Hydraulic Research in the United States 1959

Total Page:16

File Type:pdf, Size:1020Kb

Hydraulic Research in the United States 1959 Hydraulic Research in the United States 1959 United States Department of Commerce National Bureau of Standards Miscellaneous Publication 227 THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; in- vention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's work take the form of either actual equipment and devices or pub- lished papers. These papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishers three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes. Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards ($1.25) and its Supplement ($L50), available from the Superintendent of Documents, Government Printing Office, Washington 25, D.C. UNITED STATES DEPARTMENT OF COMMERCE • Frederick H. Mueller, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director Hydraulic Research in the United States 1959 (Including Contributions from Canadian Laboratories) Edited by Helen K. Middleton National Bureau of Standards Miscellaneous Publication 227 Issued October 1, 1959 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C. - Price $1.25 FOREWORD The information contained in this publication was compiled from reports by the various hydraulic and hydrologic laboratories in the United States and Canada. The cooperation of these agencies is greatly appreciated. The National Bureau of Standards cannot assume responsibility for the completeness for this publication. We must depend upon reporting laboratories for the completeness of the coverage of their own programs, as well as upon new laboratories engaged in hydraulics to bring their activities to our attention. Projects are numbered chronologically, and the number once assigned is repeated for identification purposes until a project is completed. Numbers commencing with 3006 refer to projects which are reported for the first time. All projects are in active state, unless otherwise noted under (f). The National Bureau of Standards does not maintain a file of reports or detailed information regarding the research projects reported by other organizations. Such information may be obtained from the correspondent listed under (c) or immediately following the title of the organization reporting the work. It is of course understood that any laboratory submitting reports on its work will be willing to supply information to properly qualified inquirers. A similar bulletin, "Hydraulic Research", compiled and published by the International Association for Hydraulic Research, contains information on hydraulic research being conducted in foreign countries. This bulletin is edited by Professor J. Th. Thijsse, Director of the Hydraulic Laboratory at the Technical University of Delft, Netherlands, and Secretary of the International Association for Hydraulic Research. Copies may be obtained from the Secretary at $6.00 each (postage included). A. V. Astin, Director CONTENTS Page Foreword iii List of contributing laboratories v Project reports 1 Subject index 178 Key to Projects (a) Number and title of project (e) Description (b) Project conducted for (f) Present status (c) Correspondent (g) Results (d) Nature of project (h) Publications iv LIST OF CONTRIBUTING LABORATORIES UNIVERSITY OF ARKANSAS 1 CONNECTICUT, UNIVERSITY OF 87 Agricultural Engineering Dept. Civil Engineering Dept., Box U-37> Storrs, Conn. Fayetteville, Ark. Prof. Victor Scottron, Prof., Civil Engineering Prof. Kyle Engler, Head CORNELL UNIVERSITY 19 UNIVERSITY OF ARKANSAS 1 School of Civil Engineering Civil Engineering Dept. Applied Hydraulic Laboratory, Ithaca, N. Y. Fayetteville, Ark. Prof. Marvin Bogema, in Charge Prof. L. R. Heiple, Head DAVID TAYLOR MODEL BASIN (see U. S. Government) 