<<

· COST EFFECTIVENESS IN SEWER DESIGN

by

Gary J. Diorio, P.E.

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the Degree of

Master of Science

in the

Civil Engineering

Program

~{).~.

ADVISER DATE

DEAN of the Graduate School DATE

Youngstown State University December, 1986 COST EFFECTIVENESS IN SEWER DESIGN

© 1986 GARY J. DIORIO, P.E. All Rights Reserved i

ABSTRACT

COST EFFECTIVENESS IN SEWER DESIGN

GARY J. DIORIO, P.E.

MASTER OF SCIENCE

YOUNGSTOWN STATE UNIVERSITY

Probably the most important challenge facing an engineer today is to ensure that his design is competitive in terms of costs. Besides being technically sound, the designer's objectives are to provide a cost effective solution.

This thesis presents a computer program to be used as a guide for the design of storm sewers to ensure a cost effective solution. The computer program is compiled to generate overland flows to inlets by use of a combination of the Rational Method and the Soil Conservation Method.

The cost effective solution is found by applying the cost function according to the constraints set forth in the program. The program ~ constraints involve minimum slopes to ensure proper velocities in the pipe, proper pipe sizes to ensure a technically sound design, and to provide a minimum depth of sewer throughout the entire length. A case study is also included and analyzed to provide reliability data for the computer program.

The design process, including cost computation, is laborious to the extent that it discourages the effort to explore all situations to arrive at a cost effective design. The purpose of this thesis is to provide the designer with the following: ii

1. A method of computation which results in realistic estimates of overland flow and pipe flow.

2. Combination of engineering and economic aspects simultaneously.

3. Capability of exploring all of the situations quickly to arrive at a cost effective design. iii

ACKNOWLEDGEMENT

I wish to take this opportunity to acknowledge and thank all of the people and institutions who have been instrumental in helping me to carry out and complete this thesis.

Special appreciation and thanks goes to my thesis advisor, Dr.

Irfan A. Khan, who provided professional guidance, expertise, and the support I needed to accomplish this thesis.

I also extend my gratitude to my family and friends who supported me throughout my years of study. To Mrs. Nancy Long for her and effort in typing this thesis along with advice from Mr. William Smiley and Mr. Thomas Powell on sewer design. Their time was greatly appre­ ciated.

Most of all I wish to dedicate this work and express my unending gratitude and love to my wife, Anna Marie, and to my daughter, Jenna

Marie, for their patience, sacrifices, understanding, support and love throughout my years of study. iv

TABLE OF CONTENTS

PAGE

ABSTRACT .• •• i

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF SYMBOLS AND DEFINITIONS v

LIST OF FIGURES vii

LIST OF TABLES viii

INTRODUCTION I

CHAPTER

I. Cost Effectiveness in Sewer Design 4

II. Computer Model Formulation - The Computer Program 13

III. Computer Model Formulation - Case Study 17

IV. Computer Model Formulation - Results 20

V. Summary and Conclusions 23

APPENDICES

A Computer Program A-I

B Standard Tables Used to Formulate Input Data to the Computer Program B-2

C Soils Series and Hydrologic Soil Groups C-I

BIBLIOGRAPHY v

LIST OF SYMBOLS AND DEFINITIONS

SYMBOLS ac. Acres cf cubic feet cfs cubic feet per second

ENR Engineering News Record fps feet per second gpcd gallons per capita per day gpd gallons per day in/hr. inches per hour

L length

LF lineal feet sf square foot lfd lineal foot of depth

DEFINITIONS

Bypass

An arrangement of pipes, conduits, gates, and/or valves whereby the flow may be routed around a hydraulic structure or appurtenance.

Combined Sewer

A sewer intended to serve as a sanitary sewer and storm drain, or as an industrial sewer and a storm drain.

Dry-Weather

Days of no precipitation or snowmelt which would cause an increase in flow at the WWTP.

Intercepting Sewer

A sewer that receives dry-weather flow from a number of sewers or outlets and frequently additional quantities of storm water (if from a combined system), and conducts such waters to a point for treatment or disposal. vi

Lift Station

A small pumping station that lifts wastewater to a higher elevation when the continuance of the sewer at reasonable slopes would require excessive depths of trench, or that raises wastewater from areas too low to drain into available sewers.

Rational Runoff Formula

A formula used to relate rainfall intensity to runoff. It is Q = CiA where Q is the peak in cubic feet per second; C is the runoff coefficient, generally considered to be that part of the rainfall rate which will contribute to the runoff rate; i the average intensity of the rainfall in inches per hours during the time required for all parts of the watershed to contribute to runoff; and A is the area of the drainage basin in acres.

Sanitary Sewer

A sewer intended to carry only sanitary and industrial wastewaters from residences, commercial buildings, indus­ trial plants, and institutions.

Separate System

A system of sewers and drains in which sanitary wastewater and storm water are carried in different conduits.

Storm Sewer

A sewer intended to carry only storm waters, surface runoff, street wash waters, and drainage.

Wet-Weather

Days when precipitation or snowmelt occur. vii

LIST OF FIGURES

Figure No. Title Following Page No.

1 Flow Chart for Computer Program 13

2 Case Study - Site Plan 17

3 Case Study - Design Profile 21

B-1 National Clay Pipe Institute ­ Gravity Flow Calculator B-S viii

LIST OF TABLES

TABLE NO. TITLE PAGE NO.

1 Pipe-In-Place - Estimated Construction Cost 7

2 Cost Functions 8

3 Minimum Slopes For Different Pipe Sizes 11

4 Input Data - Case Study 19

5 Case Study Results 21

6 Construction Cost by Quantity and Unit Price 22

B-1 Coefficients for Steel Formula B-3

B-2 Recommended Runoff Coefficients B-4

B-3 Runoff Curve Numbers for Selected Land Use B-5

C-l Soil Names and Hydrologic Classifications C-3 1

INTRODUCTION

The purpose of this thesis is to present a computer program to be used as a guide for the design of storm sewers to ensure a cost effective solution. This idea was presented in a Civil Engineering thesis titled A Computer Program for the Minimum Cost Design of a

Sewer System, number 1348 as listed in Maag Library at Youngstown

State University. A sewer design was presented using optimization technology in the form of dynamic programming. However, the results presented through a case study indicate a somewhat impractical use for this type of optimization. Invert elevations of the pipes designed by this method are approximately eighty feet deep represen­ ting an optimum solution. A design with inverts at such a large depth is impractical in accordance with today's engineering stand­ ards. The information presented here takes optimization techniques, alters them to include a series of constraints to ensure a technical~y sound design, and provides a cost effective solution.

Chapter I of this thesis describes cost effectiveness in sewer design. The purpose of the cost effective process is to determine the system that allows the user to most nearly achieve his stated goals and objectives. The objective is minimal cost, which is calculated subject to a series of constraints that may limit the selection of variable values. The initial analysis of a proposed storm sewer system is vital when undertaking a design. Initial consideration should be given to the topography of the area, the 2

types and depths of soils in the area, the points where flows originate and end, the quantity of flow that enters the system at different points, hydraulics of sewers, the cost and availability of sewer pipe and the cost of excavation and installation of sewer pipe. The constraints are centered around these variables.

The design process, including cost computations, is laborious to the extent that it discourages the effort to explore all situations to arrive at a cost effective design. The advantage of a computer based approach is that it allows the user to review numerous solutions quickly to arrive at the best decision.

In Chapter I, the user is taken through a step-by-step procedure to formulate the problem for the computer model. The problem is divided into stages which represent a pipe plus a downstream manhole. At each stage, a number of states or conditions are analyzed in accordance with the constraints to make a decision of minimal cost. At each state of the problem, the computer program would calculate the proper pipe size and slope. The constraints are introduced into the program to control the significant number of variables that are associated with sewer design as described above.

Cost equations are developed based on pipe size and depth of sewer. Historical data of actual construction cost bids were analyzed and linear cost equations were developed for a range of sewer depths.

Equations were also developed if high groundwater or rock is encountered during design. The,construction cost data analyzed was actual costs for labor and material for sewer construction basically within the state of 3

Ohio. If this program is used for designs outside of Ohio, then the user must adjust the cost equations to account for any changes in labor and material costs.

In Chapter II, the computer model formulation is discussed.

The model computed a proper pipe size and slope at each stage that satisfied the constraints before moving on to the next stage. In­ put variables are explained in detail for the user for proper model operation. The computer model generates overland flow and pipe flow dependent on the size of rainfall and topographic features. The flows are stored in memory and are used to size and assign slopes to the system. The actual computer program is presented in Appen­ dix A.

A case study presenting an actual design is included in Chapter

III. It presents a step-by-step procedure from initial design techniquest through variable value determination for the computer model. The method presented can be applied to all types of storm sewer designed for any size rainfall. Information and tables con­ tained in Appendices Band C are used in the computer run for the case study.

Chapter IV presents the results of the computer run with a reliability analysis of the case study. Hand calculations were made to verify the results of the case study. It was found that all constraints were met and that all pipe sizes and slopes calcu­ lated for each stage meet the pipe flow requirements. Conclusions for the case study are presented in Chapter V stating that this method of sewer design provides a reliable, technically sound design that is practical by today's engineering standards at a minimal cost. 4

CHAPTER I

COST EFFECTIVENESS IN SEWER DESIGN

Cost effectiveness is used in many complex decisions involving the selection of values for a number of interrelated variables. The purpose of the cost effective process is to determine the system that allows the decision-maker to most nearly achieve his stated goals and objectives. A decision is made with one objective in mind designed to measure the quality of that decision. In the case studied here, this one objective is cost, which is minimized subject to constraints that may limit the selection of variable values. Therefore, it is essential that the goals, objectives and constraints be clearly defined during problem formulation.

The complex and numerous decisions involved in the sewer design problem are discussed below. The goal of the designer is to achieve a sound sewer design. The objective is to develop a sound design at minimal cost. The decision made is to find the proper pipe size and slope subject to a number of constraints.

In order to facilitate the decision making process, the sewer design problem is divided into stages. The stages represent a pipe plus a downstream manhole. At each stage, a number of states or conditions are analyzed in accordance with the constraints to make a decision for minimal cost. 5

THE STAGES

As stated previously, the stages represent a pipe plus a downstream manhole. It is assumed that a fictitious pipe of zero length with zero flow lies upstream of manhole A as shown in Figure 2 in Chapter III. The

Case Study presented in Chapter III has 9 stages to consider.

THE STATES

The states at each stage represent the bottom invert elevation of the pipe. The input state is the bottom invert elevation of the upstream end of the pipe (INi) and the end state is the bottom invert elevation of the downstream end of the pipe (OUTi). Qi represents the flow input for the stage. Flow into the storm sewer would be to catch basins (inlets) at the input state (INi). This is shown in the diagram below:

(T_i) -:-~_. (_01: ~ pipe m~nhole Qi

THE DECISIONS

The decision to be made at each stage is how much drop can occur across the stage. This drop represents the slope of the pipe. The slope and flow rate then specify the pipe diameter. In the diagram below, the di represents the drop across the stage. It is assumed that the outflow bottom invert at a manhole must be the same elevation as the input bottom invert for the next stage downstream.

(I!i) i (_OE o ~ Pipe Manhole di Qi 6

COST FUNCTION

The cost equation for this program was formulated from historical data provided by Floyd Browne Associates, Limited, a consulting engi- neering firm from Marion, Ohio. This data is presented in Table No.1.

This cost data for the depth and pipe size given is an average of cost per lineal foot of pipe from actual construction bids over the last ten years. The costs are adjusted to a Engineering News Record Construction

Cost Index of 4000.

The costs presented in Table No. 1 do not include dewatering

(high water table conditions) costs or additional costs if rock is encountered. If soil conditions indicate that groundwater may be encountered in excavation, the costs in Table No. 1 must be increased

$lO/L.F. for depths between 0 feet to 15 feet and $15/L.F. for depths from 15 feet to 25 feet. For rock considerations, increase the costs in Table No. 1 by fifty percent.

The return (ri) is the minimal cost of the installation of the .~ pipe at each stage as shown below: (ri)~ (I i) (0 Ti)

--r~r-- ...;i:::"- ....L._--"Q)

pipe manhole di Qi

Linear Regression of minimum cost versus diameter was performed on the data in Table No.1 for each of the four ranges of pipe depths. The equations are those of a straight line with the cost calculated based on the pipe size needed. The equations are presented in Table No.2. 7

TABLE NO.1

PIPE IN PLACE - ESTIMATED CONSTRUCTION COST

COST/LIN. FT.

DEPTH IN FEET Pipe Diameter (in. ) (ft.) 0-10 10-15 15-20 20-25

8 ( .67) 52 60 68 72

10 (.83) 55 63 72 76

12 (1.0) 60 67 76 80

15 (1.25) 70 78 87 89

18 (1. 50) 78 87 95 119

21 (1. 75) 81 90 100 107

24 (2.0) 86 95 111 134

27 (2.25) 98 108 124 168

30 (2.50) 106 116 132 177

36 (3.0) 131 143 161 209

42 (3.50) 147 164 183 239

48 (4.0) 178 189 200 240

54 (4.50) 207 219 237 280

60 (5.0) 220 231 250 302

66 (5.5) 261 273 289 356

72 (6.0) 300 315 337 409

78 (6.5) 341 354 378 449

84 (7.0) 400 412 444 528

ENR = 4000 8

TABLE NO.2

COST FUNCTIONS

CORRELATION DEPTH EQUATION COEFFICIENT (ft.)

0-10 C=-5.85+50.66(D) .98

10-15 C=13.96+50.41(D) .98

15-20 C=8.55+54.30(D) .98

20-25 C=777+66. 28 (D) .99

C Cost per lineal ft.

D = Diameter of pipe. r = Correlation Coefficient (if equal to 1, all input data falls along a straight line). 9

CONSTRAINTS

The initial analysis of a proposed storm sewer system is vital when undertaking a design. Analyzing a system consists of the following:

1. Topography of the region.

2. Types of soils.

3. Depths of soils.

4. The points where flows originate.

5. The location of a final outlet

6. The flows that enter the system at different points.

7. Hydraulics of flows in sewers.

8. Cost and availability of sewer pipe.

9. Cost of excavation and installation of sewer pipe.

10. Runoff Coefficients.

Considerable documentation is available for the reader to investigate involving the above tasks that will not be discussed in this thesis.

These tasks are only mentioned here as a prelude to input data for the case study presented in Chapter III. The discussion that follows des­ cribes the constraints introduced in the computer model in Chapter II that eliminates many tedious computations by a designer.

A. Depth of Sewer. The constraint introduced into the computer model is that the minimum depth of sewer from ground surface to the pipe invert will be input by the designer. In the case study pre­ sented in Chapter III, this depth will be at least 5 feet. This depth is not an established standard but the designer must determine the proper depth of the proposed sewer based on existing site conditions. 10

Items such as existing utilities can aid in determing a depth of a

proposed sewer. The cost functions previously discussed for the

depth chosen for the design will hav~ to be revised in the program.

B. Minimum Velocity. This constraint is introduced into the

model to allow sufficient velocity to prevent settlement of solid

matter so that no clogging or pooling of sediment occurs in the pipe.

A minimum velocity of 2 feet per second at full depth of pipe is used.

The minimum velocity of 2 fps is an established standard accepted by

the Ohio Environmental Protection Agency. Maximum velocities are not

used in this program but the reader must be aware that accepting high

velocities in a design may pose a maintenance problem. High velocities

erode pipes which may reduce the life span of the system and increase

the operations and maintenance costs of the system. If high velocities

are necessary, then the designer should consider using stronger pipe

material to promote a longer life span for the system or in-line

hydrobrakes or detention ponds.

C. Minimum Slope. The minimum slopes are used in this model to

achieve the minimum velocities. At 2 fps the slopes for different

pipe sizes are presented in Table No.3.

