Grid Computing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Automatic Temperature Controls
230900S03 INSTRUMENTATION AND CONTROL FOR HVAC UK Controls Standard SECTION 230900S03 - AUTOMATIC TEMPERATURE CONTROLS PART 1 - GENERAL RELATED DOCUMENTS: Drawings and general provisions of the Contract, including General and Supplementary Conditions, General Mechanical Provisions and General Requirements, Division 1 Specification Sections apply to the work specified in this section. DESCRIPTION OF WORK: Furnish a BACnet system compatible with existing University systems. All building controllers, application controllers, and all input/output devices shall communicate using the protocols and network standards as defined by ANSI/ASHRAE Standard 135-2001, BACnet. This system shall communicate with the University of Kentucky Facility Management’s existing BACnet head-end software using BACnet/IP at the tier 1 level and BACnet/MSTP at the tier 2 level. No gateways shall be used for communication to controllers installed under section. BACnet/MSTP or BACnet/IP shall be used for all other tiers of communication. No servers shall be used for communication to controllers installed under this section. If servers are required, all hardware and operating systems must be approved by the Facilities Management Controls Engineering Manager and/or the Facilities Management Information Technology Manager. All Building Automation Devices should be located behind the University firewall, but outside of the Medical Center Firewall and on the environmental VLAN. Provide all necessary hardware and software to meet the system’s functional specifications. Provide Protocol Implementation Conformance Statement (PICS) for Windows-based control software and every controller in system, including unitary controllers. These must be in compliance with Front End systems PICS and BIBBS and attached Tridium PICS and BIBBS. -
Job Peer Group Controller Job Peer Group Host a PG for Each Job
Korea-Japan Grid Symposium, Seoul December 1-2, 2004 P3: Personal Power Plant Makes over your PCs into power generator on the Grid Kazuyuki Shudo <[email protected]>, Yoshio Tanaka, Satoshi Sekiguchi Grid Technology Research Center, AIST, Japan P3: Personal Power Plant Middleware for distributed computation utilizing JXTA. Traditional goals Cycle scavenging Harvest compute power of existing PCs in an organization. Conventional dist. computing Internet-wide distributed computing E.g. distributed.net, SETI@home Challenging goals Aggregate PCs and expose them as an integrated Grid resource. Integrate P3 with Grid middleware ? cf. Community Scheduler Framework Dealings and circulation of computational resources Transfer individual resources (C2C, C2B) and also aggregated resources (B2B). Transfer and aggregation of Other resources than processing power. individual resources Commercial dealings need a market and a system supporting it. P2P way of interaction between PCs P3 uses JXTA for all communications JXTA is a widely accepted P2P protocol, project and library, that provides common functions P2P software requires. P2P concepts supported by JXTA efficiently support P3: Ad-hoc self-organization PCs can discover and communicate with each other without pre-configuration. Discovery PCs dynamically discover each other and jobs without a central server. Peer Group PCs are grouped into job groups, in which PCs carry out code distribution, job control, and collective communication for parallel computation. Overlay Network Peer ID in JXTA is independent from physical IDs like IP addresses and MAC addresses. JXTA enables end-to-end bidirectional communication over NA(P)T and firewall (even if the FW allows only unidirectional HTTP). This function supports parallel processing in the message-passing model, not only master-worker model. -
Web Services and PC Grid
Web Services and PC Grid ONG Guan Sin <[email protected]> Grid Evangelist Singapore Computer Systems Ltd APBioNet/APAN 18 Jul 2006 Tera-scale Campus Grid @ NUS LATEST: CIO Award 2006 winner Harnessing existing computation capacity campus-wide, creating large-scale supercomputing capability Computers are aggregated through its gigabit network into a virtual supercomputing platform using United Devices Grid MP middleware Community grid by voluntary participation from depts Two-year collaboration project between NUS and SCS to develop applications and support community Number of Nodes Theoretical# Practical^ 1,042 (Sep 20, 2005) 4.5 TFlops 2.5 TFlops 3,000 (Planned - 2007) 13 TFlops 7.2 TFlops * Accumulated average CPU speed of 2.456GHz as at Sep 20, 2005 # Assuming 90% capacity