3ALDWIN-LIMA-HAMILTON CORPORATION, THE 1 Hydraulic Turbine Laboratory FLORIDA, UNIVERSITY OF 20 Philadelphia k2, Pa. The Engineering and Industrial Experiment Sta. Mr. A. W. Madora, Supervisor , Hydraulic Turbine Coastal Engineering Laboratory, Gainesville, Fla. Research Dept. Dr. Per Bruun BEACH EROSION BOARD (see U. S. Government) GEORGIA INSTITUTE OF TECHNOLOGY 21 Hydraulics Laboratory, School of Civil Engrg. BONNEVILLE HYDRAULIC LABORATORY (see U. S. Govern- Atlanta, Georgia ment ) Prof. C. E. Kindsvater BROOKLYN, POLYTECHNIC INSTITUTE OF 2 HARVARD UNIVERSITY 22 333 Jay Street, Brooklyn 1, N. Y. Div. of Engineering and Applied Physics Prof. Matthew W. Stewart, Civil Engineering Cambridge 38^ Mass. Prof. Harold A. Thomas, Jr. CALIFORNIA INSTITUTE OF TECHNOLOGY 2 Engineering Division, Pasadena h, California HOUSTON UNIVERSITY 23 Prof. Milton S. Plesset, Applied Mechanics Dept. of Chemical Engineering, Houston h, Texas Dr. H. W. Prengle Jr., Chairman CALIFORNIA INSTITUTE OF TECHNOLOGY 3 Hydrodynamics Laboratory IDAHO, UNIVERSITY OF 23 Pasadena h, Calif. Engineering Experiment Station, Moscow, Idaho Dean Allen S. Janssen, Director CALIFORNIA INSTITUTE OF TECHNOLOGY h Sedimentation Laboratory, Pasadena h, Calif. ILLINOIS STATE WATER SURVEY DIVISION 2h Dr. Vito A. Vanoni, Professor of Hydraulics Box 232, Urbana, 111. Mr. William C. Ackerman, Chief CALIFORNIA, UNIVERSITY OF h College of Agriculture, Davis, Calif. ILLINOIS STATE WATERWAYS DIVISION 27 Mr. Robert M. Hagan, Chairman Dept. of Irrigation Dept. of Public Works and Buildings 201 West Monroe St., Springfield, 111. CALIFORNIA, UNIVERSITY OF 83 Mr. Thomas B. Casey, Chief Waterway Engineer College of Agriculture, Los Angeles 2h, Calif. Prof. A. F. Pillsbury, Chairman ILLINOIS, UNIVERSITY OF 28 Dept. of Irrigation and Soil Science Dept. of Agriculture Engineering, Urbana, 111. Dr. Frank B. Lanham, Head CALIFORNIA, UNIVERSITY OF 5 College of Engineering, Berkeley h, Calif. ILLINOIS, UNIVERSITY OF 28 Prof. J. W. Johnson, Prof., Hydraulic Engrg. Dept. of Civil Engineering, Urbana, 111. Dr. N. M. Newmark, Head CALIFORNIA, UNIVERSITY OF 11 Dept. of Naval Architecture, Berkeley h, Calif. ILLINOIS, UNIVERSITY OF 31 Prof. H. A. Schade, Chairman Dept. of Theoretical and Applied Mechanics 21 h Talbot Laboratory, Urbana, 111. CARNEGIE INSTITUTE OF TECHNOLOGY 86 Prof. T. J. Dolan, Head Dept. of Civil Engineering, Pittsburgh 13, Pa. Dr. T. E. Stelson, Acting Head IOWA INSTITUTE OF HYDRAULIC RESEARCH 31 State University of Iowa, Iowa City, Iowa CASE INSTITUTE OF TECHNOLOGY 12 Dr. Hunter Rouse, Director Dept. of Civil Engrg. and Engineering Mechanics Cleveland 6, Ohio IOWA STATE COLLEGE 35 Dr> H. R. Nara, Head of Department Dept. of Agricultural Engineering, Ames,- Iowa Prof. Hobart Beresford, Head COLORADO STATE UNIVERSITY 12 Hydraulics Laboratory IOWA STATE COLLEGE 36 Civil Engineering Section, Fort Collins, Colo. Dept. of Agronomy, Ames, Iowa Dr. A. R. Chamberlain, Chief Prof. William H. Pierre, Head of Dept. v IOWA, STATE UNIVERSITY (see Iowa Institute of NEWPORT NEWS SHIPBUILDING AND DRY DOCK CO. 47 Hydraulic Research) Hydraulic Laboratory, Newport News, Va. Mr. C. H. Hancock, Director JOHNS HOPKINS UNIVERSITY, THE 87 Applied Physics Laboratory, Silver Spring, M&. NEW YORK UNIVERSITY 48 Mr. R. E. Gibson, Director Dept. of Chemical Engineering, Bronx 53> N. Y. Prof. John Happel, Chairman KANSAS, UNIVERSITY OF 36 Dept. of Engineering Mechanics, Lawrence, Kansas NEW YORK UNIVERSITY 50 Dr. Kenneth C. Deemer, Chairman Dept. of Engineering Mechanics, New York 53.> N. Y. Dr. Glen N. Cox, Chairman LEFFEL AND COMPANY, THE JAMES 36 k26 East Street, Springfield, Ohio NEW YORK UNIVERSITY 50 Mr. J. Robert G-roff, Pres. and General Manager College of Engineering, Dept. of Meteorology and Oceanography LEHIGH UNIVERSITY 37 University Heights, New York 53, N. Y. Dept. of Civil Engineering Fritz Engineering Laboratory, Bethlehem, Pa. NO. CAROLINA STATE COLLEGE OF AGRICULTURE AND Prof. W. J. Eney, Director and Head of Dept. ENGINEERING 51 University