D. Minimum Pipe Size. In this model, the downstream pipe cannot

have a smaller diameter than the largest upstream pipe entering the

manhole and the invert elevation of the pipe leaving a manhole (stage) must be greater than the invert elevation of the pipe entering the

next downstream manhole (positive slope). 11

TABLE NO.3

MINIMUM SLOPES FOR DIFFERENT PIPE SIZES

Diameter Slope (inches (ft)) (FT/FT)

8 (.67) .0034 10 (.83) .0024 12 (1.0) .0020 14 (1. 25) .0015 18 (1. 50) .0012 21 (1. 75) .0010 24 (2.0) .0008 27 (2.25) .0007 30 (2.50) .0006 36 (3.0) .0006 42 (3.50) .0005 48 (4.0) .0004 54 (4.50) .0004 60 (5.0) .0004 66 (5.5) .0003 72 (6.0) .0003 78 (6.5) .0003 84 (7.0) .0002

E. Design Equation. The design equation used in this model is- the Manning's Equation for pipes flowing full:

v 0.590 D 2/3 1/2 qUation S number 21-33b] n obtained from reference ~3 in Bibliography. where:

V Pipe velocity in fps.

n = Roughness Coefficient for pipe material used. This n-factor is determined by pipe manufacturers and is dependent on the smoothness of the pipe material used.

D = Pipe diameter in feet.

S = pipe slope in feet/feet. 12

COST EFFECTIVE EQUATIONS

The cost effective equations for this computer model are as follows:

OBJECTIVE EQUATION: C =- 5.85 + 50.66 (D)

SUBJECT TO: INELEV (I) ~ COVMIN = Minimum cover from ground surface to pipe invert. ~ V(I) ~ 2 FPS

SLO(I) > Minimum slope at 2 FPS (See Table 3)

D ~ Pipe diameter of previous stage.

Where: C Pipe cost in dollars

D = Pipe diameter in feet

INELEV (I) = Invert elevation of pipe at stage I

V(I) = Pipe velocity at stage I

SLO(I) = Pipe slope at stage I. 13

CHAPTER II

COMPUTER MODEL FORMULATION

THE COMPUTER PROGRAM

As stated previously, the user must perform certain preliminary tasks when initiating a design of this type. On a map, the designer must define the boundaries of each subarea. A subarea is an area consisting of homogeneous land cover that is tributary to the sewer at the point at which the pipe size and slope is to be determined (a stage). Also, on a map, the designer should draw lines and arrows to represent flow direction. Manholes should then be located tentatively and distances measured between them, usually 300 to 400 feet apart.

The computer program was written in TI Basic for operation using a Texas Instruments TI 99/4A personal computer. A flow chart for the program is presented in Figure 1. The actual program is presented in

Appendix A of this thesis.

Input variables are presented below:

VARIABLE DESCRIPTION

AN Manning's Roughness Coefficient VMIN Minimum Allowable Velocity in Pipe (fps) COVMIN Minimum distance between bottom invert of pipe and ground elevation at manhole in feet. OELEV Bottom invert elevation of final outlet in feet above datum NPDIA Number of possible pipe sizes in input data. NPIPE Number of stages, where a stage is a pipe and a downstream manhole ACRE(I),I=l,NPIPE Acres of subarea at Ith stage. RCOF (I),I=l,NPIPE Rational Method Runoff Coefficient LMCS(I),I=l,NPIPE Length of main overland flow channel in subarea in ft. EMRP(I),I=l,NPIPE Elevation of most remote point in subarea in feet above datum. GELEV(I),I=l,NPIPE Ground surface elevation at beginning of Ith stage. INITIALIZE Variables and Input Data

Add cost of pipe Calculate QIN for each stage in place to minimize cost of pipes required upstream Compute maximum and m1n1mum invert elevations at the upstream end of Stage I no

Compute maximum and minimum drop across Stage I based on the 2 fps slope given for the largest pipe size in Table No. 3 and depth constraint yes Compute increment of change in elevation for each output state in Stage I store values for printing

For each incremental value, determine smallest diameter pipe which will satisfy the constraints on flow, no velocity, and upstream diameter no

no __---:yes

END

Compile cost of pipe in place based on pipe size found to meet OfT/MilAr/ON SEWER. DESIGN constraints IN FLOld CJJflR.T !=oR. A COmpUTER. PROGltfJM CIVIL ENG/? GRI1/Jl/ATE 7JJES/S DAre: C'IM~N s)'; ,q(/6l.!ST, /966 S. /)/ORjo FIGt//?E I 14

PDIA(I),I=l,NPDIA Diameter of Ith possible pipe size in input data in feet.

S2FPS(I),I=l,NPDIA Minimum slope to meet velocity requirements in ft./ft.

PLONG(I), I=l,NPIPE Length of Ith pipe in ft.

FREQ Return Frequency of Storm

K "K" value in Steel Formula, See Appendix B.

B liB" value in Steel Formula, See Appendix B.

INCR Incremental value between the maximum and minimum invert ele­ vations used to calculate the proper pipe size and slope.

Flow from each subarea to an inlet (manhole) is found through

Cl. combination of the Rational Method and the Soil Conservation Method.

The Rational Method theory can be found in reference 1 and the Soil

Conservation Service Method theory can be found in reference 7. Com- bining the two equations:

Lag = 0.6 to where to = time of concentration with 8 Lag LO. (S+l)0.7 where

(1900) SLO. 5 Lag the time between a brief heavy rain and the maximum runoff rate,

L length of main overland flow channel in subarea in feet,

S (1000/CN)-10 with CN = SCS curve number, see Appendix B, and

SL slope of subarea, in percent, 15

gives a value for the time of concentration to (overland flow time) for each subarea. The Steel Formula:

I = K -~-- to+B is used to calculate the rainfall intensity (See Appendix B) for values of K and B. Intensity-Frequency-Duration curves are not available for the area used in the Case Study discussed in the next Chapter. The

Rational Formula: Q = CIA

where Q flow to a stage C Runoff coefficient (See Appendix B) I Rainfall intensity in inches/hour A Acres of subarea is then used to calculate the flow to each stage of the program. This program is set up for small drainage areas (less than 5 acres), there- fore, results using the Rational Method will be realistic.

The program then calculates the maximum and minimum invert ele- vations for each stage based on the constraints. The program then calculates the maximum and minimum invert elevations for each stage based on the constraints. The maximum invert elevation is calculated by subtracting the minimum cover depth input to the program from the ground elevation at that stage. To find the minimum invert elevation, the program uses the minimum slope for the largest pipe size input to the program for the desired minimum velocity. This slope is used to calculate the maximum drop across a stage by multiplying it by the pro- posed length of pipe across the stage. This result is the maximum drop in the pipe for that stage. The minimum invert elevation is then calcu- lated by taking the invert elevation at the end of the previous stage and 16

subtracting the calculated maximum drop. If the topography causes the minimum invert elevation to be greater than the maximum invert elevation, then the minimum invert elevation is then assumed by the program as

10 feet below the maximum. This method allows a sufficient distance between the maximum and minimum invert elevations for the program to calculate a slope and pipe size to meet the constraints. At each incremental value, if the program cannot find a pipe size or slope to meet the constraints, then the calculations are resumed at the next incremental value which would allow steeper slopes and more capacity to carry the pipe flow. Calculations are made for velocity, slope, and pipe capacity at each incremental value input to the program. If all constraints are met, then the cost of construction is then calculated and stored in memory.

As shown earlier, the cost equations are based on pipe size and depth. Specifically, the deeper the pipe, the greater the cost.

This important item of optimization is built into the program itself.

The program starts at the shallowest incremental invert elevation and works deeper until all constraints are met. Therefore, the first pipe size and slope to meet the constraints that is found by the program would be the least cost alternative. This "built-in" feature also cuts down on over-design. 15

gives a value for the time of concentration to (overland flow time) for each subarea. The Steel Formula:

IK---:---- to+B is used to calculate the rainfall intensity (See Appendix B) for values of K and B. Intensity-Frequency-Duration curves are not available for the area used in the Case Study discussed in the next Chapter. The

Rational Formula: Q = CIA

where Q flow to a stage C = Runoff coefficient (See Appendix B) I = Rainfall intensity in inches/hour A = Acres of subarea is then used to calculate the flow to each stage of the program. This program is set up for small drainage areas (less than 5 acres), there- fore, results using the Rational Method will be realistic.

The program then calculates the maximum and minimum invert ele- vations for each stage based on the constraints. The program then calculates the maximum and minimum invert elevations for each stage based on the constraints. The maximum invert elevation is calculated by subtracting the minimum cover depth input to the program from the ground elevation at that stage. To find the minimum invert elevation, the program uses the minimum slope for the largest pipe size input to the program for the desired minimum velocity. This slope is used to calculate the maximum drop across a stage by multiplying it by the pro- posed length of pipe across the stage. This result is the maximum drop in the pipe for that stage. The minimum invert elevation is then calcu- lated by taking the invert elevation at the end of the previous stage and 16

subtracting the calculated maximum drop. If the topography causes the minimum invert elevation to be greater than the maximum invert elevation, then the minimum invert elevation is then assumed by the program as

10 feet below the maximum. This method allows a sufficient distance between the maximum and minimum invert elevations for the program to calculate a slope and pipe size to meet the constraints. At each incremental value, if the program cannot find a pipe size or slope to meet the constraints, then the calculations are resumed at the next incremental value which would allow steeper slopes and more capacity to carry the pipe flow. Calculations are made for velocity, slope, and pipe capacity at each incremental value input to the program. If all constraints are met, then the cost of construction is then calculated and stored in memory.

As shown earlier, the cost equations are based on pipe size and depth. Specifically, the deeper the pipe, the greater the cost.

This important item of optimization is built into the program itself.

The program starts at the shallowest incremental invert elevation and works deeper until all constraints are met. Therefore, the first pipe size and slope to meet the constraints that is found by the program would be the least cost alternative. This "built-in" feature also cuts down on over-design. 17

CHAPTER III

COMPUTER MODEL FORMULATION

CASE STUDY

This chapter presents a case study of an actual storm sewer design. The area chosen is shown on Figure 2. It is a residential area of homogeneous land use in Mahoning County, Ohio. Figure 2 shows the tentative location of the manholes and piping. Each sub­ area is also delineated on the map along with arrows representing overland flow direction. It is assumed that this area is newly developed and that the sewer is constructed before the roadway.

This study is broken down into 9 stages. A stage represents a pipe plus a downstream manhole with a fictitious pipe of zero length upstream of manhole A. The topography of the area is gradually sloping as can be seen by the contour locations. Outfall of this storm sewer is to a receiving stream as shown.

The type of pipe used in this study is polyvinylch1oride (PVC) pipe. Manning's n for this pipe is .009. The minimum velocity is 2 feet per second. The minimum cover, which is the distance from the ground surface to the pipe invert, is 5 feet. The outfall ground elevation is 1015 feet. The number of possible pipe diameters is

18, ranging from 8 inches (.67feet) to 84 inches (7 feet). See Table

3. The design of this sewer is for a 4year storm. The "K" value of the Steel Formula is 131 and the "B" value is 19, taken from Table

B-1 in Appendix B. 18

The soil type in this area is called "Mahoning". Using the Table pro­ vided in Appendix C, the hydrologic soil group for "Mahoning" soils is D.

Then using Table B-3 in Appendix B, the SCS curve number for residential land use of 1/2 acre in size and 25 percent impervious is 85. The number of increments used between the maximum invert elevation and the minimum invert elevation is 20. The Runoff Coefficient for the Rational

Method is 0.4 for each stage taken from Table B-2 in Appendix B.

Additional input data is contained in Table 4. .' ,.

.. I.

15

P AT (61', (n) (!oS) III liZ 140 ' ~ \ 7.1"" ?". . :0'" DR. t., 50' 7"" 7J'" " ,. 7'"

c.o~ ($') Uc.) U6 .... 12.1 ~,

/10'

(,,£) 51 lj-'

Ju..I£ u21 ISZ.\ ... '. H ..o

.. ; TABLE4

INPUT DATA-CASESTUDY

Elevation of Length of most remote Ground Pipe Subarea Runoff Main Overland Point in Subarea Elevation Length Sta&eStage _ Acres Coefficient Flow Channel (pt) (FT) (FT) (FT) Manhole

1 1.20 0.4 185 1077 1069 0 A

2 1.10 0.4 125 1071 1062 250 B

3 1.43 0.4 175 1060 1049 300 C

4 1.30 0.4 180 1055 1040 300 D

5 1.35 0.4 185 1040 1030 300 E

6 1.39 0.4 185 1035 1025 300 F

7 1.44 0.4 185 1027 1020 300 G

8 1.17 0.4 185 1020 1017 250 H

9 1.0 0.4 150 1017 1015 360 0

..... 1.0 20

CHAPTER IV

COMPUTER MODEL FORMULATION RESULTS

The results of the computer run discussed in the previous chapter are shown on Table No.5. Figure 3 is the design profile for this storm

sewer. As can be seen t all constraints are met. The pipe depth from the ground to the invert is at least 5 feet. The pipe diameter down- stream of the previous stage is at least the same size or greater and sized according to flow requirements.

PROGRAM RELIABILITY

Hand calculations were made to verify the results of the Case

Study computer run using a National Clay Pipe Institute (NCPI)

Gravity Flow Hydraulic Calculator. This calculator is a homograph type of which a photo copy is contained in Appendix B. This calculator contains several scales to relate the various parameters used with the

Manning's Formula for solution to sewer design problems. Using the

known invert elevations found by the program t since the constraint for pipe depth is correct along with the pipe flow found using the Rational

Method t a check was made verifying the pipe size and diameter for each stage. It was found that all pipe sizes and slopes calculated for each stage meet the pipe flow requirements. The results of the check are shown below:

STAGE I 2 3 4 5 6 7 8 9 PIPE DIAMETER (FT.) o .67 1.0 1.25 1.5 2.0 2.25 2.5 3.0 SLOPE (FT/FT) o .030 .043 .029 .035 .016 .016 .014 .0053

A check was also made with the NCPI calculator on the constraint for_ minimum velocity. All stages of the case study design meet this require- ment. TABLENO.5

CASE STUDYRESULTS

1 2 3 4 5 6 7 8 9

PIPE LENGTH 0 250 300 300 300 300 300 250 360

PIPE FLOW(cfs) 0 2.74 7.58 14.72 23.55 33.8 45.57 58.5 72 .26

PIPE DIAMETER(ft) 0 .67 1.0 1.25 1.50 2.0 2.25 2.50 3.0

SLOPE (ft/ft) 0a .030 .045 .030 .035 .018 .017 .014 .007

INVERT ELEVATION(ft) 1064 1056.4 1043.5 1034.94 1024.5 1019.74 1014.98 1011.5 1009.61009.6

GROUNDELEVATION(ft) 1069 1062 1049 1040 1030 1025 1020 1017 1015

PIPE DEPTH (ft) 5 5.5 5.5 5.06 5.5 5.26 5.02 5.5 5.4

TOTALCONSTRUCTIONCOST = $202,385.55.

N ...... ~ p:::: ~ l:::::::: :;::u:: I::±:: :EE ~ :;::::+1 . +:;: -+-;- -!-t--B ~t+i '+I +rt ...... tt ..... ++- :~ . :t=4+--;.q+1 '*~ ++-::0 :;:j: IT :j::!: l± -t+ :.t ++ -H-' j:t:-++

j::= i± I-i- ;-0- . :;: 4- . . - +'- , . it ++ l:::;: - -l-+ M '+I f-H -'-+ .:ti I-i- +i C\l +H M .. .,-- H++ .....-- "- +1++ ±ct +-'-+ +4 +'- -~ tr::.+!- ;:t:\,:;: ± ;:l:l: ...... , ~ :;+ --+-+-+4- :::::±± .1+ q:t-;' =+ ++: ::t;::;::::+= tl =r++l '+I ::::::::+ ;:: ±tEE: .~ ~ :;::q:::±1 ~=i: I+i t+ ±: .~ ~ -++..L- ~ H :;..;..+p H ~' :;::;H ill

;..;+

4 '1'i-< ::r++ .,..,. '-f+ :.t\.::f:1 :::::t I-i- 1-4 ++ .~. - :ti: +t- q: ;..,.. &fA p:;..:.., +t:t:

±t f-R+ :;:: :r:c= . :;: ~..,..e~

, i' ~ ~. I--- 1--.:. c-~~ ~~ ~ ,-. . t±::-1-----, I - . t=:t=::::!t:: .. - 22

The construction cost calculated by the program is $202,385,55.

