ............................................................................................. 1 PRINCIPAL FIELD OF INTEREST ........................................................ 1 NAME AND RANK OF OTHER FACULTY IN SAME FIELD ......... 1 1. SUMMARY OF NON-MIT EXPERIENCE ....................................... 2 2. SUMMARY OF MIT APPOINTMENTS ........................................... 4 3. COMMITTEES ...................................................................................... 5 4. CONSULTING ACTIVITIES .............................................................. 8 5. PROFESSIONAL ACTIVITIES ............................................................ 11 6. PROFESSIONAL SOCIETIES ............................................................. 14 7. SUBJECTS TAUGHT ............................................................................ 15 8. THESIS SUPERVISION ....................................................................... 19 9. RESEARCH PROJECT SUPERVISION (Principal Investigator or co-PI) .... 28 10. PUBLICATIONS ................................................................................ 32 10.1 BOOKS AND MONOGRAPHS ........................................................................................................ 32 10.2 BOOK CHAPTERS ...........................................................................................................................
    [Show full text]
  • Hb Lee Hvac Upgrades Specifications
    SECTION 00 01 10 TABLE OF CONTENTS DESCRIPTION OF CONTENTS The complete Contract Documents contain the following: VOLUME 1 PROJECT MANUAL Division 0 Contracting Requirements Division 1 General Requirements Divisions 2-14 Building Technical Specification Divisions 21-23 Mechanical Technical Specification Divisions 26-28 Electrical Technical Specification Divisions 31-33 Site Technical Specification VOLUME 2 PROJECT DRAWINGS Division G General Drawings Division C Civil Drawings Division L Landscape Drawings Division A Architectural Drawings Division E Electrical Drawings Division M Mechanical Drawings Division P Plumbing Drawings VOLUME 1 PROJECT MANUAL Unit Number Description DIVISION 0 BIDDING AND CONTRACTING REQUIREMENTS Section 00 01 01 Introduction 00 01 10 Table of Contents 00 11 16 Invitation to Bidders 00 21 13 Instructions to the Bidders Substitution Request Form 00 41 00 Bid Form First-Tier Subcontractor Disclosure Form 00 50 00 Agreement Forms State of Oregon Public Improvement Agreement 00 61 00 Bond Forms Bid Bond Form Performance and Payment Bond Forms 00 72 00 General Conditions State of Oregon General Conditions for Public Improvement Contracts 00 73 43 Prevailing Wage Rates 00 91 13 Addendum DIVISION 1 GENERAL REQUIREMENTS Section 01 11 00 Summary of Work 01 21 13 Unit Cost Work Items 01 23 00 Alternative Bid Items 00 29 00 Payment Procedures June 9, 2016 Reynolds School District 7 00 01 10-1 HB Lee Middle School HVAC Upgrades SECTION 00 01 10 TABLE OF CONTENTS 01 31 00 Coordination 01 33 00 Submittals 01 40 00 Quality
    [Show full text]
  • DOWNLOAD the Labmart 2013 Catalog
    Alconox Detergents 24 Bags 10 Balances 11-17, 70 Welcome To Baths 35 Beakers 3, 60 About Us Benchtop Covers 23 For more than 160 years, The LabMart® has offered NEW and INNOVATIVE Biotechnology 68 products at affordable prices! We look forward to suppling you with all Bottles 3, 9, 53-57 your lab needs in the future & thank you for your past patronage. Brushes 22 Buffers, pH 51 Burners 38 Contact Us Carts 22 Call: 800-684-1234 Fax: 908-561-3002 Calculators 39 Online: www.labmart.com E-mail: [email protected] Centrifuges & Accessories 18-21 Mail: J&H Berge/The LabMart® Cleaning 22-24, 33 4111 South Clinton Avenue PO Box 310 Corning Glassware Sale 3-7 South Plainfield, NJ 07080 Cryoware 25-26 Cylinders 4, 55 This Edition Desiccator 27 This edition offers our best products at the best prices. WE WENT GREEN and cut Dishes, Glass / Petri 7, 69 back on resources to reduce our carbon footprint. We still have a full line catalog, Dispensers 44, 54 just contact us and will will be happy to send it to you. And of course, our online Disposal, Safety 8 catalog (www.labmart.com) lists every product and chemical we offer. If you don’t Electrophoresis 27 see it or can’t find it, call us. We can cross-reference any competitors’ product number Electrodes, pH 52 Filtration / Paper 28-30 or description and beat their price. Flasks 5-7, 69 Food Prep / Handling 59, 70-71 New and Free Stuff Funnels 60 We have packed this catalog with the latest and best products Gloves 31-34 produced by leading manufacturers.