Recommended publications
  • Properties and Definitions
    Properties and Definitions Useful constants, properties, and conversions 2 2 gc = 32.2 ft/sec [lbm-ft/lbf-sec ] 3 ρwater = 1.96 slugs/ft 3 γwater = 62.4 lb/ft 1 ft3/sec = 449 gpm 1 mgd = 1.547 ft3/sec 1 foot of water = 0.433 psi 1 psi = 2.31 ft of water Definitions discharge: flow rate, usually in ft3/sec or gpm Properties Density Density (ρ) is mass per unit volume (slugs/ft3) Specific Weight (aka Unit Weight) Specific Weight (γ) is weight per unit volume (lb/ft3) = ρg Specific Gravity Specific Gravity (S) is the ratio of the weight (or mass) or a substance to the weight (or mass) of water. where the subscript "s" denotes of a given substance and the subscript "w" denotes of water. Given S of a substance, you can easily calculate ρ and γ using the equations Specific Volume Specific Volume is the volume per unit mass (usually in ft3/lbm) Viscosity Viscosity (υ) is a measure of a fluid's ability to resist shearing force (usually in 2 lbf·sec/ft ) υ is a proportionality constant and is also known as absolute viscosity or dynamic viscosity. Viscosity is often given in the SI unit of Poise. To convert to English units use the relationship Kinematic Viscosity where γ = kinematic viscosity (ft2/s) 2 υ = dynamic viscosity (lbf·sec/ft ) ρ = mass density (slugs/ft3) Note: See CERM Appendix 14.A (page A-13) for a listing of water properties at various temperatures. Absolute and Gauge Pressure Absolute Pressure (psia) = Atmospheric Pressure + Gauge Pressure (psig) Atmospheric Pressure changes with weather conditions and altitude though is usually assumed to be 14.7 psi at sea level.
    [Show full text]
  • Hydropower Engineering Ii Lecture Note Compiled By
    Arbaminch University, Department of Hydraulic Eng’g HYDROPOWER ENGINEERING II LECTURE NOTE COMPILED BY: YONAS GEBRETSADIK LECTURER IN HYDRAULIC ENGINEERING DEPARTMENT OF HYDRAULIC ENGINEERING ARBA MINCH WATER TECHNOLOGY INSTITUTE ARBA MINCH UNIVERSITY JANUARY 2011 Hydropower Engineering-II Lecture Note/2010/2011 1 Arbaminch University, Department of Hydraulic Eng’g TABLE OF CONTENTS 1. HYDRAULIC TURBINES ............................................................................................................................. 5 1.1 GENERAL ............................................................................................................................................. 5 1.2 CLASSIFICATION .................................................................................................................................. 5 1.3 CHARACTERISTICS OF TURBINES ......................................................................................................... 6 1.4 PROCEDURE IN PRELIMINARY SELECTION OF TURBINES ...................................................................... 7 1.5 TURBINE SCROLL CASE ....................................................................................................................... 9 1.6 DRAFT TUBES .................................................................................................................................... 10 1.7 CAVITATION IN TURBINE & TURBINE SETTING ................................................................................. 11 1.8 GENERATORS AND TURBINE
    [Show full text]
  • Innovative and Low Cost Technologies Utilized in Sewerage
