Design and Construction Considerations for Hydraulic Structures Roller-Compacted Concrete

Total Page:16

File Type:pdf, Size:1020Kb

Design and Construction Considerations for Hydraulic Structures Roller-Compacted Concrete Design and Construction Considerations for Hydraulic Structures Roller-Compacted Concrete Second Edition U.S. Department of the Interior Bureau of Reclamation Technical Service Center Denver, Colorado September 2017 MISSION STATEMENTS The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Cover photos: (top) Aerial view of Upper Stillwater Dam, Utah, the Bureau of Reclamation’s first RCC gravity dam; (right) Upper Stillwater Dam during construction. Design and Construction Considerations for Hydraulic Structures Roller-Compacted Concrete Second Edition U.S. Department of the Interior Bureau of Reclamation Technical Service Center Denver, Colorado September 2017 PREFACE Since Upper Stillwater Dam was designed and constructed in the 1980s, the Bureau of Reclamation (Reclamation) has used roller-compacted concrete (RCC) for a wide variety of applications, including stability buttresses for masonry gravity and concrete arch dams, overtopping protection and upstream slope protection for embankment dams, new gravity dams, new spillways and spillway stilling basins, tailrace dikes, and overflow weirs. This manual provides guidelines for the design and construction of various types of dams and hydraulic structures using RCC, based largely on the experience gained by Reclamation engineers from RCC projects completed over the past 30 years. The information provided herein is intended to emphasize the importance and versatility of RCC as both a material and a construction method. It can serve as a starting point for the design of hydraulic structures using RCC; however, this information is basic and is not intended to serve as a comprehensive design guide. The information is organized as follows: Chapter 1: Definition of RCC and scope of the manual Chapter 2: Background information, including history, philosophy, and practical uses of RCC Chapter 3: Discussion of RCC materials Chapter 4: Design requirements for RCC mixtures, including RCC properties and mixture proportioning procedures Chapter 5: Construction methods, from batching through final testing Chapter 6: Design considerations for new RCC gravity dams Chapter 7: Design considerations for RCC buttresses for concrete dam modifications Chapter 8: Design applications for embankment dams, including overtopping protection, upstream slope protection, water barrier, and replacement structures Chapter 9: Other design applications for RCC Chapter 10: Case histories that illustrate the design, construction, and performance of a variety of RCC projects Design and Construction Considerations for Hydraulic Structures In addition, appendices are included that contain guide specifications for RCC construction (appendix A), a summary of RCC costs (appendix B), and samples of adiabatic temperature rise tests of RCC (appendix C). This manual was developed by Reclamation authors and contributors. Authors of the first edition included (in alphabetical order) Tim Dolen, Tom Hepler, Daniel Mares, Larry Nuss, Doug Stanton, and John Trojanowski. Elizabeth Cohen and Chuck Cooper provided additional information for the case histories. Betty Chavira prepared the RCC guide specifications. John LaBoon and Gregg Scott provided the peer review. Lelon A. Lewis performed technical editing of the manual. Authors of the second edition included (in alphabetical order) Jeff Allen, Veronica Madera, Daniel Mares, and Jerzy Salamon. Walt Heyder and Janet White provided the peer review. Teri Manross performed technical editing of the manual. Nancy Arthur compiled the revised RCC guide specifications, which are in appendix A. Funding for this manual was provided by Reclamation’s Dam Safety Office, Technical Service Center, and Office of Policy. The authors would like to thank these offices for their joint effort in support of the development and publication of this manual. ABBREVIATIONS AND ACRONYMS % percent °C degrees Celsius °F degrees Fahrenheit ACI American Concrete Institute AEA air-entraining admixture AFP Annualized Failure Probability ALL Annualized Life Loss ASR alkali-silica reaction ASTM American Society for Testing and Materials C:P cement to pozzolan (ratio) C+P cement plus pozzolans CRB Consulting Review Board DOT Department of Transportation FE Finite Element FEMA Federal Emergency Management Agency ft3 cubic feet ft3/s cubic feet per second GERCC grout-enriched roller compacted concrete GEVR grout-enriched vibratable roller compacted concrete GMSS Gravity Method of Stress and Stability lb pounds lb/ft3 pounds per cubic foot lb/in2 pounds per square inch lb/yd3 pounds per cubic yard LOI loss on ignition MCE maximum credible earthquake MWD Maricopa Water District NEPA National Environmental Policy Act NMSA nominal maximum size aggregate PMF probable maximum flood PVC polyvinyl chloride RCC roller-compacted concrete Reclamation Bureau of Reclamation USACE United States Army Corps of Engineers USFS United States Forest Service w/cm water to cementitious materials WRA water-reducing admixture yd3 cubic yards yd3/d cubic yards per day yd3/hr cubic yards per hour 2D two-dimensional 3D three-dimensional CONTENTS Page 1. Definition and Scope...................................................................................... 