An itemized breakdown is shown in Table No. 6 with unit costs and calculated quantities to check the cost equations. The unit costs are an average of actual contractor~ bid prices for a sewer installa- tion project received in January, 1986. As can be seen, the calculation of construction cost by the program is reliable for the type of case study presented here.

TABLE NO.6 CONSTRUCTION COST BY QUANTITY AND UNIT PRICE

ITEM DESCRIPTION QUANTITY UNIT PRICE COST

1 Earth Excavation 2,100 CY $12 CY $25,200 2 Granular Backfill 1,050 CY $30 CY 31,500 3 9" Aggregate Base Course 1,050 CY 5 CY 5,250 4 2~" Asphalt Concrete 1,050 SY 30 SY 31,500 *5 8" PVC Gravity Pipe Sewer 250 LF l8/LF 4,500 *6 12" PVC Gravity Pipe Sewer 300 LF 26/LF 7,800 *7 15" PVC Gravity Pipe Sewer 300 LF 32/LF 9,600- *8 18" PVC Gravity Pipe Sewer 300 LF 38/LF 11,400 *9 24" PVC Gravity Pipe Sewer 300 LF 46/LF 13,800 *10 27" PVC Gravity Pipe Sewer 300 LF 52/LF 15,600 *11 30" PVC Gravity Pipe Sewer 250 LF 58/LF 14,500 *12 36" PVC Gravity PIpe Sewer 360 LF 66/LF 23,760 *13 4' Diameter manholes 48 LFD l20/LFD 5,760

TOTAL CONSTRUCTION COST $ 200,170

* Costs include items such as installation, pipe bedding, and pipe testing. 23

CHAPTER V

SUMMARY AND CONCLUSIONS

SUMMARY

The purpose of this thesis is to provide the sewer designer with the following:

1. A method of computation which results in realistic

estimates of overland flow and pipe flow.

2. A combination of engineering and economic aspects

simultaneously.

3. Capability of exploring all of the situations quickly

to arrive at a cost effective solution.

A computer program was developed to be used as a guide for the design of storm sewers to ensure a cost effective solution. The cost effective solution is found by applying the cost function according to the constraints set forth in the program.

An actual case study of storm sewer design is included to check the reliability of the design computer program.

CONCLUSIONS

Based on the information and data presented here, the following conclusions can be made.

1. The method presented in the computer model

combines engineering and economic aspects simultaneously,

that results in a sound sewer design at minimal costs.

2. The computer program should be used on relatively small

drainage areas (subareas of less than 5 acres) to maintain _

realistic overland flows and pipe flows. 24

3. The computer program is flexible enough to be easily modified

to conform with any type of topographic and geologic situation.

a. Modify cost equations depending on depth of

pipe desired and geologic considerations, such

as rock or high groundwater.

b. Modify minimum depth of pipe and pipe roughness

coefficient to "fit" the design to the topo­

graphic and geologic restrictions. The case

study used here is a discharge to an open stream.

Input data can be adjusted for the case of dis­

charging to another storm sewer, for example.

4. The program is simple in structure and can be easily modified

for use on any other type of personal computer.

5. The results of the Case Study indicate that the computer

program can provide a reliable design based on the con­

straints set forth. A-l

APPENDIX A

Computer program A-2

COST EFFECTIVENESS IN SEWER DESIGN

10 INPUT "MANNINGS N It. AN

20 INPUT "MIN VELOCITY IN PIPE (FPS)_": VMAX

30 INPUT "MIN COVER (FROM GROUND TO INVERT) _": COVMIN

40 INPUT "INVERT ELEVATION OF OUTLET It: OELEV

50 INPUT "NUMBER OF POSSIBLE PIPE SIZES It: NPDIA

60 INPUT "NUMBER OF STAGES It: NPIPE

65 INPUT "INCREMENTAL VALUE FOR DESIGN It: INCR

70 DIM ACRE(10), RCOF(10), LMCS(10), EMRP(10), GELEV(10), PLONG(10)

80 FOR 1=1 TO NPIPE

90 INPUT "ACRES OF SUBAREA AT Ith STAGES_": ACRE(I)

100 INPUT "RUNOFF COEFFICIENT(C) FOR Ith STAGE_": RCOF(I)

110 INPUT "LENGTH OF MAIN CHANNEL IN SUBAREA_": LMCS (I)

120 INPUT "ELEVATION OF MOST REMOTE PT. IN SUBAREA_": EMRP(I)

130 INPUT "GROUND SURFACE ELEVATION AT Ith STAG~": GELEV(I)

135 INPUT "LENGTH OF ITH PIPE_It: PLONG(I)

140 NEXT I

150 DIM PDIA(10), S2FPS(10)

160 FOR 1=1 TO NPDIA

170 INPUT :DIAMETER OF Ith POSSIBLE PIPE SIZE(FEET)- ": PDIA(I) 180 INPUT :MINIMUM SLOPE TO MEET VELOCITY REQUIREMENTS_": S2FPS(I)

190 NEXT I

200 INPUT "RETURN FREQUENCY OF STORM_": FREQ

210 INPUT "K-VALUE IN STEEL FORMULA It: A

220 INPUT "B-VALUE IN STEEL FORMULA It: B

230 INPUT "scs CURVE NUMBER FOR THE SUBAREAS " . CN A-3

240 DIM OFT(10), SL(10)

250 S=(1000/CN)-10

260 FOR I = 1 to NPIPE

270 SL(I)=((EMRP(I)-GELEV(I»/LMCS(I)*100

280 OFT(I)=((LMCS(I)A.8)*((S+1)A.7»/(.6*1900*(SL(I)A.5»

290 OFT(I)=OFT(I)*60

300 NEXT I

310 DIM PFT (10)

320 FOR 1=1 TO NPIPE

330 PFT (I)=PLONG(I)/VMAX*60)

340 NEXT I

350 DIM TCON (10), IN(10), SCA(10), QIN(10), TC(10)

360 TCON(l)=OFT(l)

370 IN(I)=A/(TCON(l)+B)

380 SCA(I)=ACRE(I)*RCOF(I)

390 QIN(I)=SCA(I)*IN(I)

400 FOR I = 2 TO NPIPE

410 TC(I)=TCON(I-l)+PFT(I)

420 IF TC(I»OFT(I) THEN 425

421 TCON (I)=OFT(I)

422 GO TO 426

425 TCON (I)=TC(I)

426 IN(I)=A/(TCON(I)+B)

430 SCA(I)=SCA(I-l)+(ACRE(I)*RCOF(I»

440 QIN(I)=SCA(I)*IN(I)

450 NEXT I A-4

460 DIM PFLOW(10), DIAT(10), ELMAX(10), ELMIN(10), INELEV(10), MOROP(10), ELH(10), SLOP(10), DROP(10), SLO(10), VEL(10)

461 DIM Q(10), VEL(10),QU(10)

470 PFLOW(10)=0.0

480 DIAT(I)=O

490 TCOST=O.O

500 FOR 1=2 TO NPIPE

510 PFLOW(I)=PFLOW(I-l)+QIN(I-l)

520 NEXT I

530 ELMAX(l)=GELEV(l)-COVMIN

540 ELMIN(l)=ELMAX(l)

550 INELEV(l)=ELMAX(l)

560 SLOMIN=S2FPS(NPDIA)

570 FOR 1=2 TO NPIPE

580 MDROP(I)=SLOMIN*PLONG(I)

590 ELMIN(I)=INELEV (I-l)-MDROP(I)

600 ELMAX (I)=GELEV(I)-COVMIN

610 IF ELMIN(I) ELMAX(I) THEN 630

620 GO TO 640

630 ELMIN(I)=ELMAX(I)-lO

640 DELH(I,J)=(ELMAX(I)-ELMIN(I))/INCR

650 FOR J=1 TO INCR

660 DELH(I,J)=DELH(I,J)*J

670 FOR M=1 TO NPDIA

680 DROP(m)=ELMAX(I)-DELH(I,J)

690 SLO(m)=(ELMAX(I)-DROP(m)/PLONG(I)

700 VEL(m)=(0.59*(PDIA(m)A .667*(SLO(m)h.5))/AN A-5

710 Q(M)=3.1416*PDIA(M)*PDIA(M)*.2S*VEL(M)

720 IF Q(M)

730 IF VEL(M)~VMAX.THEN 790

740 IF SLO(M)~S2FPS(m) THEN 790

750 IF PDIA(M)~DIAT(I-l) THEN 790

760 DIAT(m)=PDIA(M)

770 SLOPT(I)=SLO (M)

780 GO to 830

790 NEXT M

800 NEXT J

810 PRINT "FOR STAGE_":(I);"NO PIPE SIZE TO MEET CONSTRAINTS CAN BE FOUND "

820 GO to 870

830 ELH(I)=ELMAX(I)-DELH(I,J)

840 INELEV(I)=ELH(I)

850 COST= (-5.85+(50.66* DIAT(I)))*PLONG(I)

860 TCOST;TCOST+COST

870 NEXT I

1480 FOR 1=1 TO NPIPE

1490 PRINT "FOR STAGE_":(I)

1500 PRINT "THE LENGTH OF PIPE IN STAGE_";(I);"IS";PLONG(I)

1510 PRINT "THE PIPE FLOW IS _"; PFLOW(I)

1520 PRINT "THE QUANTITY OF FLOW ENTERING THE SYSTEM IS-";QIN(I)

1530 PRINT "THE DIAMETER OF THE PIPE IS _"; DIAT(I)

1540 PRINT "THE ELEVATION OF THE INVERT IS_"; ELEIV(I) A-6

1550 PRINT "THE GROUND ELEVATION IS "; GELEV(I)

1552 BREAK. 1560

1560 NEXT I

1570 PRINT liTHE TOTAL COST FOR THE SYSTEM IS "; TeOST

1580 END B-1

APPENDIX B

Standard Tables Used to Formulate Input Data to the Computer Program B-2

APPENDIX B

Standard Tables Used to Formulate Imput Data to the Computer Program

This Appendix contains certain standard tables that are to be used to formulate input data to the computer program. The tables are:

Table No. B-1 Coefficients for the Steel Formula (Taken from the Standard Handbook for Civil Engineers, McGr~w-Hill, Second Edition, 1976).

Table No. B-2 Recommended Runoff Coefficients (Taken from Modern Sewer Design, American Iron and Steel Institute, First Edition, 1980)

Table No. B-3 Runoff Curve Numbers for selected Land Use. (Taken from Technical Release No. 55, "Urban Hydrology for Small Watershed", Soil Conservation Services, January, 1975.

Figure No. B-1 National Clay Pipe Institute Gravity Flow Hydraulics Calculator. B-3

TABLE NO. B-1

~on F~umcy. ! Codlicimts yran 1 2 (b 4 5 I 6 7 2 IC 206 140 106 70 70 68 32 b 30 21 17 13 16 14 11 IC 147 190 131 97 81 7S 48 " b 29 25 19 16 13 12 11 10 Ie 300 230 111 111 122 60 b 36 29 16 17 23 13 25 Ie 327 J60 C&/ 170 130 155 r. b 33 32 30 27 17 !16 10 SO Ie 315 3SO ISO 187 187 160 65 b J8 38 27 14 25 21 a 100 Ie 367 375 290 220 240 210 77 b 33 36 31 28 29 fA) 10 8-4

TABLE NO. B~2

B~!'I!!SS Oowr!owr 0.70 tll 0.95 Nelinoc f:1cod ...... 0.50 tll 0.10 Res,:lenllil S~iile·larrnly ...... 0.30 to Q.5O I.ti:.unlts. detached 0 *I tll 0.60 foI ...!I'·unlts altJched ...... •. Q.6O to 0.75 R"~Jde"tll' (suburban) ...... 025 to 0.40 A:l2'!'1fnt ...... 0.50 to 0.10 tl"!: .. 5!f'lil llln: ...... 0.50 to 0.80 Heavy ...... •...... 060 to 0.90 Parks :emele'tes ...... 0.10 tll 0.25 Pla~i'~~ndS ...... 0.20 tll 0.35 Railroad yard ...... ~ .. . D.2O tll 0.35 1iI1~ro~ ...... 8.10 to 0.30

It otter IS desirable to develoQ a composilf runoff based lIII tile percemaae of dilferent tygn 01 sur· lice In the dfalllale area This proced~re oltln IS IClQiIed tll typocal "sample" bIoclls. I tIIIlIe to seIet­ ton Of reasorolble vllues of the coefficltllt tor an entn area. Coeffitients Wllll respect to wfIte type c"",n~ ,n use are: Character of Surface Pavement "phllt and Concrete : 0.70 to 0.95 BrICk ...... 0.70 to 0.85 RO'J1s ...... ••.••...... •.. , ••.••.....•••. 0.75 11 0.95 lIwns. sandy soil flat 2 percent " : 0.1311 0.11 Averlle 2 to 1 percent ...... U8 III Oll Stetll. 7 percent .....•.•...... ••.•...... ••..•••••..••...•••. 025 III 0.35

The coetfants in tIIese two tabulltillllS ft IIllIliatJIe !of ems aI 5-lD 10", hqutncles.less fre· quent hllher mtlnsily storms will lIQIlire .. use of "'per clllffic1ents IlecIuse III6IlrlllCll and ollllr los ses hive a proporllOllllly smaller tIIect 11II NIIOll Tfte coethclentS .. llIIIId lIII \lit asunp\lorl tlllt 1ht deSII" storm does not occur wllIn \lit pound surfxt " fIozIn. • 6-5

TABLE NO. B-3

HYDROLOGIC SOIL GROUP LAID USE DISCJlIP1'!ON A B C D

Cllltivated landl/ : witbl7lrt conservation treatmelit 72 81 88 91 : with conaerva~ion treatment 62 n 78 81

Puture or range land: poor con-:1ition 68 79 86 89 good condition 39 61 74 80

Meadov: good condition 30 58 71 78

Wood or Forest land: thin stan

Open Spaces, lawns. parka. golf courses. ceaeteries, etc. good condition:· grass caver on 75% or more of the area !9 61 74 So fair condition: gr..s coy,r or. 50% to 75% ot the area 49 69 79 84

COIIIIIlercial and bus1Jle.. areas ('51. impervious) 89 92 94 95 - Industrial districts (72$ Ulpel ,ious ). 81 88 91 93

Residential:!1 Averaae lot size Averaae % IlIlpervious~1 1/8 acre or less 65 77 85 90 92 1/4 acre ~I\ 61 75 83 87 1/3 acre 30 57 72 81 86 1/2 acre 25 54 70 80 85 1 acre 20 51 68 79 84

Paved parking lots. roots. dri r_~s • etc •.!1 98 98 98 98

Streets and roads: paved vith curb. &lid sto·,.. s_ers!I 98 98 98 98 gravel 76 85 89 91 dirt 72 82 87 89

11 For a JDOre detll.iled dese-'iptioD of aaricultural land use curve n\lllbel"8 refer to Jational Engineering 1Iar.4bool. Section 4. II;ydrology. Chapter 9. Aug. 1912. !I Good cover is prctecwd tre- crazing and litter and brush cover soil. 11 Curve n\llllbers are c~tecl ..sla1ng tbe runoff froll the bouse and driYeV~ is directed towards the atroet vith a JDiniJa\llll of roof vater directed to 1_ vbere additional inflltrGiol could occur. ~I 'nle remaining perviow. are.. (lawn) are considered to be in good puture cOlldition for these curve nuabe·tw.

!I III scae vlU'lller cllu';es of Ue country a curve nuaber of 95 III.IQ' be \lied. 1 1 1 1

1 1 1 1 1 1 1 1 1 1 FIGURE B-1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 I C-1

APPENDIX C

Soils Series and Hydrologic Soil Groups C-2

APPENDIX C

SOIL SERIES AND HYDROLOGIC SOIL GROUPS

This appendix provides soil names and their hydrologic classi- fication used in determing soil-cover complexes described in Chapter

III of this thesis. The hydrologic parameter A, B, C, or D, is an indicator of the minimum rate of infiltration obtained for a bare soil after prolonged wetting. By using the hydrologic classification and the associated land use, runoff curve numbers can be computed as shown in Chapter II.