    ENVIRONMENTAL HEALTH PROGRAM INNOVATIVE AND LOW COST TECHNOLOGIES UTILIZED IN SEWERAGE TECHNICAL SERIES No. 29 PAN AMERICAN H EAU H ORGANIZATION Pan American Sanitary Bureau, Regional Office of the WORLD HhALTH ORGANIZATION ENVIRONMENTAL HEALTH PROGRAM u, •:'< i .:••;: .•: a. ! 4 INNOVATIVE AND LOW COST TECHNOLOGIES UTILIZED IN SEWERAGE AUTHOR José M. Azevedo Netto EDITED Raymond Reid WASHINGTON, D.C., MARCH 1992 PROLOGUE This publication is the product of the last contract of the late Jose Martiniano de Azevedo Netto with the Pan American Health Organization and is a significant example of a relationship of more than 40 years duration —a relationship that was characterized always with a touch of daring, and clever, innovative approaches to the solution of environmental health problems and risks. The contribution of Azevedo Netto to sanitary engineering goes far beyond his countless books, papers and articles. Thousands of public health and sanitary engineering professionals in Latin America have been affected and influenced by his inspiring and dedicated teachings and instruction. Azevedo Netto was born in Brazil in 1918, graduated as a civil engineer from the University of Sao Paulo, and earned his masters degree in sanitary engineering from Harvard University and his doctorate in public health from the University of Sao Paulo. The professional life of Professor Azevedo Netto, as he liked to be called, took him to all continents as a teacher and as technical advisor to governments and institutions such as Pan American Health Organization, the World Bank, Inter- American Development Bank and others. A founding member of the Inter-American and the Brazilian Associations of Sanitary and Environmental Engineering, Azevedo Netto raised the consciousness of the importance of sanitary engineering to improvement of peoples' health and quality of life.
    [Show full text]
  • DETERMINING the LOCATION of HYDRAULIC JUMP by MODEL TEST and HEC-2 FLOW ROUTING/ a Thesis Presented to the Faculty of the Fritz
    L-DETERMINING THE LOCATION OF HYDRAULIC JUMP BY MODEL TEST AND HEC-2 FLOW ROUTING/ A Thesis Presented to The Faculty of the Fritz J. and Dolores H. Russ College of Engineering and Technology Ohio University In Partial Fulment of the Requirement for the Degree Master of Science by Chen-Feng Li, 4 August, 1995 ACKNOWLEDGEMENTS The author gratefdly acknowledges the hanicial support fiom my family, advisor Dr. Chang (Civil Engineering Dept., Ohio University) and Feng Chia University (Taiwan). The author would like to thank the Civil Engineering Department for the help they provided by supplying the various equipment used for my studies. The author also wants to thank those who have helped in my thesis writing. TABLE OF CONTENTS TABLE OF CONTENTS ................................iv LIST OF TABLES ...................................vii LIST OF FIGURES .................................. viii LIST OF SYMBOLS ..................................xii I. INTRODUCTION .................................. 1 I. 1 Background of Study .......................... 1 1.2 Purpose of Study ............................ 2 1.3 Buckingham PI Theorem and Dynamic Simulation ........... 2 1.4 Experiments and Requirements ..................... 3 I .5 The FUTURE Development of the Study ................ 4 I1 . SELECTED LITERATURE REVIEW ..................... 6 11 . 1 Theoretical Development of Hydraulic Jump .............. 6 II.2 Studies of Hydraulic Jump ....................... 6 LI.3 Channel Slope and Hydraulic Jump ................... 8 v 11.4 Length and Location of Hydraulic Jump .................11 II.5 Force and Hydraulic Jump ........................14 II.6 Hydraulic Structures and Hydraulic Jump ................16 II.6.1 Hydraulic Jump in A Stilling Basin ...............17 II.6.2 Sluice Gate and Hydraulic Jump ................17 11.6.3 Sill and Hydraulic Jump ....................19 11.7 Computer Simulation ofHydraulic Jump Surface Profiles ........24 m .