1 1.1 References ........................................................................................... 2 2. Background.................................................................................................... 3 2.1 History of RCC Development ............................................................. 3 2.2 Concrete Mix Design Philosophy........................................................ 4 2.3 Practical Applications of RCC ............................................................ 5 2.4 References ........................................................................................... 6 3. RCC Materials ............................................................................................... 7 3.1 Water ................................................................................................... 7 3.2 Cementitious Materials........................................................................ 7 3.2.1 Cement ......................................................................................... 7 3.2.2 Pozzolan .................................................................................. 8 3.3 Admixtures .......................................................................................... 9 3.3.1 Chemical Water-Reducing Admixtures .................................. 9 3.3.2 Air-Entraining Admixtures.................................................... 10 3.4 Aggregates......................................................................................... 10 3.4.1 Aggregate Grading ................................................................ 11 3.4.2 Aggregate Quality ................................................................. 13 3.4.3 Aggregate Production, Stockpiling, and Testing................... 13 3.5 References ......................................................................................... 14 4. RCC Mixture Design Requirements ............................................................ 15 4.1 Properties of Fresh RCC.................................................................... 16 4.1.1 Vebe Consistency.................................................................. 16 4.1.2 Segregation Potential............................................................. 20 4.1.3 Temperature........................................................................... 20 4.1.4 Density................................................................................... 20 4.2 Properties of Hardened RCC............................................................. 20 4.2.1 Compressive Strength and Elastic Properties........................ 21 4.2.2 Cement Plus Pozzolan Content and Cement to Pozzolan Ratio........................................................................................... 24 4.2.3 Thermal Properties ................................................................ 24 4.2.4 Durability............................................................................... 26 4.3 Bond Between Lifts........................................................................... 26 4.4 Field Adjustments During Construction............................................ 30 4.5 Mixture Proportioning Procedures for RCC ..................................... 34 4.5.1 Mixture Proportioning........................................................... 34 4.5.2 Steps in Proportioning RCC Mixtures................................... 35 4.6 References ......................................................................................... 39 i Design and Construction Considerations for Hydraulic Structures CONTENTS (continued) Page 5. RCC Construction Methods......................................................................... 41 5.1 General Construction Considerations................................................ 41 5.2 Aggregate Production........................................................................ 41 5.3 Batching and Mixing........................................................................