The hydrologic soil groups, as defined by SCS soil scientists are:

A. (Low runoff potential). Soils having a high infiltration rate even when thoroughly wetted and consisting chiefly of deep, well to execessively drained sands or gravels.

B. Soils haveing a moderate infiltration rate when thoroughly wetted and consisting chiefly or moderately deep to deep, moderately well to well drained soils with moderately fine_ to moderately course texture.

C. Soils having a slow infiltration rate when thoroughly wetted and consisting chiefly or soils with a layer that impedes downward movement of water or soils with moderately fine to fine texture.

D. (High runoff potential). Soils having a very slow infil­ tration rate when thoroughly wetted and consisting chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material.

Table No. 1 of the Appendix was copied from Technical Release

No. 55, "Urban Hydrology for Small Watersheds", prepared by the

Engineering Division of the Soil Conservation Services, U. S.

Department of Agriculture, January, 1975. C-3

Table C-l~-Soil names and hydrologic classifications

AIlUA A A..AIlOR 0 uecli "'UE t USUO e AKASKA e A"AGC~ 0 ...eUCIlLE •8 "'_E 110 A8'JO t AIlHA t A"ALU 0 ARCATA ATO"" t "8",~TT 0 "LAOOI" ~ ....ANA e ARtH 8• ..UIOJI , ARCHABAl B ..nUIERIlY 8 H'hlTTSTO"" t AUE A ."..GOU 'BEGe 8 ..UHOA e A..ARIU' ° ARCHER , ..nE".." A "fL' 8 'L..GA A A""SA • A'CHI~ , "TTreA e ABEll 11 AU"'I e ""8ENSC" • ARC a e ..TTLE8Oll0 'U'DH" 0 Al""A C A"80Y C ARtOLA t ""'ATEil 'eES 0 AL'''A'lCE 8 A"O"AII C ARO t ..",ElL t• .e fU"F , "LA"t C A"fCfE A AROE" 8 AT~ e 41 I NGT,),.; e AU"OSA C .."ELla 8 AIl('E~Vl:IR AU8eE EIlAUaau 8 .."IQU' C AlAP..HA II A"£"IA 8 ""OIUA C• ..UIfIlAY 8 ABu 8 AlAPAI A A"ERICUS A AUOALE 8 ..USUllIl t C AlQU, A"ES , "RE"A C _UIlNOALE 0 .... Al~ANO "a.. AHAP'" 8 °C A"HE'ST , "'U,AUS .. ..UOI.." 8 .eSHUKH , Al"'''Y , A"IlY C ARENDTSVILLE B AU !;AU C ~cl~',JU 8 Al~UON 0 A""ON 8 AR£"'OSA .. aUliSBUllG 8 "8SH~'" 0 AL~H , A"ULE , "'E""VlllE AUGusta C ..,.c IC t A18E"ARLE 8 A"O. 8 'RGO"AUT •0 AULD 0 "'AoE'" , AL~fHVlllE C A"OS C ARGUHLO au... 'C'O IA Il ALalA , ""SHRJA" ARGYlE • ..ua.... t• ".~~ U AlJION 8 A"TCfT 0• ARlIO •A AUSHIII t ACE I 'UNAS R ..18KIGHTS C A"Y 0 ARK AlIUTlA t AUlIlIAUE 'CH 0 AL'ALOE C AN"A'" ARIlPCRT AUlatll ° ~ • "CKEO AlC£STER ...... HU" •0 ""L .."e • ".. t ACK"EN •8 ..LCU. a ....."IlE 0 "RLI"G C• .."""L"NCHE 8 .olC"F , AlCONA to ....AP •• "RlI~GTU" A A""lON ACJ 8 ALCOV' H ...UO"E •0 AkLOV..L C .."ERY •8 'C"ll I. AlOA C A....VERoE 8 A,,,.eH ..110.. C ..cr'vE "C ALOA. 0 A..t~L C A." I "GIIJI< °0 ""0I>8uaC 0 aero" 8 ALIlCN C A"CHCRACE A AR"U 8 .."OIlO..LE 8 &(UF F 8 "LOE. £ A..tHOil eAY 0 ARP""R .....IlEY .Cwt.J~TI1 8 AlOEOO"LE C ""CHeR PLINT 8 AR"STE~ C• ..nElL ° '" 8 .LUE ...UOO t .....nen c ,AR"S TKCNG 0 "V"R °t 104... ~ 0 'LOINO , '''CC C ARPUCHH 0 AYCctll: 8 AOAIIlS .. AUIl"AGIIl 8 ....ee.s C I"'''E\;A.0 ..VII 'r').Ilt'\J~ a 'LO e '~CER SC" 8 ,Utht-!ART ,• "VAU •C Aj""'iT,lWN AHUIlORU C ."cES , ...... EI" , ..VII SHIRE C 'OA",V IllE C AU XIS 8 A"CCRI"IA C AAr-G 0 USUS &01TII' 0 AlFOilO d 'hOQVE~ 0 A""'GlO AlUlAIl • "CAVE'" 0 AlC,A"SEE 8 A"CRES ti 'CNCT C/O• AllEC •8 j,l'hHS·j:-. 0 ..LGlfolS C/O '~CRE"S , A,'ocsrno" nUlE , &0,)'1' C AleO~A aiD .... EC 0 '~OS' 0 AlllElL ~UE • • 'LlCt • A.. fTh A A.- '~El AlICEl a A"GElItA U Ak.t It-'TC~ °8 BA8I A "CE LA I:'E •0 AlIC IA C '''CElI''. 8/0 A., ('lI~t , .'681IlGTON 8- .IiJt:l"",TG a AlIO' 9 .hGIE , .lU (.N , IIUCIlCIl: 8 ~'flf:lHIA l ALI"'HI 6 A"CLE • ARRCII ....YLOII • "CP.A C Al"O 0 '~GLE" A.'P':;"S"ITH • ."CA t 'OILl IS AlllGASH B A"GCU C• 'R'~ ,• BA'H 0 ,nl ":.~' :)/tCK • "llARD to A",eSIURA I 'RHI S e BAChUS 8 .H'''1l; I~~ a AllEGHENY e 'NI'" 0 ARV'ca 0 ..' ..80IlE IOlE .. , 'llE~'''OS U Ahl TA 0 .avA"A , ...OENAUGH • 4DlJl;ltot 0 AllE" ~ 'hKE~Y A ARVESO" C BA040ER •C 060 .. 1''''' AID Allt..OAU C '''L'UF C ••V II,LA 8 dAOGEltfOlll AE',El, I 'llE"SVILLE e A.....~ElU AKlEU , .AOO 0• AfT" .. AllEHI"E 0 Af"~'''CAl E •C AS" ."OUS C iF rti~ 0 AlLf .."UOO ~ ...... hIC" 8 ASBU.'Y • IAGC..O 8 Av.&P 8 .llty , ''''OKA A 'SCAl COl 8 aAGGOn 0 A;' .. )";: 1 0 '''C~ES , ASChUH ~ "ACLEY 8 'll"'" E a ALI T; n .lll..UOR ~ USEl"C A .snp,Jf T II 8....£11 A ...1..,- 8 'LlI S 0 A"SO" 8 ASHBY , .AlU 0• ''''.0 , All I seN C '''TELCPE SPRI ...es C ASHC"'£ 8 .A'''VlllE , A(,f-lol 0 AllCUEI C A"TERC e ASHt e .ar RO HOlLO" , AC;"f" a ..uo".y ' ..TH ..T , ASUkUM C ".lila" 0 AG"'~. 8IC 'LPAC e A"THO'" 8 ASHLH AB..IlEOVEh 0 A(; h S B 'L"E"A C ANTICO 8 '~H SI'kl"GS C .ue. , AGJI. ~ AU'u..T C 'HILC" 8 'SH'O", 8 .UtA 'ASS 8 .C,l_AJIL.lA A At""'" e ... , IC'H 0 'SHUt 8 .AlU" ACt:A Cl'l C.F C itCH" ~ ...nE. , .SHUEl cT , BALCH 0• Ar.,.,;t. F,..IA C AlU.. SO B .~ TO ~E C ASHoCC 0 C .AL'O" 8 '~,JfOJ, 8 All'V'. C A.. n 8 A~Kt 11II C ""LO C '(".... ,Il ty A d Alj.lE~A 8 ..fll ....y e Ase 0 "ALeEA C 'Gu I ,~ ~ 0 AlPO'li B A",A • 'SlT IN C BALllO(.lt ./t lCo'IS TI'" k ,AlPC ..A R APAChE 0 ASPE .. 8 IAlClIl1l 0 ...... aT;"' .... , 0 AlPS ,p,"un A '~Pf .....t.h' 8 BALDY 8 ''''1. , Al ~EA • AP I ~hAPA , .Ssl.... lorl ..E e BAlt , .....l J r'" (I'lli , 'LSUo e APlsr" 8 "SSW." r leN e !lAHUO ~ A..-E'1l. 8 AlS.TL.~ r APPlA" 0 loS.' AJliL' dAlU"GER C ....t!l T {l AlU"a"T ~ APPl,:("t L ASf( ~ •AID 8AU' 81C .... r ...... ).. l Al1AVI~TA ~ .c.:'~ll rl:~ C ASH.... IA 8 IIAL'A" ~IC ,..... ,>, .~ to: L AL H~(iAF r AYPLI~C cl A'A'SotAlJt.1C0 C ~'LC" e & I "')"" f.) C AllMAA ~ hP"(.~ 8 ATcr 8 .AlHC a AllI..f'" b ALTC C APr , ATEFI( C ~AL 1I "CRE e A 111...... iJ .1Il 'OIJA C APUKI~"C A'f1fU,.CLI) b 8,"8E. e T~-' • AfHt~A All r.., .s.l ~ ."'''·Glt'H e AP...... f.\ d" ALTUS U ""'I!YAl'lj~" cl AfHE~S cl clA"US A, .. - 'IT ( Al'VA~ t' A.UPIt:N ( • 'totf P'I.I\I tiC b'''CALf T "8 AI. "A At V 1·\ • 'Io(av~ 0 AI ..ll • "AhCtll.A 8 AI·p I Il- Alvl-tlo C AHA\rt fe' E AfKI~~( .. b 8uCO C .1' ') ~ ALVI~C Il All: ~ ~ l A L .nA S ~ 1l.'t''':1l cl NOTFS BLAI:r. IIY:1r!"'LOt.,c snll rf'r'uP P'!"'IC~'HS "'ur ~"" II "''''nlJ" ...< ""'r pr '-'1 "''-TF.P''lt,F'I'" • o n,m 50lL CROOP~ !;lIrp ,,~ ft/" 1'~"'lr'Tr" TilE 0",'\ I "rr/ll ,,,,.,, I "rr to IT··..'"'· ' .... flt January 1971 Table C-l --8ontinued

BANGSn" A BEA TTY BE~TELSr." A BLAKENEY C BO~CA 0 ,!ANKARO A ~EAUCOUP B BHTHOU,' B BlAKEPCRT 8 BOROUUX B "ANK~ A dEAUFUMO 0 BE~TIE C BLAI

IRENNER c/o IUCKLEY BlC CAlC I CAPUTA C CATlIll I IREIlT C IIUCKlCN D CURD D CAM loCO C CUlil' 0 IREIlTON I IUCIUlfR A CAJAlCO C CAR ALA..,. II CIoTIXTlII C lIRENT ..OOO II IUCOEY A CIoJl:1I A CloUD C tAflOSA I IIResSER I lUCKS II CIolAIIAR 0 CARIIOl 0 CATSUll A "EVARO II BUCKSUII C CAUUSIoS C CARIIONOALE 0 CloT URIoUCiU$ C &REVORT I BUCODA C CAlUS C CAaBURY I CAUDLE I II11E ..Ell C BUDD I CIolA.. IIlE 0 CARDIFf I CAVE D 1111 Ew STER 0 IIUDE C CAlA'OOVlo C CIoMCINGTON C CAVE ROCK A IllE..TON C IIUDE C CAlAIiAH I CAROON 0 CAVC 0 IRICKEl C IIUEll A CAlCO C CAMEY II CAVOOE , ""ICKTll'< C IIUENA VISTA I CALDER 0 CA"EY lAKE I CAVCUR 0 IRiDGE C IIUFFINGTON B CIolCIiEll I CAREVT""N 0 CAillieR 8 IIR IDGEtIIo""ON I IIUff PUll C CALUST C CIoRGlll C CAVIoGUA C IRIOGEpOU II IUICK C CALEB I CARlilE I CAnOR I ..IOGER A IURREEK 8 CALERA C CA,lIl1El I CAYYOA C IIRIOGESON lit "UlLlON D CALH I A CAR I8IiU I CAUOERC C IIRIOGEVILlf 8 IULlREY II CAl..OUN 0 CARUN 0 CAlADDR I IRIOGpORT I IIUll RUN II CALICO 0 CARLINTON I CAlENDVIA I IRHO..ELl I lULL TRAIL I CALlFCN C CARLISLE AID CEBOllA C 8R1EF I IULLY I CALI "US I CARLCTTA I Cftll 8 8RIENSIURG IU..G...O I CIoLlTA II CULL" 0 CEOAIIA" 0 IIRIGGS A IUNCCflIE A CAlllA A CAIllSdIoO C CEDAR IUTTE C 8R IGGSOAl EC IUNOO 8 CIolKINS C CAMLSIIORG .. CEDAREDGE ItRIGGSvlLlE C IUNEJUCi C CloLlA..AII C CAWL SON C CEDAR liT. ~ 8R IGHTOlo 10/0 IUNKER 0 CIolLEGUIoS 0 CARLTOII I CEDAllVlllE I IWlGHlllOlJD C IIUNSElNElEp C CALLINGS C CAR"I I CEDONU II IRill I IIlJ1t1T1NGVILLE lit CALlC..AY L" CARNEGIE C CEOROII C/O IRI" C IIUOIYIoII 8 CAVAR I CAiU,ERO C CEUYA II IIRINF I El D C/O Il.'llUNIl A CAl~EVA C CA.NEY 0 CUETDN 0 IRIIILEY II 8URCH II CALCUSE I CAROUOIE C CELIN.. C BRINEGAR I IUWCH..RO 8 CALPINE II CARR I CELIO A 8RINKERlON D IURC"ELL lilt CAlVERT D CA.WI SAL I TOS 0 CELLAR C IRI st·or I IURDUT C tAlVERTCN C CARMIlC A CtNCOVt I IRITE C 8UREN C CALVIN C CA"Se 0 CE"TER C IIRI TTON C IUIlGESS I CAlVISU D CARSON D CEI.lER CREEK I IIR 11IoJ4 A IURGI I CAli 8 CARSUUS II CEUERF IELO II IIRUAO C IIU"GIN D CUAOUEY 0 CA"STUNp C CE/iiTERV ILLE D IIROAOAlIIIN C IIURI

(HEHUlPUM C CHUH A CCACHEllA l! COHAlI I cOlno C CHEl A" I CUltS 0 CCAO CtHAHI l COIC C CHH Sf. A CIALITOS I COAl tRtft. C• COhASAUGA C COIePUI A (f04E:"' .... ,.. ~ CIIEIIUE ~ CCAl"ON' C CGhATA D con a (Hf_UN\.> tl~O 0 (DA"( C COHICY 0 confA' a CHE" 0 (180U I (OARUGCl 0 a (DHt~AS ( COlllaAl I C ... t;h,), A CICERO 0 (CAlICOOIt C CCI«HO C conlu a (Hf .....NhO A C 10ERCO~ 8 COATSaUIlG 0 (OH(C.HUll Y a conllln,ooo C CwE .... Ey 8 "ORAL ( cOla a (OH(OIlU D COIUfll C tHt:~~t 'Il C C lE"f" ~ C"IEI< 0 COl