    [Show full text]
  • Characteristics of Undular Hydraulic Jump Downstream of a Sluice Gate
    CHARACTERISTICS OF UNDULAR HYDRAULIC JUMP DOWNSTREAM OF A SLUICE GATE KARAKTERISTIK LONCATAN HIDROLIK UNDULAR DI HILIR PINTU AIR Komang Arya Utama 1), Bambang Yulistiyanto 2), and Budi S. Wignyosukarto 2) 1) Lecturer in Civil Engineering Department, Faculty of Engineering, Gorontalo State University 2) Lecturer in Civil and Environmental Engineering Department, Faculty of Engineering, Gadjah Mada University ABSTRACT Undular hydraulic jump is a hydraulic jump with a low Froude number which is marked by the emergence of a fixed roller. Information about the characteristics of undular hydraulic jump is still very poor. In order for the interests of the development of science, it is necessary to in-depth study of the hydraulic characteristics and phenomenon that appear on the undular hy- draulic jump. This research is applying the 2D physical model that used a tilting flume. Sluice gate is used as a tool to gene- rate the undular hydraulic jump. Measurement of distance and depth using a point gauge while the flow velocity was measu- red using a Nixon Streamflo 422 Currentmeter. Circulation flow is driven by using water pumps with discharge 15 l/s and 30 l/s. The results of this study indicate that the maximum flow velocity of dimensionless velocity distribution are at 0.5 - 0.9. Lowest value of Froude number obtained in running model Q9A1 is Fr1 = 1.197 and its highest value obtained in running mo- del Q3A1 is Fr1 limit = 2.258. The wave steepness is mild with a slope range are 0.1 to 0.3 or 10% to 30%. The length and height of the wave form are reduce at the first, second, third and so on until the condition of conjugate depth (y3).
    [Show full text]
  • Oft/Milar/ON in SEWER. DESIGN Flold Cjjflr.T
    · COST EFFECTIVENESS IN SEWER DESIGN by Gary J. Diorio, P.E. SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS for the Degree of Master of Science in the Civil Engineering Program ~{).~. ADVISER DATE DEAN of the Graduate School DATE Youngstown State University December, 1986 COST EFFECTIVENESS IN SEWER DESIGN © 1986 GARY J. DIORIO, P.E. All Rights Reserved i ABSTRACT COST EFFECTIVENESS IN SEWER DESIGN GARY J. DIORIO, P.E. MASTER OF SCIENCE YOUNGSTOWN STATE UNIVERSITY Probably the most important challenge facing an engineer today is to ensure that his design is competitive in terms of costs. Besides being technically sound, the designer's objectives are to provide a cost effective solution. This thesis presents a computer program to be used as a guide for the design of storm sewers to ensure a cost effective solution. The computer program is compiled to generate overland flows to inlets by use of a combination of the Rational Method and the Soil Conservation Method. The cost effective solution is found by applying the cost function according to the constraints set forth in the program. The program ~ constraints involve minimum slopes to ensure proper velocities in the pipe, proper pipe sizes to ensure a technically sound design, and to provide a minimum depth of sewer throughout the entire length. A case study is also included and analyzed to provide reliability data for the computer program. The design process, including cost computation, is laborious to the extent that it discourages the effort to explore all situations to arrive at a cost effective design. The purpose of this thesis is to provide the designer with the following: ii 1.
    [Show full text]
  • Guide for Selecting Manning's Roughness Coefficients
    GUIDE FOR SELECTING MANNING’S ROUGHNESS Turner-Fairbank Highway COEFFICIENTS FOR NATURAL CHANNELS Research Center 6300 Georgetown Pike AND FLOOD PLAINS McLean, Virginia 22101 Report No. 3 t u FHWA-TS-84-204 U.S. Department of Transportation Final Report April 1984 -1 HishrwaV AdministrWon Archived ‘This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 2216 FOREWORD This Technology Sharing Report provides procedures for determining Manning's roughness coefficient for densely vegetated flood plains. The guidelines should be of interest to hydraulic and bridge engineers. Environmental specialists concerned with flood plains and wetlands may also find this report useful. The report was prepared by the United States Geological Survey, Water Resources Division, with technical guidance from the FHWA Office of Engineering and Highway Operations Research and Development. Sufficient copies of the publication are being distributed to provide a minimum of one copy to each FHWA region office, division office, and to each State highway agency. Additional copies of the report can be obtained from the National Technical Information Service, Springfield, Virginia 22161. DirectdrJ Office of / Director, Office of Engineering and Highway Implementation Operations R&D NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The contents of this report reflect the views of the contractor, who is responsible for the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation.