Recommended publications
  • List of Dams and Reservoirs 1 List of Dams and Reservoirs
    List of dams and reservoirs 1 List of dams and reservoirs The following is a list of reservoirs and dams, arranged by continent and country. Africa Cameroon • Edea Dam • Lagdo Dam • Song Loulou Dam Democratic Republic of Congo • Inga Dam Ethiopia Gaborone Dam in Botswana. • Gilgel Gibe I Dam • Gilgel Gibe III Dam • Kessem Dam • Tendaho Irrigation Dam • Tekeze Hydroelectric Dam Egypt • Aswan Dam and Lake Nasser • Aswan Low Dam Inga Dam in DR Congo. Ghana • Akosombo Dam - Lake Volta • Kpong Dam Kenya • Gitaru Reservoir • Kiambere Reservoir • Kindaruma Reservoir Aswan Dam in Egypt. • Masinga Reservoir • Nairobi Dam Lesotho • Katse Dam • Mohale Dam List of dams and reservoirs 2 Mauritius • Eau Bleue Reservoir • La Ferme Reservoir • La Nicolière Reservoir • Mare aux Vacoas • Mare Longue Reservoir • Midlands Dam • Piton du Milieu Reservoir Akosombo Dam in Ghana. • Tamarind Falls Reservoir • Valetta Reservoir Morocco • Aït Ouarda Dam • Allal al Fassi Dam • Al Massira Dam • Al Wahda Dam • Bin el Ouidane Dam • Daourat Dam • Hassan I Dam Katse Dam in Lesotho. • Hassan II Dam • Idriss I Dam • Imfout Dam • Mohamed V Dam • Tanafnit El Borj Dam • Youssef Ibn Tachfin Dam Mozambique • Cahora Bassa Dam • Massingir Dam Bin el Ouidane Dam in Morocco. Nigeria • Asejire Dam, Oyo State • Bakolori Dam, Sokoto State • Challawa Gorge Dam, Kano State • Cham Dam, Gombe State • Dadin Kowa Dam, Gombe State • Goronyo Dam, Sokoto State • Gusau Dam, Zamfara State • Ikere Gorge Dam, Oyo State Gariep Dam in South Africa. • Jibiya Dam, Katsina State • Jebba Dam, Kwara State • Kafin Zaki Dam, Bauchi State • Kainji Dam, Niger State • Kiri Dam, Adamawa State List of dams and reservoirs 3 • Obudu Dam, Cross River State • Oyan Dam, Ogun State • Shiroro Dam, Niger State • Swashi Dam, Niger State • Tiga Dam, Kano State • Zobe Dam, Katsina State Tanzania • Kidatu Kihansi Dam in Tanzania.
    [Show full text]
  • DETERMINING the LOCATION of HYDRAULIC JUMP by MODEL TEST and HEC-2 FLOW ROUTING/ a Thesis Presented to the Faculty of the Fritz
    L-DETERMINING THE LOCATION OF HYDRAULIC JUMP BY MODEL TEST AND HEC-2 FLOW ROUTING/ A Thesis Presented to The Faculty of the Fritz J. and Dolores H. Russ College of Engineering and Technology Ohio University In Partial Fulment of the Requirement for the Degree Master of Science by Chen-Feng Li, 4 August, 1995 ACKNOWLEDGEMENTS The author gratefdly acknowledges the hanicial support fiom my family, advisor Dr. Chang (Civil Engineering Dept., Ohio University) and Feng Chia University (Taiwan). The author would like to thank the Civil Engineering Department for the help they provided by supplying the various equipment used for my studies. The author also wants to thank those who have helped in my thesis writing. TABLE OF CONTENTS TABLE OF CONTENTS ................................iv LIST OF TABLES ...................................vii LIST OF FIGURES .................................. viii LIST OF SYMBOLS ..................................xii I. INTRODUCTION .................................. 1 I. 1 Background of Study .......................... 1 1.2 Purpose of Study ............................ 2 1.3 Buckingham PI Theorem and Dynamic Simulation ........... 2 1.4 Experiments and Requirements ..................... 3 I .5 The FUTURE Development of the Study ................ 4 I1 . SELECTED LITERATURE REVIEW ..................... 6 11 . 1 Theoretical Development of Hydraulic Jump .............. 6 II.2 Studies of Hydraulic Jump ....................... 6 LI.3 Channel Slope and Hydraulic Jump ................... 8 v 11.4 Length and Location of Hydraulic Jump .................11 II.5 Force and Hydraulic Jump ........................14 II.6 Hydraulic Structures and Hydraulic Jump ................16 II.6.1 Hydraulic Jump in A Stilling Basin ...............17 II.6.2 Sluice Gate and Hydraulic Jump ................17 11.6.3 Sill and Hydraulic Jump ....................19 11.7 Computer Simulation ofHydraulic Jump Surface Profiles ........24 m .