Cltll" C CANZ 0) Ctl .EY C Dlne"T C DAY CAEfK C Cft..,.. CMttK B DANGDl C ttl AIC C DUNCAE 0) OlIYDtN II Cliln.Fi1PT C DA"IEN C CiEL TA C tllUNVlllE L c.ay IUE C C...... EA.T B DARl ".G ~ Oll TCN B CIIVlllE A cu....e II CR,'. "ILL , D.kNElL C tEU.I'" • ttu C DUII.KELLA C CRn.l Ey 0 D'~I"M\ II DEl A"'" DIHLE 8 O,-'I'~ C LJ.,Yf:K. A tAL 14'01 l'FlEW ·L o I~n I s ..u C CItA e.C. eYE C D'll ~.' "B OElfNA C CI'''U''.'' t DkAtUT e.C. LYE' (al T::-'lI e.C. DEV INA Clr.Kt' , CHGE ~ UYKE e U&UWF b CEl.. 1 A" LI"M.. ~ CR.lrtGOfll d DYItE"G U alA040,CVS' D llELlC"S d OINSCALE eAA';S re.. C Cille.. .~ 0 uEl'S ~/il 01"1..' •ale C.A1 .. c tAO C rA"A a OEll C LlhLElt a CltAKE tl tAC.AtAG.A e O.\"'ti.I.":YO.\"'K.I,":Y c DtllEKEIl C ~IClltf e.C. CM"h1Vll"t K l.Glfe.O~El.GlfC.O~E e DAlftY CEllC ." "I~UE "It [~APt. [ UJI"UJIII It 0"'''0",. , e.c. r.CLL~OSf E CISAfEl ;; C"t\('" tl EAOES a f)",C!\ 11;(,~ D OEl~ C nIS&VTtL , e.R~SSlfMC.R~SSlfM e.C. lAllLEIAllLE ~ c..... (;·--i( ..·G 0 r.tL~" IlIS~C I L.fItt.S B tANL"C'" Bit OA"lfl ~ B Ofl"ITA C OIS~hEA C CR If ruN t EUP 6 t:.l"" I) OEl"!'NT ~ CIS'E.....ff C Cill ~(S ~ tASLH ~ "-•• JoY , ~tl"C~TE l rITl"e.rITl"c....' ttflJM e.c. "ST flAK e.C. .,.""':-:'''4: ,k • 0 lllVH'lllLPH' B CI'WFIC S a CMU"""" ~ UST LAKE ... I)ANS"lH, ;; OLL'HILL , rJ~l[f • CtlU"il'CNO e USTlA~U C U.NT UHP IEORA C Oil • CkUMY • Usre."usre." e.c. O.t,N\"~loC~ "t QH'IHC C Oil • '.ue e.C. E.SIC....llU A " ....Vllll C CElA" AID \;IIIE e.C. CAYa"ltG • EAST PAM .. 0 Nf)TE!i A BLA"' HYOr[llOGlr SO IL r.ROUP IP'rlrAT!~ T~F ~nll r.I',,"p ..,~S ro,,'!' .FErI ~'TFR,.It'E[I Ttln SO IL l:POIJPS 5Url' A~ rur P!f\1 r.ATrs Tur rH'I1' p-tl"l/Il"r"PA 1'1F.r ~ ITX- January 1971 Table C-1 --Continued

EAS TP"n • Elli SCN 8 FSP(~O II F.R"UM I FLElSeM""'" 0 E'TU~TU"N ElLOA~ C HP.NTO II FAkUGUI e FU"'''' e UU...UI{ 8/" ElLS3EMRY HPIL 0 FARRAR I FUTeMER I EIII C I'll SWaRT" e ESPI~.l A FANNEll I fLOItE 0 [8t4FoFO.Cf C ESCO~DI 00 C f ••'Uf II flEE '_(('0 nUR t• NIITES A BLo~r ~Y"ROtO~lr 5011 f':f'f'lIlP ""nICATr') TuF 5rlJl tnf'lfl. ""c: ""T "£ftll nrTF••"lt'Fn TIIO SOil CROPPS SUC" os Plr l"OlrAT£:!i TilE ""AltlJ"l'\/u"nn.a"'Fr SITUATln" January 1971 Table C-J--Continued

F.EESTONE C GASCCNAOE 0 GLENF Ifl 0 0 G.."tER C GU"N I FREElENER I GAS C.EfIt C GU"fORC C GRAN~EY IllE IIC GUNTE. A FRE"O'" C GASItEll C GUMOAl'. I GRAIolll I GU...O 0 HE"'CH C GASS 0 GlEloHA~ I GMI"'C 0 "UllIoEY C FREHCHTOIlN 0 GASSET 0 GLE"M,..A C, GMI"'T GUSTAVUS I FRENEAU GATE SIUIIG A Glf""AI. LEN ( GRAHTS~URG C• GUSHN ( FRCSNO C GAHYIEIl 8 GUIoO"R 8 GU"'TSUAU A GUTItAIE 0 FR IA.. A 0 GATEIlAY C GUhllr SE 8 GUNYlllE B GUTTON 0 FR,IHI 0 GAHIlOOO 0 GLENST ED 0 GRAPEYINF C G...., 0 FR 10lO C GAUlOY 8 GlUTC,N I GMASIOEH 8 Gil I "NETT I FRIE""RN 8 GAYINS C GUNYI Ell 8 GRASS"'A 8 GY"EII C HIES 0 GAVIOTA 0 GlEloY i:llE C GMASSY BUTTE A FRIO 8 GAY 0 GLIDE I GRATl C "ACCItE C FRIZZHl C GAYLORD B (liKO 10 8 GMAYOEN C "AClENOA C FR08rRG 0 GAYNOR C GHRI A C GRAVE 8 HA(1t I fROH"'N C GAYYlllE 8 GHUeESTE. A GRAYITY ( "A(ItERS I FRONHOFE. ( GAlEllE 0 GlOY'R C/O GRAYCAl" A HACItETTSTO..", ! fRaNTaH 0 GAlaS 8 Gl Y"'(,CN 8 GRAYFeRO M "AOLEY I fRuST 0 GEAR"ART A elY"''' ( GRAYliNG A HAOO I FRUITR I GEARY GClLE ( GRUlaClt HAGEN I FRUlllANe I GEE 8• G(eCA RO B GRUPOI"'T "AGU.IAUH I FRYE 0 GEEIURG C GeODE 0 GRAYS HAGENE. A FUEGO C GEER ( GOeEC KE 0 GREAI 8EhO HAGE. ( FUERA ( GHO A GCOFR"'Y C GREHEY "AGEII"AN I fUlDR ( GEl It IE 8 GOO" I"'. 0 GRUh IIlUfF "AGE.ne.... ( fUllE" TON 8 GEl' ( GeEGU ,I'" ( GREE" (AhYUN HAGGA I FULMER 8/0 (E"IO ( GOE SSEl. 0 GRHIo(REU "'IG (, fUl. SHERR C GE"SO'" C GCfF ( GlIUIoCALE "AlltU fUl TON 0 GENESEE I GCGElle G.eeloFIHO "All"AN I• FUOUAY II GE"'EYA ( GClIl'" (• GMHIoHO..N HAIIoES 81t FUU.IS 8/0 GENOA 0 GGl(("O,A 0 GAHIoUAf HAlitE C FUA.Y 8/0 GENOlA (ClOH.[JAU GkU",eUG" C HAlAIlA I GEORGEVlllE •I GeltF H lO • GRUhPORT "AlOE. C GUSTOA. C GEORGIA I GllC~ILl I• GRH'" HIYER "ALE GAUlOON ( GERALD 0 GelUMAN C (RfEhSdOolO "AlUIlA • GA81tA 0 GERIER 0 GelOR 10 GE GRHIoSON C HALEY • GACH 0 GERIG I GGlORU" •A GRHhlON C HALF II0CN •M GROOES C GEMING I GOlOSleR., ( I;ltHIoYlllE I HAl FOliO A GAOES G GEAlANO C GOLDSTON ( GME U,"A reM A HALFIIAY 0 GAOSOE~ 0 GEA ..ANIA GUleST.E ' ... 0 GMEE"""H I "AlII 8 GAGE GFk ..ANY 6 (CHYAlt C GMHM.ueu c HAL II"UlE GAG ElY GESTRIN I GClUYE IN C GRUR C HAllS •M GAIOETCIlN (• GETU C GClIAO C GREGe"Y A HAll M 'RHEE 8 GETTYS C GOllAHER A GRUl L HAllECIt I GAINES C GEYSfH 0 GCMez 8 GRENAOA C "All RAlItCH C GAINESVILLE A GHENT ( GC"Y ICK I GAENVlllE 8 "AllVILU GAL ATA 0 GI~BLER C GOee" G~ESHA" C HAlSEY 0• GALE 8 fl18tN I G(iCCALE °C GRhl"'GIt C HA"AIlUAPDItO I GRUN 8 GlH8S 0 GCCOII

HUOStU88lf I HfHA I HILCAEfH 0 HONEVGROVE t HUIlUlltEA I HUOV 0 HElEAT t HILEA 0 Ho"EYVILLE t hUIlIIIIO t HAIIGAE lVE II HE8GEN A HILES I HCNN I HUIlIOLOT t HUKE"S t HHO 0 HILGEA I HONtKU A HUIlOUN I HAOKEY I HE8"oN t HILIiIlAVE I HtNClUA I HUIlE t Hl~lAI. 8 HEtHT 8 HIUEIlANN t HOhtMANU S HUMESTON t toIAKL [filii t HEtKI t HILUT 0 HCNGULIULI 0 HUll' I NliTON t HUltS TON t HECLA I HILLF IELO I HONUAUlU A HUIlPHREYS I HA~lINGEN 0 HHTeA 0 ..ILLGATE t HGOo I ""IlPTUlIPS IS HU"EHL t HE~OGN t HILLlAAO I HOOoLE I _SAKU I ""."'\Jr.. t "EOA ItK I HILltN 8 HCtOSPCAT 8 HUNT£IIS 8 HAa~tY t HEOVILlE 0 HILlSICAO I HOGOVU" I tVH 0 IrcAV&U A HAVIl( , HHlll CK C ..n[AECE I HOVl....HP t l"OIAHO'" C HAYKrLC", I "EPH.. I HLLANC I "OVEo T 0 I"OUN H'" IS HERS .. A HCLL INLEM 8 "vvn t l"OIA" tllEEII 0 H'IIES A "FP SHlL 8/0 "'lLlS tiD HC"AKO I "fOIANe t HI... 8 ..E SC" ~ "ClUSTEA 0 HC"Hl t INOUNClA A ,..A"K.eYF A HESPEA t HlLLC"'" t "'''lA''O t 1'"'10 I HAWlC;iElL A .. ~ SPER" 8 HlLLC"'V A ,"eY( I IN" I HhKSPRI"GS B ..ESPERIJS B HCLLV 0 HCYUTO.. t INGALLS I ""'TU~ H~ SSf t "CLLY sPR I ..GS 0 "LYPUS & INGARO 8 tUY8.)l,lIHH 8• HE :;SEL (; "CLL v"cec 0 ""nILL( 0 INGEIiIO t HAyPiol.r. t "ESSELBfRC C H(l"OEl t HIJ18ARO A INGRA" 0 HAYOt"4 B "ESSElTI..E I Hl"ES 8 hlJbE" 0 IHKLER I "'AYE S fl'''- I "E~SC" t "elt·UA I !"UBE" 8 IIiKS HAYESYlLlf B "UTINCEll 0 HeLCP.. 8/0 HVSLE_SISVkG t IN"A" °t "An IHll"O 8 ~CUIJN'IJ t HVlEtT 8 1111' C HEAOLf , IS HICH"OAE k HCNtlT 8 HVllS (; IRCCK e Hi 'O~II&A: T£1( S I HI(,... PAKK B ~C"CAlE 0 "ULL T 8 IRC" BlCSSOM 0 H(UE 0 .. IHI .....U t..cNOl t HlJll.A 0 IR'" "CUNU I" D t • IRO" lllVEll e "'f" ... "" UI.(l1 e ..eNeCHC 8 HV" .. "~.ll y A HIIIO PtU d ..eNEe YE 8 "U"ACAO 8 IMO~Tt" t HE8P"~'iY III F J Hloe SPMI~(.S C ..ClNEY HUIIA lAS t IIlVI"GlCN t /lUTES A eLAI:r. HYO.nlor.1 r snlL rp"up fp.lfllrATr!:° TIIF' c:."11 rRn'!l" u~~ "("1'" r.rn~ OrTr.""UIFI"l THO SOil G_nur~ sur .. AS ~/r p'r'tlr",TFC: Tfl" O"'A 1-'[r/tIf'r"rAI"lr f\ C f TtllT 1m: January 1971 Table C-l--Continued

I_IIIN 0 JONUS I "ULe D "EI\"n A .. nSAP , ISUC C JCPlIN II "ULU" C ..E_II I "ITtANNING IUAIlUAH IIC JOPPA II ""'II...... 0 ..EIIIIIC" I "Innu I I UIEH , JCIIOAN 0 ..UNES I ..£IIIITC"N ..n'.EOGE C ISAN 0 JCIINAOO Ii ..4111110 I "EllSHAll A ..lnsOIl C IU..J1 0 JOkY , ..AIlS A ..tRSIC.. D K1uP I 15..41 .. C JeSE C ..AIIU C ..USTON AID KIVA I 1\'" P1SHI C JOS£PHINf I ..ARUII I UMT , ..IIIANIS A ISLAND I JOSIE I "ASH'" NA I , ..U...,.,A.. I Isn" II JOY I ""'SlLe' A "u;t"..us £11 , .JAII 0 I STOKPCGA II JU8ILff , ..ASKI I .. n .. ". 0 "LAU. , IT SltOOT I JUDO 0 ..AseT, , "ETCt'L'I' I ..LAIIATH 110 IUKA , JUDITH II ..ASSLA A KnTlE ..UIIS A IVA C JUDKINS C ..Asse. C "EnUMAN • "UtlAS! C IUN I JUDSO" I "AU", I Kln ...£11 ,• "UJ I IVES I JUDY C KAHrey C KIVI' , ..lIUf. , IVIE A JUGET 0 ""'TC C ttL.A\.... tf C ..lIUIU' C IVINS C JUCHA"OU , "A'I'INE I It,,£I;:H•• A "LIM 8 IlAG;)U C JULES II ..&fJlA I "£'1'& I ..lI..ESvILU C/O UH C Juusau.G A ..A" , KEYES II "l1..Gf. I JULlAnU I "A""PA" 0 .EYPORT , "LCIiOI..E 0 JAIU C JUMPE I KAU'(; A KE'l'JHVILU 0 KlOIl£ I JACACUAS II JUNCAL C ""'V'TT 0 ..ElAR KLODtHllAII I JACANA 0 JUNCOS 0 U'uIHAE C ..1A"4I" ,• nonll I JAC'IIITO I JUIIC TlON II UIIU"A""I I ..... IE KlUTI .... I JA'K c~eeK II JU"EAU 8 .A....IoCiA.. , .. ICK£RVILU • KNAPPA I JACOLIN II JUNIATA ..A" " .. A KIOC •C KNEflAND C JA(K~IFf C JUNIUS C ltA....."Lllii C "IC"AN I ..iliffI" e JACOS 0 JUNO I "EU... 0 ...EHl A C JACOV'~ I JUhOU. TOS C 0f.At'U' 8 ...£V I ."1'"'."1. I J.(K)C"VILLE , JURA , ..tALA,£KUA C .....0"1 ....IPPA 0 JACUa 0 JUVA I ..t.lIl 0 KIUIIC •0 11.1<08 HILL I JAC09SE.. 0 JUV.N 0 KU... Sltll' 0 "'LAUU 8 ""'lol.ES I JACOd' C .. £ ....s 8 "ILIOWNE A ""01 I JA,OUF S C UALUALU A· KUTI"e; C IlILIIIII" A KNULL I JACOU!T" , """HEMA" I ..t .U"A~A 0 "ILC"IS C K"UISEII A J.C"'" 8 ""'UASH." ~ KtAtliAKA"U I ULoeR C .0841. C JAFfIlEY ""'ot C "ULkR I KIL"II£ 110 "OCh C JA';UEYFS •8 KAlJ(iKA 8 KECI< C ...u£"", I "0041" C J.L KAUCKA 0 OfCOO I ULL8l1t.. C/D ..001M I J."E~ C.N'CN •I" UfN. 0 "lCIIClii , KILLEY I ..onu. C JAMt~Il: .." C ""'''ALUU 0 "fHERS C .ILlI"'"ORfH KOflE I JANf , ...... ". I .. ILLP.C.. C KOE'KE I J .... \E C ""'.....UI II .."Ef'."tel 0 "IL"EROU£ C ..DULING I JANS[.. ...HLEIl 8 ..U:"ff I "ILCA A KO"SH 0 JAMbl.:f C• ""'..OL. I ..eeNE C "ILL"."A .OMALA A JAMI'" C U .. SHEETS 0 Oftl'C C IlIL"I""I"G C• ..o..u I JAllIIE 8 KA"UA 0 KEG I .. I" I "O"C I JUVI\ 8 UI .. L1 0 .. HE'" C "'''41''• 8 .O"CUHI 0 JASPER ~ UILUA A KEIGLEY C UIOII.U C ..0..0110 8/0 J."C.~ UI"U Kt ISfIl I UNOEIIL' I .0llEIIG I JAV. •A KAIN.lIU • KEn~ I "1108~CUCH C ..OU..tiU C JAY C UIPClOI •I ..EK."A II UM"tRLIIIG C "OLLS 0 JA'EII I "AIIoIKI A "FKAKE 0 11.1100 I: KOLCA C J~YSOII 0 KALIE 8 KELLER C 11.1"" 0 "OLUOLe I JEAII OAl.P. C "ELLY 0 .. INee A ..OIlA 0 JfAIIE.FT ff •C ""'L.PllOO 8 KELN C .. INGEISl'tR I .eIlAIIA I Jt'~ lUF ft KALA'A II KELSE' C Ul\(ilT".. 11/0 U ..." ... II KECU I: ...SRIM; 0 ..UllER C "r,H'-S,-'jlln 0 UkUE C OEC"hS 0 UHICK 0 "UILI C J