    [Show full text]
  • Calculating Resistance to Flow in Open Channels 1. Introduction
    Alternative Hydraulics Paper 2, 5 April 2010 Calculating resistance to flow in open channels John D. Fenton http://johndfenton.com/Alternative-Hydraulics.html [email protected] Abstract The Darcy-Weisbach formulation of flow resistance has advantages over the Gauckler-Manning- Strickler form. It is more fundamental, and research results for it should be able to be used in practice. A formula for the dimensionless resistance coefficient was presented by Yen (1991, equa- tion 30), which bridges between the limits of smooth flow and fully rough flow, to give a general formula for calculating resistance as a function of relative roughness and Reynolds number, appli- cable for a channel Reynolds number R>30 000 and relative roughness ε<0.05. In this paper, the author shows how a closely similar formula was obtained which is in terms of natural loga- rithms, which are simpler if further operations such as differentiation have to be performed. The formulae are shown to agree with predictions from the Gauckler-Manning-Strickler form, and with a modified form for open channels, have advantages that the equations are simpler and terms are more physically-obvious, as well as using dimensionless coefficients with a greater connectedness to other fluid mechanics studies. 1. Introduction The ASCE Task Force on Friction Factors in Open Channels (1963) expressed its belief in the general utility of using the Darcy-Weisbach formulation for resistance to flow in open channels, noting that it was more fundamental, and was based on more fundamental research. The
    [Show full text]
  • Analysis of Turbulent Hydraulic Jump Over a Transitional Rough Bed of a Rectangular Channel: Universal Relations Noor Afzal Aligarh Muslim University, India
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Civil Engineering Faculty Publications Civil Engineering 2011 Analysis of Turbulent Hydraulic Jump over a Transitional Rough Bed of a Rectangular Channel: Universal Relations Noor Afzal Aligarh Muslim University, India A. Bushra University of Nebraska-Lincoln Abu Seena Korea Advanced Institute of Science and Technology, Daejeon, Korea Follow this and additional works at: http://digitalcommons.unl.edu/civilengfacpub Part of the Hydraulic Engineering Commons Afzal, Noor; Bushra, A.; and Seena, Abu, "Analysis of Turbulent Hydraulic Jump over a Transitional Rough Bed of a Rectangular Channel: Universal Relations" (2011). Civil Engineering Faculty Publications. 54. http://digitalcommons.unl.edu/civilengfacpub/54 This Article is brought to you for free and open access by the Civil Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Civil Engineering Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Journal of Engineering Mechanics 137:12 (2011), pp. 835-845; doi: 10.1061/(ASCE)EM .1943-7889.0000294 Copyright © 2011 American Society of Civil Engineers. Used by permission. Submitted August 9, 2010; approved June 27, 2011; published online June 29, 2011. digitalcommons.unl.edu Analysis of Turbulent Hydraulic Jump over a Transitional Rough Bed of a Rectangular Channel: Universal Relations Noor Afzal,1 A. Bushra,2 and Abu Seena3 1. Visiting Professor, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea, and Faculty of Engineering, Aligarh Muslim University, Aligarh, India 2. Department of Civil Engineering, University of Nebraska 3. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
    [Show full text]
  • PDF, Bottom Friction Models for Shallow Water Equations: Manning's
    Journal of Physics: Conference Series PAPER • OPEN ACCESS Related content - Model reduction of unstable systems using Bottom friction models for shallow water balanced truncation method and its application to shallow water equations Kiki Mustaqim, Didik Khusnul Arif, Erna equations: Manning’s roughness coefficient and Apriliani et al. small-scale bottom heterogeneity - An averaging method for the weakly unstable shallow water equations in a flat inclined channel To cite this article: Tatyana Dyakonova and Alexander Khoperskov 2018 J. Phys.: Conf. Ser. 973 Richard Spindler 012032 - Computational multicore on two-layer 1D shallow water equations for erodible dambreak C A Simanjuntak, B A R H Bagustara and P H Gunawan View the article online for updates and enhancements. Recent citations - Numerical hydrodynamic model of the Lower Volga A Yu Klikunova and A V Khoperskov - Flow resistance in a variable cross section channel within the numerical model of shallow water T Dyakonova and A Khoperskov This content was downloaded from IP address 170.106.35.234 on 23/09/2021 at 14:15 AMSCM IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series1234567890 973 (2018) ‘’“” 012032 doi :10.1088/1742-6596/973/1/012032 Bottom friction models for shallow water equations: Manning's roughness coefficient and small-scale bottom heterogeneity Tatyana Dyakonova, Alexander Khoperskov Volgograd State University, Department of Information Systems and Computer Simulation, Volgograd, 400062, Russia E-mail: [email protected] Abstract. The correct description of the surface water dynamics in the model of shallow water requires accounting for friction. To simulate a channel flow in the Chezy model the constant Manning roughness coefficient is frequently used.