    [Show full text]
  • Characteristics of Undular Hydraulic Jump Downstream of a Sluice Gate
    CHARACTERISTICS OF UNDULAR HYDRAULIC JUMP DOWNSTREAM OF A SLUICE GATE KARAKTERISTIK LONCATAN HIDROLIK UNDULAR DI HILIR PINTU AIR Komang Arya Utama 1), Bambang Yulistiyanto 2), and Budi S. Wignyosukarto 2) 1) Lecturer in Civil Engineering Department, Faculty of Engineering, Gorontalo State University 2) Lecturer in Civil and Environmental Engineering Department, Faculty of Engineering, Gadjah Mada University ABSTRACT Undular hydraulic jump is a hydraulic jump with a low Froude number which is marked by the emergence of a fixed roller. Information about the characteristics of undular hydraulic jump is still very poor. In order for the interests of the development of science, it is necessary to in-depth study of the hydraulic characteristics and phenomenon that appear on the undular hy- draulic jump. This research is applying the 2D physical model that used a tilting flume. Sluice gate is used as a tool to gene- rate the undular hydraulic jump. Measurement of distance and depth using a point gauge while the flow velocity was measu- red using a Nixon Streamflo 422 Currentmeter. Circulation flow is driven by using water pumps with discharge 15 l/s and 30 l/s. The results of this study indicate that the maximum flow velocity of dimensionless velocity distribution are at 0.5 - 0.9. Lowest value of Froude number obtained in running model Q9A1 is Fr1 = 1.197 and its highest value obtained in running mo- del Q3A1 is Fr1 limit = 2.258. The wave steepness is mild with a slope range are 0.1 to 0.3 or 10% to 30%. The length and height of the wave form are reduce at the first, second, third and so on until the condition of conjugate depth (y3).
    [Show full text]
  • Analysis of Turbulent Hydraulic Jump Over a Transitional Rough Bed of a Rectangular Channel: Universal Relations Noor Afzal Aligarh Muslim University, India
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Civil Engineering Faculty Publications Civil Engineering 2011 Analysis of Turbulent Hydraulic Jump over a Transitional Rough Bed of a Rectangular Channel: Universal Relations Noor Afzal Aligarh Muslim University, India A. Bushra University of Nebraska-Lincoln Abu Seena Korea Advanced Institute of Science and Technology, Daejeon, Korea Follow this and additional works at: http://digitalcommons.unl.edu/civilengfacpub Part of the Hydraulic Engineering Commons Afzal, Noor; Bushra, A.; and Seena, Abu, "Analysis of Turbulent Hydraulic Jump over a Transitional Rough Bed of a Rectangular Channel: Universal Relations" (2011). Civil Engineering Faculty Publications. 54. http://digitalcommons.unl.edu/civilengfacpub/54 This Article is brought to you for free and open access by the Civil Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Civil Engineering Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Journal of Engineering Mechanics 137:12 (2011), pp. 835-845; doi: 10.1061/(ASCE)EM .1943-7889.0000294 Copyright © 2011 American Society of Civil Engineers. Used by permission. Submitted August 9, 2010; approved June 27, 2011; published online June 29, 2011. digitalcommons.unl.edu Analysis of Turbulent Hydraulic Jump over a Transitional Rough Bed of a Rectangular Channel: Universal Relations Noor Afzal,1 A. Bushra,2 and Abu Seena3 1. Visiting Professor, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea, and Faculty of Engineering, Aligarh Muslim University, Aligarh, India 2. Department of Civil Engineering, University of Nebraska 3. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
    [Show full text]
  • Chinese Zheng and Identity Politics in Taiwan A