K\JI

LUN & ""LU"R AID ~AUSI&R(. ~"'flC~ER & PCVI&KERS & lU"" & ""L"IO" & "ULA "n..EW 0 "EAO 0 lU"&" & "AL"C"Y I "ULlCRC "I "nu..o ~ PUCI" A lU"OI"O & "AL"CA I "ARlEA'" I ""'''E''' ·C "E"OC.VIIIE I lU"OY I ""L""A "ARLETTE ."'NUO UKE I "EAOVIlLE LU"T & "ALn" "0 "ARLEY • ""YO II "t"fl,OER 0 LUPTON 0 "At&CL" e ""RlI" 0• "nOO"N I 'EU.. I LUM" 0 ""LElA I "ARL&IO & ""YCWORTH 0 "t&&" I lURAY tiD ""lIIU 0 "ARLTCN & ""YSOORf I "E&KESVlllt & LUTE 0 ""LIN tiD "U~ARTH I ""'SVILlE "EtUENIURC & lUTH & ""lJA""R "uu 0 ""'T&ION & "ED" I LUIHER I '''Ll&T " ""Rp" • "nVllLE II "EO"Nt C lUTIE I ""l" "& PUtUHTE ""YWOOO I "Eo"n & lUIO" 0 ''''It ""RR " ""lEPP" II PEOfCRO D LUVERNE & ""LONE I• ""UIOTT • '''ZC'' C "EOfU 0 lUXOR & ""LCTERRE C ~ARSOEN C• '''ZU''. C "tOICINt LODGE 11 lUZE"A 0 ""Lp"IS C "ARSElL "CAFEE C "EDIN" I LYC"N I "ALPes" C "ARS""ll • "&"LLEN I "EO~'" I LYCO"I"C C '''lVtR'' C "'RS"AN 0• "&"lLlS',," & "EUS A LYOI&K I """"U 0 ""RShC"lE C ~&"lpIN C "UlEtTSE C lYFORD C """OU - C ~ARS"F I ELO C "CllfE I "EceeTT c lYLES I "AN"""" C HRSI"C j\ "C8ETH & "EliCN C LY"".. tiD """"Up"N "ARl , "CIRIOE 8 "EHl C lY"&H 0 ""NAN" C "UTELL" tI """8E I "E..l ..CRN & LY"CH8URG liD """"5S" C "ARTIN C ""AFFlRY "ElliS lY"OE" "",,"SSAS I "'R11"" ,. ""AI'" C" "ElKLE 0 LY"NUVl " """"SUSH C "AR TI "'ECK II "C&"LER 8 "ElSS 0 lV"" HAVE" "8/0 "AN" TEE RID "ARTlNEl &' "CCALlY 0 "UI&URNE 8 lY"NVlllE & "AN".A & "UTINI .. IOCC"~"O" e IO£LIIY & LYNX R "AN&ELONA t "CCAR~"" C "HIU 8 """ TI "'SIlI;RC ' lYO"'.... to ""'"HE 5TE R "A IIARTI"SOALE E' "eeARThY 8 "ELlEhTHIN 0 LYONS 0 II "AMTI"SCN r IOCClAVE C "ULCR e lYO"5VILLE 8 ""NO"""AhOERF IELO II """ll"'SVILlE I ""LURY & "Ell&TT 8 LYSI"E 0 """DEVilLE 11 "AR11l\1&" C ~CCLHlA" I "£LlllANO & LYS fAIR II "ANf ~EO C "ARTY 8 "CCL&UO & "tUCSE (. LYTELL I "A"GU" 0 """VAN 0 IOCCOIN 0 "ELSTO"E A ""NHATT"N A "ARVIN C "CCOLL C IOEL TCN 8 "A8EN C ""NHEI" & ""RY C "L&ON"El 8 "£LVillE e "UI 0 "ANI C "A"YOEl I IOC&OCK I "ELVIN 0 "UR'" 0 ""..IU C "ARYSUNO 0 ""CRNItK C IOE"AlllCSE 0 "A&AY I IOA"ISTEE I ""SAOA & ""tv C "ElOpHIS I "" EOONIA C ""Nnou & "AS&A"p 0 "CCREf "ENA.HC" A "'C"ETE & ""NLEY ""S&&TlE 0 ""M&RV •C "ENAN C ""&HIAS ""NLIUS •C "ASI

"ErOLl us 8 "ISSIO" 8 "CAGAtFIELO 8 "'AaES"'A [ ..ess o "£TAE o "ITCH B "L~G"iC NA(EVlllE C "tUEl B lOfT 1 A "ITCHElL ~ MCA IAlTY 0 "ACH~S 8 "ESSOPAH B "E"ICU D "IIIWANCA (I'CRiCAL C "ACIPIENTO C ..UTfR C _..CCN I) MIZPAH C "CHIY C ""CCCWCHES • ..UlueCA C "U"I B "CA"L 0 IOCR"'''' ~ESA C ""'OU" • ..nutS ".'''16111 ( "OAPA 0 '~CRC;CC A" NAD I"" 8 ..nc •8 "IC(J AID "CAULA A "CNCH 0 NAFF • MEIlLETC'" C "1(HEl SON 8 MOBEETI E ~ ""IICf C ""CEESI 8 ..EuaERI B "ICHII.A""E ( "cc. U ~C"lIlll • "aG"SY C "EII"'S e "IC~ 8 110<:..0 8 "OAA IS C ""GL E a "EUSllE 8 "Inle;. o ~OO' 0 ~CAA ISO'" 8 ""'H"A C "EV.OOA C "IOOL F ( "OC'LE C "C'k"l. C ""HUN'" C ll(VILLE 8 fIlIlODlhlUAY ~ "GOEl C I'CA!E 0 "'..... a ..E.... C "IOESSA 8 "OOE". e "OR'E..SG.. C ...... • "EVI"E B "IULANr. o "ODE STO ("CAiC.. 8 ""K.. EK 0 ..tveYER o "IONIGHT ( MOOOC C "GAV'L C NA"~E a "EVIAH C "IOVAH ( "OENKOPIE 0 fllJ!eY C ""NA"KIN • "EV" .,OW,y o "OFFAl a "C~. • HAN(Y a flElOARK °C "IFFlIN 8 "OGOllON B "e! El C hAN"Y a ll("aRT B " IFFlI"8UAG 8 "GCUL B MQ!HaNNC'" B NaM.Y1C" • "Uln,c B "I"un ( "OH'VE B Ml;.HER 0 NaN SENE • NElOetllG a "IKE o IIOHaVE B MC\HEIlVlllE C ..ANIU(.n C "E• UIlIlY C ",KE,Ell C MOHalOK B MOHO' B ""'''U'' C "E~aY "ILACA 8 MOlkA C "GSl;Un 0 UP. t "E. C.MBIlIA C• "ILAN 8 _ElUM..E 0 MCiSYAOCK a ",p IE II • IlEII CASllE B "Il ES 8 MO.ENA C "t'A B ""PLES B "EItCCMB "ILFOAoJ C "Q1ALES C "n"EA 6 ..

I«IHILI 0 CClllA C CNSLClo O"CSSO II 'AIUlti"A C I«IIl'SI'" 0 CCIlLEV Of,U'IC • C"VHfE ••RA"ORE "OllAY C OCl'EE &/0• LUIlO •./0 (OUlIS •C 'ARASllL ° "nllO~IS OCO"EE C C"""AGC" O••C.. C .ARCElAS • "UL'~ •8 LCCIHO G,.YI ° O.tRl..E C 'UOH °0 "OLI(ItUCItV CCliSU C• (CULA •A CUCRO C 'AREHU "Oll" •8 OCUUEOC 8 ePAL 0 CZA"IS 8/0 PAREN' C• "OLD OC 'AGOH 8 OPEtUCN tiD OlAN 0 'ARIEnE C No-e C• COEll C't-IR t OZAUIlEE C .ARIS "C"O'LION 8 COIR"OTf C• Ii' I.. IItA( 0 'U ISHVllLE C NIJ"OP'HU 0 co> S S. 0 Cl;:UAGA C ''''IIlI .AIlItAV ~Q~JKA(.H''''PS C/O COIN C ORA C '&ALtA •8 PARKDAlE • NQl,"S'(" 8 DOOlE C CRAN '&AUKAO A .ARIlE • NOON A'" Il O'F'lLON 0 CRA"GE •0 PAL"APP' e PARItER • ","0" A 8 OGDEN 0 C""CHURG J 'ACHECC 81C PARItFIELO •C NORA!) II llGfECHEE C CRCAS , .ACIt C "AIlItHllL 0 frrtCJ(r;CRhe 8 CGf"'" C 1l~("ARO ~ '&c'UIIO . PAIlItHURST ~ONtlY II UGILVIE C ('RO '.CAitc C• PARKINSOIo 8 ..OliO II CGL'U C~C"'N(E t• .A(KHA" 'ARKVILLE L NO~1t'" OGLE •II OPOiliAY U PACKS'~DlE •II "ARIl..OCO &/0 1oC..O~FSS • C.,AVSI C GRElU 0 'ACIl"eeL 0 PARLEVS 8 ... (; .... FI~lK •8 ':HU (,RELU J PA(OLH 8 ••RlIN C t..iGkCr: II OJ.I •R CRE~ A 'ACTCLUS C 'ARLO ~C"'K' 8 ('JU' 0 C.ESTI"8a t .aoe.. ( PAa"A (• ",-ew-, II CUNCGAN II ("FCIIO t 'AD'I."I 8 .ARNElL 0 NG..tj(t-~T C CKA" 0 CRIOU C PADUCAH 8 .AIl. 8 PIoO.HlI,) C 0ltEECH08EE &/0 CRIF A 'AOUS 8 ••RRAN '0 "O.IHO'LE C CKHUNU AIO '=RIC t PAESL 8 PARRISH C "OdHF (fLO 8 Ctl~"'H C "~ ICN 8 "lOET PARSHAll 8 NUto: r,..p':RT CKLUED 8 (HU 8 "GOCA C• '.MSI.PANY 0 NCPY", Pf'lIIlCHt ( CtlLA...... &/0 CHA"O 8 "h~''''GU C 'USO"S 0 ~'OR lnl)liI(\f ItlAPoW C/O OKHllK ( CHU.OC A PA-h"EAh 0 PAR TRI C N(J;l"J~ ( OItO 0 ("'".'" t ,.aKRCe 0 PASAGlHAK I NOUC'wlltE C l,;lCe8C1.J1 ( U."SIIV lit 'AU C PAS(C ..nF.TU~t- 0 OKUO'" r. I..COElL C "ltE C .ASC SEtO 0" '~OI(Wll~ 8 OK'EEK U C.tFINI. I "&I"ESVlllE .AStuElT I C/O ~Ofh,AY FLAT A OU I 88EH. 0 CPC CRAhOE C "INT~CCK II 'AS'UOUNIt 110 ~OJ.. ... r:lL C OU C (P(NC D 'An I ••ssu C NOto: .. ICH 0 CL" • ~HUV' C 'AJARIfO PASS '."YON 0 100"""0 8 OLAllA ( C... C '.':.'0 C• '.SSCRHIt II NOT 1 0 CLANTA 8 L~OVILlt , "KAL' I PASTU" 0 NOTUS (lATHE C CMS' ••.IlI.. 1 II '.UHS e NL"yA.U •8 CLO C.'" C USINC •A PALA 8 'AT EH' C MJVAw¥ a Ol(IH.... C O~ TElLC PALAi:IC I .AT ILlAS toIQIIIC'J'l C Cl'lS C CMT IV.ll TA \;• '&l.A'.LAI 8 'AT ILO •C ~O"t C nOVA. ./0 L.PT1~(; C PALATIhe 8 'AT IT LREEIt I 'WHY ( CLO"I'K CR TII , PALE STlHt d 'AT"" C r.Ud(l:llS C ClHO "d n .."cc 8 "'LI S.nE II .ATCUTVllLE C "UCL' II CU"A ~ ( SAet 0 '.l..A 8 .ATRICU 8 'Il,EUS C CUIlU' B (S"IS I '.l"A.;;JC C 'ATR ICK "IUG(;( r C ClE IE d I.S('CC~ 'AL" a ••u. .ATRClE C• P\U"" C OLB 8 1.5... •I '''LHEM •0 .ATTANI C fli1l1l.tlA C CL<.. C CS".... 0 'AL"E. CUVllN I .ATTEhIURG 8 "U~IC& C ell ~ C'SNEA C 'Al"IC" 8 ••T HRSON C 111'1"'4"'" C ClI.c. ~ ( S"KCSN , '.L"S 0 •• lTON 8/C NUSS 0 ClI"'O. II r.Sl'lfo 8 'ALeS VE.OES e '.ULSElL 0 NUL' 0 n"ITO 0 LS(e~ 0 "'HUSE 8 PAUL ViElE I totY'l4(IH A n-I'l 3 u51._IOGE L .~"lS\i~( vf ! "I."LU 8 ''''''SS.1 C Cl~cS C (SU. "'A"lICC U ".l.hS.UGUN' 0) ",vSS.,nN II (L"STEO e/o CS~ 11101 ,• P ....l"A ( 'AUS.'" I NVS T.t ~:I" ( n"EV 8 CST ...·SOH 0 .AUloElA I CLCKUI C CSlR'''CER •I p .... 8 '.V.HaCo 8 "AHE CL.E C CTEOC e '.H.l. 0 ..V.'" 0 L,A"U"lt • OLSC" C CTHElC Ii "-At.lA':.A 0 ••VILlICN 8 l:A"Ot~ 0" CLTON I. UIS ( P.hASCFFKH 0 P'''CATUCK Il r.Kf':M;J .. OLliSTEE tiD (TIS(O A (.IA"'ChEr<.( 8 PbLET 8 , AI( r.L eN LLVIC OTISVILLE A "."'.hUElA ( Pb"H Il 0 •• t;D~''¥'E ," CLY ...I( •IJ LlLfY II "'HlC ~ ' ••TON C UAK L,U.F e ("AHA p rTSllC C P ...."ClA~ C .AYETIE 8 L:AKlAf\,lO C C.... C LlIE. 110 ., ... frtlCI.:.AA 0 "AV"'SIER I OAKS -(I'Vf ( C"EGA ~, l1H.~Elh C PAlltt;Ua'A 0 pn..E C ,1AI( Ylll t: Cl'f"A II C'H"~CLl '''''E 8 'AY SCN 0 fA,,,r.t:I, 0• UNI C ClIlKEr "A .. A"GUI TC" II 'EACHA" 0 c..... I\P'JI(A 8 r. ..., AI" r.l"~Y 0 '''''Hlll e PEARL .,.RICR II llil SJ \ II ChALASKA til_Ell ( , '''If CUt II "'EAllfllAt\ I,AT"'''' c.:~4"'lA "e CI..t"I" C '''MtY ( 'EUSCEl 0 nt\AIll. C• lNAlfGA Lu.n A ,.,.t'CC"'f R PE. vt"'i C nkU' u U"'WA I.. "LlLtT ( '''''o..LA U PE(ATC"IC. H erMA, 0 (NA"'''' II LVAll ( PA,.;tSfY 0 P~CCS C (1tJUk·~ U ('-H'.A L LVf. .. ~.,u:r C flAt,lttE.'( 0 '~OH C Ul'LA ,1 CMIC. U CVE "LV C fAvre"" 0 '~OEa ...u S C f,C.i- A'~l T 0 (.'''E III e l'VtM:TC" ( PAll' A ~EOI~O lilt U(tAi,f; LNt- ~'''T A .. rVlo , 'AL LI 8 'EOL•• 0 uc.Hfvr'IA~ • ~ 0"1 " ( I VI'" 8 PAP AA C PtORICK II LC"LJ«CM l Chi J[ ~ (,..fH 0 p",p AI A 'EE.US , UI.'" [)" L""f" " ( L'-l." C~(fK C PA.. r\KArl~(" 0 Ptt.L l crt04o:, C O'['VA l I .ff\) tl PAPI (Si- C I'EHE~ e nc.I,~ P( I ./0 CN••T 0 f .MI I PA ...... t:ISl , 'EHEa l ':"Trs A "l.A·'t" "'Yr'll~nl.('\rlr ~n r~nlll" ""It r:rr'lr p,I"l,,,,.rr*" TlOr It ""t:: 'If'T 8 r rfl DFTEq,' I "ED TI'n ~n'l r:~nIJPs ~lIr.' ,,~ A/'= 1""lrATn:: TIoIC' ""AI "rr"'U t '['lf:'I\I"fr' ~ITII"Tln'l January 1911 Table C-l·-Continued