effectively harnessed ^ Assuming 50% capacity effectively harnessed Copyright 2006 Singapore Computer Systems Limited 2 UD Grid MP Architecture Managed Grid Services Interface (MGSI) ± Web Services API 3 Command-line Interface Application Service 4 Simple Web Interface 5 Application Service Overview Application Service . Is a job submission and result retrieval program which provides users with a simple interface for performing work on the Grid . It is responsible for Splitting and Merging Application Data Features . Control the Grid MP Sever with SOAP or XML-RPC communications . SOAP and XML-RPC Communications are protected with SSL encryption . SOAP and XML-RPC are language and platform independent with many publicly available toolkits and libraries. User interface can be command-line, web-based, GUI, etc. Can be written to run on various operating systems MP Grid Services Interface (MGSI) . All Objects in the Grid MP platform can be controlled through the MGSI . -
Good Practice Guide No. 17 Distributed Computing for Metrology
NPL REPORT DEM-ES 006 Software Support for Metrology - Good Practice Guide No. 17 Distributed computing for metrology applications T J Esward, N J McCormick, K M Lawrence and M J Stevens NOT RESTRICTED March 2007 National Physical Laboratory | Hampton Road | Teddington | Middlesex | United Kingdom | TW11 0LW Switchboard 020 8977 3222 | NPL Helpline 020 8943 6880 | Fax 020 8943 6458 | www.npl.co.uk Software Support for Metrology Good Practice Guide No. 17 Distributed computing for metrology applications T J Esward, N J McCormick, K M Lawrence and M J Stevens Mathematics and Scientific Computing Group March 2007 ABSTRACT This guide aims to facilitate the effective use of distributed computing methods and techniques by other National Measurement System (NMS) programmes and by metrologists in general. It focuses on the needs of those developing applications for distributed computing systems, and on PC desktop grids in particular, and seeks to ensure that application developers are given enough knowledge of system issues to be able to appreciate what is needed for the optimum performance of their own applications. Within metrology, the use of more comprehensive and realistic mathematical models that require extensive computing resources for their solution is increasing. The motivation for the guide is that in several areas of metrology the computational requirements of such models are so demanding that there is a strong requirement for distributed processing using parallel computing on PC networks. Those who need to use such technology can benefit from guidance on how best to structure the models and software to allow the effective use of distributed computing. -
Print This Article
L{{b b Volume 1, No. 3, Sept-Oct 2010 International Journal of Advanced Research in Computer Science RESEARCH PAPER Available Online at www.ijarcs.info A Simplified Network manager for Grid and Presenting the Grid as a Computation Providing Cloud M.Sudha* M.Monica Assistant Professor (Senior) Assistant Professor, School of Information Technology and Engineering, VIT School of Computer Science and Engineering, University INDIA VIT University INDIA [email protected] [email protected] Abstract: One of the common forms of distributed computing is grid computing. A grid uses the resources of many separate computers, loosely connected by a network, to solve large-scale computation problems. Our approach was as follows first computationally large data is split into a number of smaller, more manageable, working units secondly each work-unit is then sent to one member of the grid ,That member completes processing of that work-unit in its own and sends back the result. In this architecture, there needs to be at least one host that performs the task of assigning work-units, and then sending them, to a remote processor, as well as receive the results from remote processors. We call this unit as the Network Manager. In addition to this assigning, sending and receiving the work-units and results, there also is the need for a host that splits tasks into work-units and assimilates the received work units. We call this unit as the Task Broker, which we propose to design. On the server end, there is a program for processing module, splitter and assimilator (broker). -
High Performance Platforms