    CHINESE ZHENG AND IDENTITY POLITICS IN TAIWAN A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MUSIC DECEMBER 2018 By Yi-Chieh Lai Dissertation Committee: Frederick Lau, Chairperson Byong Won Lee R. Anderson Sutton Chet-Yeng Loong Cathryn H. Clayton Acknowledgement The completion of this dissertation would not have been possible without the support of many individuals. First of all, I would like to express my deep gratitude to my advisor, Dr. Frederick Lau, for his professional guidelines and mentoring that helped build up my academic skills. I am also indebted to my committee, Dr. Byong Won Lee, Dr. Anderson Sutton, Dr. Chet- Yeng Loong, and Dr. Cathryn Clayton. Thank you for your patience and providing valuable advice. I am also grateful to Emeritus Professor Barbara Smith and Dr. Fred Blake for their intellectual comments and support of my doctoral studies. I would like to thank all of my interviewees from my fieldwork, in particular my zheng teachers—Prof. Wang Ruei-yu, Prof. Chang Li-chiung, Prof. Chen I-yu, Prof. Rao Ningxin, and Prof. Zhou Wang—and Prof. Sun Wenyan, Prof. Fan Wei-tsu, Prof. Li Meng, and Prof. Rao Shuhang. Thank you for your trust and sharing your insights with me. My doctoral study and fieldwork could not have been completed without financial support from several institutions. I would like to first thank the Studying Abroad Scholarship of the Ministry of Education, Taiwan and the East-West Center Graduate Degree Fellowship funded by Gary Lin.
    [Show full text]
  • Undular Jump, Numerical Model and Sensitivity
    Alma Mater Studiorum - Università di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea specialistica in Fisica Dipartimento di Fisica UNDULAR JUMP NUMERICAL MODEL AND SENSITIVITY ANALYSIS Tesi di laurea di: Relatore: MICHELE RAMAZZA Prof. RAMBALDI SANDRO Correlatori: Prof. MANSERVISI SANDRO Dott. CERVONE ANTONIO Sessione III Anno Accademico 2007-2008 2 CONTENTS Abstract................................................................................................................................................5 Sommario.............................................................................................................................................5 List of symbol ....................................................................................................................................6 1.Introduction ....................................................................................................................................8 1.1.Open channel flow.................................................................................................................8 1.1.1.Introduction....................................................................................................................8 1.1.2.Classification of open channel flows.........................................................................8 1.1.3.Complexity ....................................................................................................................8 1.2.Bases of open channel hydraulics ...................................................................................10
    [Show full text]
  • Taiwan Launches Water Rationing to Fight Drought 8 April 2015
    Taiwan launches water rationing to fight drought 8 April 2015 Agency. "We continue to monitor the situation to determine how long the rationing will go on, as the supply of Shihmen dam is tight. We urge people to conserve and store water," said Cheng Tsao-ming, an official at the Taoyuan city government. Homes, schools and businesses are relying on water stored in large tanks and are adopting water- saving measures, including recycling water for gardening and closing swimming pools and gyms on rationing days. Some are concerned that their businesses will A local resident is seen fishing at Shihman dam in suffer if the water rationing continues. northern Taoyuan, on March 20, 2015 Showlin hair salon in Taoyuan said it had to turn away some customers. Taiwan launched water rationing in some major "Even though we have three water storage tanks cities on Wednesday as the island battled its worst we still have to limit our services. I am worried that drought in over a decade, following the lowest we will have to start taking unpaid leave if the rainfall in nearly 70 years. rationing goes on much longer," said a worker at the salon, who gave her family name as Tsai. The state water company cut supplies to around 800,000 households and businesses in Taoyuan city as well as parts of Hsinchu county and New Taipei City in northern Taiwan for two days a week for an indefinite period. The government said that it was forced to impose the measure as the water supply situation was "urgent".