PLt;U" D Pit "H~ e Pq B/( POHU ( QUlhll 0 Pf c.~ ... PIf.U" • PC~AMU ( P.I"IIH ( QUa..EY ( '''KIN (• P 11 • '0"1 ( P<.. ~UE B Pkt s,,"ut ISLE B QUIIII(h Pfl HAl'" 8/0 'lI"E 0 Pl: ....III.UP\J A PRl 5 H1 A lIun..AII PH Ic t P IltiL""UA A PllhSETI B PPfSIC" A QUO..SEI PIllA a P'kl 8 PC I'" 8 P~I .. 'TT ( P[UlNA C P Il c. ...u,. PClhl IS.Hl ( P~ty e .',to ( '''MflfRTlJfrf A P Il GR P' •R ~O~l)ACUt I P.ltl ( RAan A P(MPI"'. C PILOI 8 "(;~IGCPA 8 POlO. 0 ualOEu. a POilAR.;l(,f 8 PlLer .OCk ( PClEO 8 POIOI 0 PI"r' C ,t..o 81t PUAUlU A U"AOERO 8 '[OCIVAl CP I"COf S U P,,,,C CoHo 8 PUCH .... A RA..alER 8 PERHL. C 'I.. US II pr>.clll' A 'UOOLE 0 IIAPElll ( PEkHA~ ( ""TLU A Pl'" Il 0 PUIKCO 0 U"IRES 0 'E'ICO 8 PI"IC C PC.Tcyee 8 PUETT C olA....El ( PI _", ", ( P,,.'uRA ""HO 0 'U';CI ( ( Pf~KS A ,.,,-r.I'£A •e PCCKU A PUGSLEY 8 ""1ItRAIIC"A 8 PERL' ( PlOPCLI S IJ 'COLE 8/0 'UHI R...PART 8 PlIUI" A PI'EO eI( PlCUA 0 PUHIP'U "0 RA"'AKTAII A PER~O"E"TE ( PloOLJHTf C "C...A 8 PUlAS~1 a ....sty 0 PIO.,N 8 PI S~AH C P, PI I PUlt..U 8 ~""SHOAIII 8 Pfo.1 >of 0 PI SHlU" I PCPPL ETCh A PULL~'N 0 ..hU ( PtRR;JT 0 PlSUlEf A PCCCC ..Cco ( 'UlS 0 R"NCHERU I PfRAY 0 'II C PCkHTT 810 'UL S LPHE_ 0 .....e I PtRAYVlll f 8 PITf.A~ C PCol 8 'Ul TMY C ItAIlOAOC ( 'I.S"'~ 0 P ITT Sf IElO ~ FC~TAGIYIlle 0 PU"PER ( .A"OAlL 0 'EOSHING ( PlTTSIO.... C PCOTAIE S ( PUNA A R""COLPH 0 PI-~SI \ 8 Pll,"JOO ~ 'CPl 8nc" 8 PUNAlUU e IIAlles ( PEPI 0 PL'CE"IIA C "pI.RS I 'UNCHLJ IIAhGER 0 PIKU C Pl&(,tR.ITOS ( PC.HR~ III E 0 PUilOA" (" IIA"IER L PES(AIlIRf: C/O PlAC I 0 AIO PCOI" III ( PUOOY 0 ...... 111 ( PE SC 1 C 'L.CO t 'CRll"C ( PUPGATORY 0 .""10UL 0 PIS"OS"" 8 PlAI'f1ELO 0 PLOllAhO 0 PUOhER 0 IIA..YMAII 8 prSli t Pl'l".lEw C PlR l>.fur B PUOSIEY 8 ....fl~E ( PET Ef INF £T 0 'IAISHD C PUTctA C PlJItYES 0 UPHD 8 P(lf~rHa·o 8 Pl'''C b PeWISI'CLJI" 0 PUSIOI A ""PIOAh 8 PE TfM S 0 PLAU P- peSA'" ( PUThA' C IIARCE" ( PfTOSl<.ry 'l'TEA l PCSty 8 PUUKALO 0 IIARI(k I POOH 0 PLATEAU ~ .CSllAS 0 PUUCNI ( .ARITA" ( PPOilLlA 0 FL.I ..EO r. PC:SK I h ( PW CC A IIAS8&"( 8 P(fl0':; C FLllC C PeSCS ( PW CPAE ""SSET I PEwA"'P 8f') PLAT TI C PC SI 0 'UU .A •8 llUMaUN C Pf YTI)h 8 PLA TlYIlLE L P(""L C 'UY.llUP 8 "lUFF 8 PHOCE 8 PLAIA lIf( Pl Tl HC" C 'YIF A .ue.. C PHAr.. ~ 8 PlIASo"T l PCliU,Tl C 'YIC" C UTTLER I PHA~Cl 1(; II PIIASAOT G_·;YI b PClSCAP ( PYCTE A IIAUa B PHf 6A C OLC'S."TU" ~ PrT If 0 C PY.'.IO e UUVILlE C ttHFf '~l Y R pte'SANI ..If I PCTTIP ( 'Yo'C"1 0 UUlI I PHHAN ~ PUASA'" VII" e 'rTlS a IIAVAIlI e PHllP~ A PUrGER C pcl.CRe 8 (UAll. ( IIAVE ..OALE 0 P'HIFc"SO"'4 ~ .tflo C PLUL IhEY I QUAKER""N e UVE"'" c , ... Jl.J[" DIU Pll J"E C peVi-wry A OUA"IIA 0 II&VCLA 8 PlEACH. 8 'UINcY A .EAOL YII I P'CTlIll 8 P(I,)O"''' ~ '"IAIS.. 0 QUlhlAN C IlEAGAh I

""TC'C; , -LAt.. r: tfyrtI'U'l'..nrfr: !;nlL Gr"'!l~ 1'·["lrAT~~ T"'" ~rll C'illlr ••S I'!'T ",,, r'TEP"I"Er. 1\10 SOil tRO(J~S 5';CII AS BlC I tll"'l CATrS T"r noA I',FD/U"ORAI"'" •• T"~TI r.' January 1971 Table C-,]-..Continued

~EAIIOll I ~HOAOES 0 'Ct. III VE~ I ~UOYUc C SAl..CN IIfAl 0 ~II C ~CC.'ON I ~UEllA SAlOL 0• !IfA.. 0 RICCO 0 ~CC."ELl I ~UliGLES I• SAlCNIE I ~EAROA~ C RICEION II RCC."OCO RUIDOSO (. SAl1Al~ 0 RfAVllLE , RI(.£VILlE C Run FCIIO • ~UKO 0 SAL' C"UCK A ~EIA , ~ ItHAROSON I 'COD" • RULE I SALTER I ~EIEl I ~ ICH£AU 0 ~(ONAN A RUll'K , SAllERW 0 ~EIUC. RICHEY , ROE RUflIO , SAL' UIlE 0 !lfClUSE 0 I' ICHF I ElO , RcnU'K 0 ~U"FCRO I SALUDA C IIfOIA". I ~I'HFORO A ~OElLEN 0 ~U""EY , SAlUVIA "EO IA" I RICHLIE A R(ESIGEIl I RU"'LE ( SALVISA ( RED ILUFf I RI(HRONO RC ..NERVllLE RU" ( SALlER II REo) IUTTE I ~ I(HftR 8° RC ..RERSVlllE C• RUNE ( SA"" Rfol" ( ~ ICHVALE I RO.EIY RUHNtllS ( $A"IS" °till REO(HIEF ( ~ICHVIEII ( ROUTTE °( RUH"""EO" I SA....UIS" ( REOClOUO I RICHIIOOO I ROLfE C RU'ER' A SA....SEl 0 REDDICK ( RIC.NORE ( ROLISS 0 RUS(O ( SA""SON I REOlll"G II RI(.S A RClU C ~USE 0 SANSll II REllFlfLll I RI(RES' I ~alllN D RUSH C SAN AN"REU ( 1Iff) Hill ( 1'100 ( ROlCFf ( RUSH""N .. SA" ""'ON 8 RED 1'(0. c: RIOGE8UR" ( 'U"IO ( RUSH" IllE t SA" "NTCNIo ( REDLAKE 0 ~IOliE'~ESI ( 1<0"(0 t ~USS I S.... UU'IO I REOl A"OS I RIOliEOAlE I ~C"NEY ( ~USSfll 8 SA" 8E"1I0 I ~EO"A"~ON 8 ~IOGflANO RONUlUS II 'USSEllVllLE ( UN'Htl II REO..OhO ( .IOGEl ..IIN °.. "NO D ~USSlER , S""O"ll , REDN"" C RlOGEl " a .CIoNEn "USTO" a SANOE~SC" I REOOL" a 'IOGEV IllE 8 'CIoSON • 'UH""O ( SA"Cl"'E REOONA a RIOGEII..Y 0 ~OSACH! C• RUHEGE 0 UNOUE °.. REORIOGE I 'IHBRO'II: ( I

S'IJI,US a SELFRIDGE C .!crt ~lI! a SKIlC\; a SP...TA S'UK a SELKIRK 0 SHI'·, C SKOKC~ISH IIC SPU.FISH •a saULICH 0 SELLE a SHI~.·';. a SKCIJKUMCHIiCK a SPE...VILLE C SIU- C SEllERS AID SHI.K - a SKGIoHEG'" SPECK 0 SAUNOfO:S C SELMA B SHe..tS C SoI(ULL caEEK •0 SPECTE. 0 SAUVlf tiD SEMUHMOO C SHOEfFl~R a SKUMUH c SPEElUI , SAUVUlA C SEM."MOO 0 SI'(j"'I" 0 SKUTUI' , SPEIGU e saV'~E C SEMIU.IO 0 SHOlX .. SUaERG , SPE"UC C SAVANNAH C SEN a SHGfEIoOCD C SKYHAV." 0 spe"tE. a s ..vc C SENECAV IllE , ShUEY a SKYKCMISH a SPE••Y C saVlllA I SE~UaT'HIE I S..CHI I SKYll ..f C SPICER C SAvur 0 SE"UI" A SMelT CRUK 0 SKYV" I SPILLVilLE a saVAte" C SE~UCU C StoClnDNE 0 SLAB C SPIIUtS A S.VCREEK a SERE"E e Sh'-..Hl 0 SUTE C.ftK C SPIRIT a sa..Mlll C SEa ..A e SHCUWS a Sl..UCHTER C SPIPO a s ....na C SEROCO .. SH"'LTER C SLAVE" C spu..ec... C SAXBY 0 SERP.. C/O SHOlL \;11 C SL....SCN I SPLIT.OCII 0 SUCN I SUVCSS 0 SHIl,..SIURY 0 SLAY"N C Sp'ffo.e C SAY5ROUK a SEsaME C SHIlINE a SUETH C SPOKANE I SAYL ESVIIIE C SESPE C S".juTS 0 SLETTEN 0 SPONSELUIl a saYlOR .. SESSIONS C SHU!uTA C SLICKIlCCIl a SPOCN aUTTE 0 SC"'L'" a SESSU" 0 SHU.E SliGHTS C SPOCNER C SC"MM'" C SETTERS C SIERT C SLIP I SPRECKELS C scu .. SEVILLE 0 Stol.llAH Sle..", c SP.ING C/O SCARtlOAU 0 SEVY C SI •I SLOCU" e SPR II.G C.U. C SC"VE C SEIoARO 8 S I U. EYV llLE SLoel;C C SPRINCO"'LE SCH..Ff E"UER .. SEIlEll I SII'tLEE •0 SLOSS C SPRINGEIl •8 SCH....IlEP A SExTOIl 0 SICILY 8 SLuICE I SP.I"GUVlllE 0 SCHAMP C SEYMCUIl C SIlKLESTHTS C S"UTS 8 SP.INGF I ELO 0 SCHAPVlllE C SH"AK 0 ShEll S..ITH C.EF. .. SP.INC..EYER C SC"UL Y 0 SH"DEUND C SIt....CI.. •I S.. IT....ECK 8 SPRINGTOIIN C SCHEaRA~O 0 SHAFFER SIEBE. A S"""TCN 0 SPUR I SCHLEY 8 SHUCPEE C• SIEl.C C SIItL..... C SPU.LOCK a SC....CAtlUSH C S....LCU 0 S'UCCLIFF 0 s..ola 0 sau..lIcu" I SCHOO..CK SH.... 0 SIE... I S"..C sou.... I SCHOOSCN C SH..MIO 8 S'E....VILLE SN..HCPlSH •I sou ILLCHUC. SCHOF I El 0 IS...... EL IS UTA 0• SNUE C SOU II' •I SCHCHak IEI E C SH"N"'H"N I S FrtN S""K E HCllOII I SQUIRES I SCHOll I C SH"NOO" S:G....L 0• SNUELU" I STA"'TSIURG SC"OOLEY C/O S..... NE 0 SIGU.O 8 SNUt! 0 SU'UR 0 S'HAIEA 8 S....NO II !Il£. .. SCElIE.' I ST ....TON 0 sca lea , S"E'KLER C SI"''' , SOFU , STAPLETON SCRIVER 8 SHECO , SI~CN" seCN 0 SURIUC;K •0 SCIIOGGIN , SI1HGE 0 SlI'PERS • liOliZIE I SURICI1.0F 0 SCULL I" C SHEEP ,aEEK C SI~PSCN ,• SOL .....' 0 STUIlS C SElI"OOK .. S"EEPHE..O , SIftS 0 Sclon.... I sua. I St...... , SHEfpllO'1l .. SINAI , SOLCIER 0 STUE. sueUE ST , SHEETlaCN , SI"CUIR I SOL Due; e SUlE I• SFaRnLIGHT C S"EFF IELO 0 SINE , SOllEllS , SUTEN 0 SEARI ..C 8 SHElBU.NE , SI~GLEUEE 0 SCll Ell 0 STAVE C SEAllL. II SHElAY I 51"GS"S I SI:LCPC" 0 SUYTO" 0 S£'~l fS C SHElBYVillE I SINN IG..... C SOLe,," 8 STU..Ion 0 SfATOt, I SHElDON SI"Ull 8 SOMIREllC C STEUNS C SEA TTl E 0 SHH IKOF , SID" e SOI'EllS I STECUI' ... 5EUGL 0 S..Ell..a .... C~. II SICUll .. S'''EkSET C STUO .. SH'Sl U" 0 SHElLORaU .. SIPPLE .. SOI'E.~HL I STEEo...." 0 Sf8A~ TupOL C SHElLaOCK .. SlSKIY'U SO"SEN , STEEKEE C SEBEKA 0 S"U"'OINE 0 SlSSElC" • seN'IU I STEELE I SEIE ..... lID SHElOCT .. I SISSC.. I• so"e"... 0 STEESE C SEIHe 0 SHEl TON , SITES , SCNT"G t STEFF C SEB~I"G 0 S..FN' C SITU e SCPEll SHCAlL C SECOTA , SHfN....OO..H , SII~IlE 8 SCQUEl "II STEIGE. • SECAET C SHEPp..ao .. SIZE"'.E 8 SOIlF C STEI..... UER I SecRET CAEEK 8 SH.RIO." II SIZER II SCllPE"TO 8 STEI...eCIl SED"" SHEA" 0 SUGGS I scaTER 110 SlE l"'l'nz •0 SEECSKlOf£ 0 SHEA An SK... CIT lie: SCU C SHINSIURC C SEn CS.. lllE •e SU.... SC TEll.. C STEllIER C SEEIlEf 8 SHIELllS , SUU~ C• SOUTt'f(Rll 0 STELL .. 0 $(G'L 0 SHIffER SU",,"U II SUUT~ca TE t STHllT I: SFCI