High Performance Platforms Salvatore Orlando High Perfoamnce Computing - S. Orlando 1 Scope of Parallelism: the roadmap towards HPC • Conventional architectures are coarsely comprised of – processor, memory system, I/O • Each of these components presents significant performance bottlenecks. – It is important to understand each of these performance bottlenecks to reduce their effects • Parallelism addresses each of these components in significant ways to improve performance and reduce the bottlenecks • Applications utilize different aspects of parallelism, e.g., – data intensive applications utilize high aggregate memory bandwidth – server applications utilize high aggregate network bandwidth – scientific applications typically utilize high processing and memory system performance High Perfoamnce Computing - S. Orlando 2 Implicit Parallelism: Trends in Microprocessor Architectures • Microprocessor clock speeds have posted impressive gains over the past two decades (two to three orders of magnitude) – there are limits to this increase, also due to power consumption and heat dissipation • Higher levels of device integration have made available a large number of transistors – the issue is how best to transform these large amount of transistors into computational power • Single-core processors use these resources in multiple functional units and execute multiple instructions in the same cycle. • The precise manner in which these instructions are selected and executed provides impressive diversity in architectures. High Perfoamnce Computing - S. Orlando 3 ILP High Perfoamnce Computing - S. Orlando 4 Instruction Level Parallelism • Pipelining overlaps various stages of instruction execution to achieve performance • At a high level of abstraction, an instruction can be executed while the next one is being decoded and the next one is being fetched. • This is akin to an assembly line for manufacture of cars. -
Multiprocessing Contents
Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References ............................................. -
ETSI TR 102 659-1 V1.2.1 (2009-10) Technical Report
ETSI TR 102 659-1 V1.2.1 (2009-10) Technical Report GRID; Study of ICT Grid interoperability gaps; Part 1: Inventory of ICT Stakeholders 2 ETSI TR 102 659-1 V1.2.1 (2009-10) Reference RTR/GRID-0001-1[2] Keywords analysis, directory, ICT, interoperability, testing ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. -
Supporting Concurrency Abstractions in High-Level Language Virtual Machines
Faculty of Science and Bio-Engineering Sciences Department of Computer Science Software Languages Lab Supporting Concurrency Abstractions in High-level Language Virtual Machines Dissertation Submitted for the Degree of Doctor of Philosophy in Sciences Stefan Marr Promotor: Prof. Dr. Theo D’Hondt Copromotor: Dr. Michael Haupt January 2013 Print: Silhouet, Maldegem © 2013 Stefan Marr 2013 Uitgeverij VUBPRESS Brussels University Press VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv) Ravensteingalerij 28 B-1000 Brussels Tel. +32 (0)2 289 26 50 Fax +32 (0)2 289 26 59 E-mail: [email protected] www.vubpress.be ISBN 978 90 5718 256 3 NUR 989 Legal deposit D/2013/11.161/010 All rights reserved. No parts of this book may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author. DON’T PANIC ABSTRACT During the past decade, software developers widely adopted JVM and CLI as multi-language virtual machines (VMs). At the same time, the multicore revolution burdened developers with increasing complexity. Language im- plementers devised a wide range of concurrent and parallel programming concepts to address this complexity but struggle to build these concepts on top of common multi-language VMs. Missing support in these VMs leads to tradeoffs between implementation simplicity, correctly implemented lan- guage semantics, and performance guarantees. Departing from the traditional distinction between concurrency and paral- lelism, this dissertation finds that parallel programming concepts benefit from performance-related VM support, while concurrent programming concepts benefit from VM support that guarantees correct semantics in the presence of reflection, mutable state, and interaction with other languages and libraries. -
Resume Ivo Janssen