    [Show full text]
  • Shallow-Water Theory and Channel Flow with Hydraulic Jump: Non-Steady Consideration
    www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 1; January 2012 Shallow-Water Theory and Channel Flow with Hydraulic Jump: Non-Steady Consideration Asuquo E Eyo Department of Mathematics and Statistics, University of Uyo, Uyo, Nigeria E-mail: [email protected] Received: August 15, 2011 Accepted: November 17, 2011 Published: January 1, 2012 doi:10.5539/mas.v6n1p50 URL: http://dx.doi.org/10.5539/mas.v6n1p50 Abstract We examine the classical hydraulic jump in an open channel flow and show that it can be qualitatively understood using the model, namely, equations of shallow-water type. In the analysis, we consider the following cases: (i) unsteady, one dimensional flow of a liquid in an open channel, (ii) uniform and smooth flow with the channel bed flat and viscosity neglected almost everywhere, and (iii) a steady uniform flow U from left (positive flux) with the flow elsewhere taken to be two dimensional. Based on this model the relation for the speed of propagation of the jump in terms of depth ratio is obtained. We employ the method of characteristics and the Riemann invariants to determine the precise location and time of the onset of the hydraulic ump. Our analysis reveals that the location xJ and time tJ of the jump formation are influenced by the initial acceleration of the fluid. Specializations are later made to the cases where the initial acceleration is positive and finite, negative, infinite. Results are obtained in each of these cases. Keywords: Equations of shallow-water type, Channel flow, Hydraulic jump, Method of characteristics, Remann inivariants 1.
    [Show full text]
  • Flow and Sediment Transport at Hydraulic Jumps
    FLOW AND SEDIMENT TRANSPORT AT HYDRAULIC JUMPS BY ROBERT GORDON MACDONALD A thesis submitted to the School of Environmental Sciences at the University of East Anglia for the degree of Doctor of Philosophy © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotation from the thesis, nor any information derived therefrom, may be published without the author's prior, written consent. i Acknowledgements Thank you to Jan Alexander, Mark Cooker and John Bacon for all their help supervising this research. Jan has paid particular attention to provide me academic opportunities and I am grateful for the experience I have gained under her supervision. Mark has influenced me to present difficult discussions calmly and his quiet humour is an inspiration. John remained enthusiastic even after moving into a commercial job. Various people helped the physical undertaking of the research. Trevor Panter and Gareth Flowerdew made most of the equipment mounts for the UEA research flume, and provided engineering advice for my less than usual requests. Trevor also made the conveyor that I used to put sediment into the flume. Brendan, Emily, Estelle, James, John Brindle, Judith, Rob, Sheila and Stuart helped with the experiments. James had the dubious pleasure of being my best man and John Brindle the dubious pleasure of being my passenger the first time I drove a van, and of “reading the map”. I am grateful to Jan Alexander and Sheila Davies who took some of the laboratory photographs.
    [Show full text]
  • Erosion of Rock and Soil Best Practices in Dam and Levee Safety Risk Analysis Section D – Embankments and Foundations Chapter D-1
    Erosion of Rock and Soil Best Practices in Dam and Levee Safety Risk Analysis Section D – Embankments and Foundations Chapter D-1 Last modified July 2018, presented July 2019 Outline • Objectives • Key Concepts • Erosion Process • Rock Erosion Considerations • Soil Erosion • Takeaway Points Objectives • Understand the input to methods and models for estimating erosion, and how it is obtained • Be able to use this information as part of estimating the probability of erosion leading to failure under various potential failure modes • (Estimating the probability of failure due to rock or soil erosion is covered in other chapters) Key Concepts • Many potential failure modes require erosion of rock or soil to result in dam breach, such as: • Overtopping erosion of an embankment • Overtopping erosion of a concrete dam abutment or foundation • Erosion of an unlined spillway or river channel • Erosion of an unlined plunge pool (leading structural undermining) • Erosion of the spillway foundation where floor slabs have been damaged or lost • Initiation of erosion does not equate to failure • Judgement must be made concerning the progression of erosion over time (rate of erosion, duration of loading, progressive failure, etc.) • It is important to consider erosion extent as well as the erosion potential 4 Erosion Process How Erosion Starts • Erosion can occur under high velocity flows which cause high soil/rock detachment/plucking rates • A discontinuity exists which allows flow to concentrate, or changes the flow regime from sheet to turbulent • Possible sources of discontinuities are: • Slope changes in downstream slope (flat slope changes to steep slope) • Obstacles such as trees, vegetation, guard rails, etc.