    [Show full text]
  • Some Computer Organizations and Their Effectiveness Michael J Flynn
    Some Computer Organizations and Their Effectiveness Michael J Flynn IEEE Transactions on Computers. Vol. c-21, No.9, September 1972 Introduction Attempts to codify a computer have been from three points of view ! Automata Theoritic or microscopic ! Individual Problem Oriented ! Global or Statistical Microscopic View: ! Relationships are described exhaustively ! All parameters are considered irrespective of their importance in the problem Individual Poblem Oriented: ! Compare Computer Organizations based on their relative performances in a peculiar environment ! Such comparisons are limited because of their ad hoc nature Global or Statistical Comparisons: ! Made on basis of statistical tabulations of relative performances on various jobs or mixture of jobs Drawback: The analysis is of little consequence in the system as the base premise on which they were based has been changed Objective of this paper: To reexamine the principal interactions within a processor system so as to generate a more “macroscopic” view, yet without reference to a particular environment Limitations: 1. I/O problems are not treated as a limiting resource 2. No assessment of particular instruction set 3. In spite of the fact that either (1) or (2) will dominate the assessment we will use the notion of efficiency Classification: Forms of Computing Systems Stream : sequence of items (instructions or data) Based on the magnitude of interactions of the instructions and data streams, machines are classified as 1. SISD - Single Instruction, Single Data Stream 2. SIMD - Single Instruction, Multiple Data Stream 3. MISD - Multiple Instruction, Single Data Stream 4. MIMD - Multiple Instruction, Multiple Data Stream Let us formalize the stream view of Computing in order to obtain a better insight.
    [Show full text]
  • Intel Thread Building Blocks, Part III
    Intel Thread Building Blocks, Part III SPD course 2014-15 Massimo Coppola 12/05/2015 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti 1 Parallel_do template< typename InputIterator, typename Body> void parallel_do( InputIterator first, InputIterator last, Body body [, task_group_context& group] ); • Parallel_do has two forms, both using the object- oriented syntax • Applies a function object body to a specified interval – The body can add additional tasks dynamically – Iterator is a standard C++ one, however • a purely serial input iterator is a bottleneck • It is better to use iterators over random-access data structures • Replaces the deprecated parallel_while MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti 2 Parallel_do Template< typename Container, typename Body> void parallel_do( Container c, Body body [, task_group_context& group] ); • Shorter equivalent for processing a whole container – iterators are provided by the Container type – equivalent to passing std::begin() and std:: end() with the other syntax MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti 3 Computing and adding items in a do • The body class need to compute on the template T type e.g. operator() – Body also needs a copy constructor and a destroyer B::operator()( T& item, parallel_do_feeder<T>& feeder ) const B::operator()( T& item ) const • Adding items depends on the signature of the Body operator() -- two possible signatures – First signature, with extra parameter, allows each item to call a feeder callback to add more items dinamically à e.g. allows dynamically bound parallel do, feedback, divide & conquer – Second signature means the do task set is static – You can’t define both! MCSN – M.
    [Show full text]
  • Grid Computing
    Grid computing This article needs additional citations for verification. Please help improve this article by adding reliable references. Unsourced material may be challenged and removed. (July 2010) This article needs attention from an expert on the subject. See the talk page for details. Consider associating this request with a WikiProject. (July 2010) Grid computing is a term referring to the combination of computer resources from multiple administrative domains to reach a common goal. The grid can be thought of as a distributed system with non-interactive workloads that involve a large number of files. What distinguishes grid computing from conventional high performance computing systems such as cluster computing is that grids tend to be more loosely coupled, heterogeneous, and geographically dispersed. Although a grid can be dedicated to a specialized application, it is more common that a single grid will be used for a variety of different purposes. Grids are often constructed with the aid of general-purpose grid software libraries known as middleware. Grid size can vary by a considerable amount. Grids are a form of distributed computing whereby a ―super virtual computer‖ is composed of many networked loosely coupled computers acting together to perform very large tasks. Furthermore, ―distributed‖ or ―grid‖ computing, in general, is a special type of parallel computing that relies on complete computers (with onboard CPUs, storage, power supplies, network interfaces, etc.) connected to a network (private, public or the Internet) by a conventional network interface, such as Ethernet. This is in contrast to the traditional notion of a supercomputer, which has many processors connected by a local high- speed computer bus.
    [Show full text]
  • Multithreading Contents
    Master Program (Laurea Magistrale) in Computer Science and Networking High Performance Computing Systems and Enabling Platforms Marco Vanneschi Multithreading Contents • Main features of explicit multithreading architectures • Relationships with ILP • Relationships with multiprocessors and multicores • Relationships with network processors • GPUs MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 2 Basic principle • Concurrently execute instructions of different threads of control within a single pipelined processor • Notion of thread in this context: – NOT “software thread” as in a multithreaded OS, – Hardware-firmware supported thread: an independent execution sequence of a (general- purpose or specialized) processor: • A process • A compiler generated thread • A microinstruction execution sequence • A task scheduled to a processor core in a GPU architecture • Even an OS thread (e.g. POSIX) • In a multithreaded architecture, a thread is the unit of instruction scheduling for ILP – Neverthless, multithreading might be a powerful mechanism for multiprocessing too (i.e., parallelism at process level in multiprocessors architectures) • (Unfortunately, there is a lot of confusion around the word “thread”, which is used in several contexts often with very different meanings) MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 3 Basic architecture • More independent program counters • Tagging mechanism (unique identifiers) to distinguish instructions of different threads within the pipeline • Efficient mechanisms for thread switching: very efficient context switching, from zero to very few clock cycles • Multiple register sets Request DM – (not always statically allocated) IM Queue Interleave the execution of instructions of different threads in the same pipeline. IU Pipelined EU Request FIXED RG ICIC Queue FIXED RG Try “to fill” the ICIC FIXED RG latencies as much as FLOAT RG FLOAT RG possible.
    [Show full text]