Ivo J. Janssen 13266 Kerrville Folkway Austin, TX 78729 (512) 750-9455 / [email protected] Objective To be part of a successful professional services team in a pre-sales and post-sales architecture and deployment role. Summary I'm an experienced, enthusiastic and skilled professional services consultant with experience in architecting and supporting large-scale enterprise software, with extensive experience in designing and implementing custom solutions as part of pre- and post sales support activities in diverse industry verticals across five continents. I'm as comfortable in designing and coding in an engineering role as I am in on-site planning, executing and troubleshooting customer deployments in a professional services role, as well as in participating in sales calls and drafting proposals in a sales engineering role. I'm able to adapt to new environments quickly and rapidly become proficient with new systems, tools and skills. I'm a good team player who thinks beyond the problem at hand instead of following the established paths in order to find a better solution that meets both current and future needs. Professional experience • Virtual Bridges , Austin, TX, USA (Nov 2010 – present) Senior Solution Architect o Solution architect for VDI product line. • Initiate Systems / IBM , Austin, TX, USA (Sep 2008 – Nov 2010) Senior Consultant o Senior implementation engineer for Healthcare sector of Master Data Management product line. o Responsibilities include requirements gathering, product installation and configuration, custom coding, connectivity scripting on Windows and Unix, database performance tuning, customer training workshops, pre/post-sales support. o Successfully architected, implemented and brought live custom implementation projects for major hospital systems and labs in the US, including customers with up to 250 million records (1TB database) connected to 20 auxiliary systems. -
K1DM3 Control System Software User's Guide
K1DM3 Control System Software User's Guide William Deich University of California Observatories 07 Jan 2020 ver 3.7b Contents 1 Overview 6 1.1 Active Components of K1DM3..........................6 1.1.1 Drum....................................6 1.1.2 Swingarm..................................9 1.2 Position Summary................................. 13 1.3 Motion Controllers................................. 13 1.4 Software....................................... 14 1.4.1 Back-end Services............................. 14 1.4.2 End-User Applications........................... 15 1.5 K1DM3 Private Network.............................. 15 2 Starting, Stopping, Suspending Services 17 2.1 Starting/Stopping................................. 17 2.2 Suspending Dispatchers.............................. 19 2.3 Special No-Dock Engineering Version....................... 19 2.4 Periodic Restarts.................................. 20 3 Components, Assemblies, and Sequencers 21 3.1 Elementary Components.............................. 21 3.2 Compound Keywords............................... 22 3.3 Assemblies...................................... 22 3.4 Sequencers..................................... 23 3.5 The ACTIVATE Sequencer............................ 24 3.6 The M3AGENT Sequencer............................ 27 3.7 Monitoring Sequencer Execution......................... 27 4 Dispatcher Interfaces for Routine Operations 29 4.1 TCS Operations.................................. 31 4.2 M3AGENT..................................... 32 4.3 Hand Paddle................................... -
Computer Structures for Distributed Systems Liam
COMPUTER STRUCTURES FOR DISTRIBUTED SYSTEMS LIAM MAURICE CASEY C DOCTOR OF PHILOSOPHY UNIVERSITY OF EDINBURGH 1977. - ABSTRPCI: A building block approach to configuring large corruter. iEerns is attractive because the blocks, either primitive processors or small computers, are daily becoming cheaper and because this approach alloiis a close match of the pcwer required to the pciler supplied. This thesis addresses the design goal of an expandable system where there is no premium paid for a minimal configuration and the cost of extra units of capacity is constant. It is shoiin that a distributed system, a system of homogeneous canputers loosely coupled by a cartmunication subsystem, is likely to be the best approach to this design goal. Some consideration is given to the form of the canmunication subsystem but the rain research is directed to.ards the software organisation required to achieve efficient co-operation between the canputers constituting the distributed system. An organisation based on the domain structures of protection schenEs is found to have advantages. Hitherto dcirtain management using capabilities has been centred around systems with shared. primary memory. This is because central tables have been required to implement the capability rrechanism. A model is developed which, by restricting. the sharing of some items and providing a 'global object' managerrent scheme to cover essential sharing, enables central tables to be dispensed with and dcmain managenent to be distributed. The main goal in achieving this extension is to facilitate dynamic and efficient load sharing but the model could equally well be used to provide, in distributed systems, the protection normally associated with danains.