    [Show full text]
  • TICCIH XV Congress 2012
    TICCIH Congress 2012 The International Conservation for the Industrial Heritage Series 2 Selected Papers of the XVth International Congress of the International Committee for the Conservation of the Industrial Heritage § SECTION II: PLANNING AND DESIGN 113 A Study of the Hydraulic Landscape in Taoyuan Tableland: the Past, Present and Future / CHEN, Chie-Peng 114 A Study on Preservation, Restoration and Reuse of the Industrial Heritage in Taiwan: The Case of Taichung Creative Cultural Park / YANG, Hong-Siang 138 A Study of Tianjin Binhai New Area’s Industrial Heritage / YAN, Mi 153 Selective Interpretation of Chinese Industrial Heritage Case study of Shenyang Tiexi District / FAN, Xiaojun 161 Economization or Heritagization of Industrial Remains? Coupling of Conservation and CONTENTS Urban Regeneration in Incheon, South Korea / CHO, Mihye 169 Preservation and Reuse of Industrial Heritage along the Banks of the Huangpu River in Shanghai / YU, Yi-Fan 180 Industrial Heritage and Urban Regeneration in Italy: the Formation of New Urban Landscapes / PREITE, Massimo 189 Rethinking the “Reuse” of Industrial Heritage in Shanghai with the Comparison of Industrial Heritage in Italy / TRISCIUOGLIO, Marco 200 § SECTION III: INTERPRETATION AND APPLICATION 207 The Japanese Colonial Empire and its Industrial Legacy / Stuart B. SMITH 208 FOREWORDS 1 “La Dificultad” Mine. A Site Museum and Interpretation Center in the Mining District of FOREWORD ∕ MARTIN, Patrick 2 Real del Monte and Pachuca / OVIEDO GAMEZ, Belem 219 FOREWORD ∕ LIN, Hsiao-Wei 3 Tracing
    [Show full text]
  • Overtopping of Walls and Stilling Basin Failure
    Overtopping of Walls and Stilling Basin Failure Best Practices in Dam and Levee Safety Risk Analysis Part F – Hydraulic Structures Chapter F-2 Last modified June 2017, presented July 2019 Objectives • Understand the factors and mechanisms that affect spillway chute wall overtopping failure • Understand how to construct an event tree to represent spillway chute wall overtopping failure • Understand how to consider stilling basin sweepout and failure Dam and Levee Overtopping of Walls and Stilling Basin Failure Modes • Failure of dams and levees due to overtopping is a common failure mode • 30% of dam failures in U.S. are attributed to overtopping • Many spillways are under designed for large discharges and could be vulnerable to chute capacity issues. • Many older dams and levees may have been designed for floods that no longer represent a remote flood event and design flood estimates have increased Case History: Failure of El Guapo Dam, Venezuela • El Guapo Dam spillway failed December 16, 1999 as a result of spillway failure from chute wall overtopping • Hydrology to size spillway based on hydrologic data transferred from another drainage basin (site specific hydrology is best) • During spillway construction chute walls were overtopped during a flood which triggered a new flood study (added a tunnel spillway) • El Guapo Dam never overtopped • Overtopping of chute walls initiated erosion of backfill behind chute walls and undermining and failure of spillway chute • Headcutting progressed upstream and led to reservoir breach • Spillway
    [Show full text]