    [Show full text]
  • Sediment Transport in Open Channel Flows
    Introduction to Sediment Transport in Open Channel Flows Image source: http://earthsci.org/processes/geopro/stream/stream.html Arturo S. Leon, Ph.D., P.E., D.WRE Movies Scour at bridge model pier https://www.youtube.com/watch?v=48S_k6qAmsY&feature=emb_logo Utah Flash Flood https://www.youtube.com/watch?v=mXlr_Bgb-s0 Santa Clara Pueblo Flash Flood https://www.youtube.com/watch?v=nKOQzkRi4BQ Sediment Transport ● We study sediment transport to predict the risks of scouring of bridges, to estimate the siltation of a reservoir, etc. ● Most, if not all, natural channels have mobile beds ● Most mobile beds are in dynamic equilibrium: on average: sediment in = sediment out ● This dynamic equilibrium can be disturbed by . short-term extreme events (e.g., flash floods) . man-made infrastructure (e.g., dams) Source: https://www.flow3d.com/modeling-capabilities/sediment-transport-model/ Sediment Transport Fundamental Questions: ● Does sediment transport occur? (Threshold of motion). ● If so, then at what rate? (Sediment load) ● What net effect does it have on the bed? (Scour/accretion) The main types of sediment load (volume of sediment per unit of time) are Bed load and Suspended load. The sum is total load z = h Velocity Concentration Profile Profile Suspended z = z load ref Bed load Bed form motion: Dune Antidune Source: Lecture notes on Hydraulic, David Apsley Bed form motion (Cont.) Dune Antidune Source: https://armfield.co.uk/product/s8-mkii-sediment-transport-demonstration-channel/ Relevant Properties ● Particle ● Flow ‐Diameter, ‐Bed shear
    [Show full text]
  • Comparing the Calculation Method of the Manning Roughness Coefficient in Open Channels
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 4 Issue 06, June-2015 Comparing the Calculation Method of the Manning Roughness Coefficient in Open Channels Hari Wibowo 2 2 1Student of Doktoral Program on University of Suripin , Robert Kodoatie , 2 Diponegoro, Civil Engineering Department, University of Diponegoro 50241Semarang, Central Java,Indonesia 1 Water Resources Engineering Department, 50241Semarang University of Tanjungpura, 78115 Pontianak, West Borneo, Indonesia Isdiyana3 3RiverBalai, Water ResourcesResearchCenter , Balitbang the Ministry ofPublic Works Abstract—In hydraulic engineering, Manning roughness Philippe Gauckler in 1867, and then re-developed by the coefficient is an important parameter in designing hydraulic Irlandia engineer Robert Manning in 1890 (Bahramifar et al., structures and simulation models. This equation is applied to 2013). both uniform open channel flow, which is used to calculate the The study of the roughness coefficient has been much average flow velocity. The procedure for selecting the value of Manning n is subjective and requires assessment and skills research done previously, including Cowan (1956) which developed primarily through experience. examines pengenai hydraulic calculations, the roughness ManyempiricalformulaMenningthat was developedin order coefficient andAgricutural Engineering. Arcement and toobtainthe valuekoefsieinManning roughness. Fromseveral Schneider (1984) make modifications to the formulation studiesincludingthe formulationCowan(1956),
    [Show full text]