STfTSCN 8 SUNSeT 8 TAlllFCCSA C TE"S.S 0 TlIlKEII 0 STETTE" 0 SU~SHINE C TAllEYVILLE 8 TENSEO C TI"·EAIIAII 8 ST~UMN 8 SU"SIIEH C TALLS 8 HNSlHP 8 TlII"OIlS STfVE"S 8 SUPA" 8 TALLUU 8 hOCUlll 8 TI....""n •0 STEVENSON II SUPERIOR c· TUlY 8 lEPEE 0 TlIIPAIICGOS 8 STf"ART 0 SUPERSTlTlO!l A Ul"·GE TfPUE 8/0 TIIlPEA D STlCKNtY C SUPERVISOR C T.l"C •8 HRlNO C TI.PCOIIEK( 8 STlOH." A SUPPLEE 8 TU(K. 0 lEAIII"Al 0 TlIIUlA 8 STlGlfR C SUR 8 UlP. 0 HRIIC C TIf.ll C STill...., A SURG" 8 U". 8 lEROUGE 0 TllllellHA' A STlll"ATEP 0 SUPPRISE 8 U"UCO 0 TER". (EU ./0 TIllE A STI l seN 8 SUPRENCY AID U~8A C/O TERR.O 0 TlIISlE' A STI"SCN 81C SUPVU C TA""""y (PEEK 8 H .. IIERA C TllllOII STlNG.L 8 SUS IE CREEIt 0 U""S e lEMAIl 8 TlllnOIlll "8 STI NSON C SUSI rNA 8 U ..FICO 8 HRR' 8 TlOCAIIll 0 STIRK 0 SUSQUEHANN. 0 UN.... 0 HK.. ILlIGER C TIOGA 8 STIRU.. 8 SUTHER C T"".". C TfS.JC A TlPPAH C STISSING SuT"ERlIN C TA"BEPG 0 HSCCTT C TI"EC"IIOE 8 STIVERSVILLE 8 SUTPHEN 0 UNOY e TESUliUE 8 TlPPEA A STOCKO"IOGE 8 SUTTLER 8 UMU" C TETCN TlPPERU' S TIl(Kl."O 8 SUTTON 8 UNEY C TETGNU " TlP""AH "0 STOCKP~" 0 SVEA 8 UNGAIR C TErCM'A C• TI"PO C ST ...(KlON 0 SVEROPUP & TAN"A C TErCTU" C TlPTO" I ST,'OI(1t 0 svnLO C UM.ER C TEll 110 TlPTO"VlLlE I 5r.1"1:: S 0 SII"GER C "'''SE.. 8 TEl I TlA" I STO".R C SloAKANf II "'N"'lUS TUllNE e TlSlUlIV I STONER I SII.N C UN".. 0" TUUMA C TISCH C STO"t".ll A SW.NIlOY 0 "'CPI C T..ACkERY e TIS" Utoe I STO"O 110 S"""NER 0 TA(S C THAOER C TlTl.!SVlLlE C S TCNYftlPO 0 S.....SON C TAPIA C THA"YCN A TlVEA"N A STOUKfY 8 S..A..TO .. Ill;) UPPFN 0 T""'C"tR I TlVClI A STOP~f" 8 5..ANTO ..N C TAU 8 T""H,". C TlVY C ST!1Rl" 8 SII.PPS C URKI( ) THAY ..E 8 TOA C STOIIII

TO~HU~U C '~uc.EE C UIlIAH C VASHTI C VIlLl"'A a TO~~ING a T~UC",O~ a UlE~ a VAS~Utl a ValliE C TORODA a nUESDAlt C UllOA a VASSU a VOllI"AIIVOllIIIAII TO~ONTO C T~UlL C Ul"UlII a VASTI"E C VOl/.EY • TO~PEOC LAKE C T~ULO" a Ul ~ ICHE~ a VAUCLUSE C YOl'ERIE C• TORRto.. C TRUll AN a UL \l'AlAllUA a VAUGh~SVlllE C VOLTAIRE TO~~ES a T~u"aULlT~UllaULl D ULYSSES a VAUS 0 VOlUSIA °C TO~RI~GTON a TRUll. 0 U"A A VEIll a VOIlA 8 TO~RC C TRYON D U"A'I"EUIlA'I"E I/C VEAZIE YOIIE 8 TORTUGAS D TSCH ICO"AICOllA C U"IIICAUIlIIICA a VEeAR •a VRC(IlA" Tore II Tua ( U"llUIlll 0 VEaAR YULCA" C• TOTHN a• TuaAC C U"~AIlUIl~AIl a VEGA C• YVlACH 0 TOUCHET a TUCA N"O" C UI"A VEGA III TA C TOUHEY a TUCKERIlA" 0 U"A •0 VEGA UJA C "AU""A 0 TOULO" a TUCu"'ARI C UNAOIllA YEIIOl D IIAUSH D TOUR" C TUff IT D U~"EE' •8 VEl"AVElllA a IIA"'SHAVA"'SHA 0 TOLhllUI ST 8 TUllhill D U"ce"'AGI'RE C VELVA I IIIlIASSA 8/D TOU~S a TUJUNGA A UNeeDA -VENA a IIIlltll a TOUlL E A TUllEY C U~GERS a• vE"A"GO ( IIAtAVAtA C TOIIE~ D lUlI"ILA 0 U"'leN C VE"UOR D IIA(erA 8 TO"Nf~ TULA C UNIONTOII" a VE~EU ( "A"USTA C TOW"L EY C• TULANA C/O UNIC"VlllE ( ve"ezlAVE"EZIA D IIADAI'S a TO"NseURY TULA~E C/O UNISCN C VENICE D IIADOHl a 'OIlNSEND C• TULAROSA C U'SAL ( VE"LO D ..ADOOU'S 8 TOIIS(\" TULIA a \lPS!'UR C VENUS I IIAOE"AVAOE"A B TOUII" •D TUllER D UPlCN ( VERaCORT 0 IIAOEsaORD B TOY D TULlOCII a URACCA VEROE ( IIADlElGH C TOYAH TUllY C URUU C• V'WDEL D IIAD"AUII 0 TOle • TUlletZ 0 uRae 0 LROELlA D IIADSIflJRTH C TRAauco C• TUllEY D URICH D VEIlD I Gil IS ! IIAGES a T~ACK a TU"iUS Uo"E a YERDU" 0 "AG"ER D TRAcY a TU ....AH~ •A "OSINE 0 VERGEN"es 0 "AGRA" A TRAER C TU"E,..EA" D URUH C VERHAlt" C IIAHA C TUIl A TUNICA D U~lIll D VERHEJ(. C "AhEE D TRAIL CReeK a TUNI S D USAL VERNal I "AHIA"A a TRANSYlVANIA a TUNKHA"NllCK A USHAR •I VERNALI S "AHIKULI B TUPPER A TU .... EL a USI"E a VERNO" •0 IlAHIlEENA a TRAPPIST C TU'ELO 0 USIIA 0 VERO"A ( IIAHIlIACUS B TRAS. C TUPUKNUII D UUlI"E a veSSER C "AHLUKE a TRWEo a/c TURBEVILLE C UTt C VESTO" C "AHPE ID" C TRAYESSIlLA D TURaerYlllE C UTICA A VETAl A "AHTIGUP a TRAYIS C TURaYFILl a U1tEY VETERAN a IIAHTU"IIAHTUII BIC '.A"ICIl a TURI~ a UTUAtO a• VEVD D IIAI ...A 0 TRAY C TURK D UYACA D VIA a IIA I AIlOA C T~EAD.'Y D TURKEYSPltI"GS C UValDE C VUN "AIALUlE TREASURE B TURLEY C UIIALA VlaORAS 0• IIAIALUA °a TREBLOC D TURLI" • VI8CRG a ...1.... 0 TREGO C TUR ..BOII C• VAChERIE C VICKERY C IIAIHU"A D TRfLONA D TUR"e- a VACER VICIlSaURG B IIAIULCA a TRE"aus 8 TUR~ER""lLE B VACC •A VICTCR A "Alu"E 8 TREIlPE A TURNEY a VAICE~ D VltTCRIA C "AIIlA'U B TREIlPfALEAU a TUkRH 8 VAILTC" B VICTCRY 8 "1.1110"0 TRENARY a TURR III C VALCC t VICU C IIAILUKU II° TRE~T 8 TUSCUI 0 VALCEl alC VIUA B ~AJ~EA B TRE~TO~ D TUSCARAIIAS C VALE a VIORINE t IIAlhEE ~ TkE. a TUSCARORA C VALENCIA 8 VHN"A B ..AINCLA A TRES HfRIlA"OS C TUSCOLA a VALENT A VIEllUES a ..AIPAHU C TRES HtR"A"OS C TUSCuMaIA C VAU"TlNf A VIEII ( IIAISIlA B TRfTTE" C TUSH C VALFPA C VIGAR C "A ITS a TRfYI ..C TUS'HGO C VALKARU BID VIGO D ..AIlE D TRE'LER °C TUSLER a VALLAh 0 ViKING D IIAKEE" B IR IAMI C TUSllUITEE a VALLECITCS C VIL C "UfFIHD a TRIASSIC TUSTIN a VALL FRS C VILAS A "UElA"O a/u TR ICO~ C T"STI-IlE"A B VAL~OhT C VILLA GRCYE B "UC"OA C TRIDelL 8 TUTHill B VAl"Y a VillARS a IIALCOTT 8 TRIOf~T 0 TUTTLE B VALCIS 8 VI"A 8 "ALeECK C T"IGC C TUTlIILER B YUAJC D VINcth"ES t IIALCO TR1J1lt:ttF. B TUX.OO VA"'hCA D VINCE"T t "ALCRth °0 TRljIl~F'" a TuxEK;AN a VA~ HU"EN VIMYARO C IIALCROUP 0 TR I _CH!:R A C TIIIL ACK S A YANC E C VI ..GC "ALES C TR 1.. 1 TY 0 TIll .. CREEK 8 V6'CA 0 VINI~G C• IIALFCRD C T~I'LEN C TIIINING C VA~OALIA C VINITA , IIALKE C TR.1PJll C TIllS' 8 VAhCEROASSCN 0 VIMA"U C ..All a TR IP. 8 'wL [lOT C VAhOERGRIFT C VINTON 8 "ULAtE a TRITO.. C TVEE 0 VA~OER"CFF D VIRA C "ALLA IIAllA ~ Til I. a TYGART 0 VUCERLIP A VIRATC" C IIALLER 8/0 TROJAN B TYLER D YA" OUSE~ B VIRDEN C IIAlllNGTOh C TRU ....'l C 0 TY"OAll SIC YANET 0 VIRGIL a ".HIS 8 TA.OICP 81C TYNE" A VA"G a VIRtlh PEAK 0 ""LLK III C/O TRO"SE" a TY"ChE C VAhHORN a VII<(,I" RIYE~ D ..AllNAh C TROOIl a TVSO" C VAN "csre~" B VII

\ ...... ". OIC .U'''OKEE 0 ~H ITNEY I "IIlU t YAII.A t .AlIIle 8 .ElKERT tiD WHITORE A .. INl t YAIISAY 0 ...... SVlll E 8 .EI"ER 0 ~~If StL 8 Iti0TA 8 YA"" 8 .A~AJ'H 8 .EI NlAlH t .H ITSCII 0 .1 SHHLU t YAQUINA 1/0 .. A.... ~llff 0 "EIN 0 "HIT"Ell t WISUH t YARCUY t ...... 1.) .. .~IR ....N 9 "HCl"" C IHSNElI 0 YAIES 0 ...... J.:TTA .. ItE I SeA C "IB"UX 0 Wi HECK 0 YAwCIII C ..,~'",~", .. "E IS....UPT C ~1t"1 TA t ItITtI' 0 YAWKEY t ••N~ A .. EISS A .lt~U • 0 UTH.... C YAXON I _'PAL d .E I TtHPEt 8 "ICKERSI'A" I "!THEE t yuns HOUOW t ••., .fl' tlO 'H~Y 8 "ICKETT t .ITT t YEGE" 8 .APt:ll l: 0 .EtC.H t "ICKHA" I ..ITHL C YEll' 8 "'PI'ITI' K .ELO C WICKIU' t kC.OEN 8 YEIlRAI A ...Pltf "'.:. 9 .. ELOA t WICKLIFfE IIUOSKO. 8 YECPAN e "'.I.,l') 1 ~ b .ctJCI~ C • "S8URG 8 ItC:LtCTTS8URG YHUll .. ", ..r .. , a .ElJO"lA .) "ICTSCE C WOLO"LE C/O YOOO 8 .Al(u U .C:llEIi. C .IEHL t "CLF I YOKOHL C '.....Ooj:-".ocn A .~llENHOMIl C .IEN 0 IIClFE'SEN t YOLL..ltllY 0 .... ';CLI ,~ "~ll I"GTON C "IGeLETt" I WOI.FC"O 8 YOLC 8 .II.'(OE~ d lII':lLMAN ~ ~ll8R"H"" C ll(JLF PC INT Il yoLCGO 0 ....·J.t:ll C "Cll"CR 8 .1l8UR C "OLHEVER C YC"CNT 8 ",A«t. ~ .HLS90RO C "ILtC C lItLVE"INE A YONCAllA C ~A_ f ... , .. t .FILSIC" e .Ileex 0 "COO"Ne I yoNGES 0 WAL lItA •• ~ .ElLSVlllE ~ .Ilf-CXSCN C kCIlCB.IOGE C yoNN.. 8/0 ...... w ~·.I"GS t w':~;»liE 9 "1l0tH 0 ,,0008URN C YORCY 8 ••UI~.~"'S Ala ..FN"S dlt .. ILOER 8 IoOCDdURY 0 YORK C .':"A~~ .E~ATCHEE C .ILOERNESS t weCOlOCK 8 YORKVILLE D .Arc .. ~, Tlj:.. biD ".NOH 81t .ILOROSE 0 ..OllOEflVlllE t YOST t ",chd!J1( we-...,,.. "ILC"CCC 0 IOOC O&l.EN 0 YOUGA 8 •'''''S'. 8 .ENO>.A t .ILEY t IOOCOHURST .. YOUPAN C jfA':'.i t .\.., 8 "."TWORTH 8 'IlK< S C ItOO:lL Y 8 YCU"GSTCN 8 ,,'",,_ICI( .. "."NEM 8 .IlKESCh t IoliC ryl Yh t YOUR""E A .,~"T'CH A WESLJ C "ILKINS 0 WOOfJP ..NSIE a YOVI".A 0 ."H.I a ".SSH a .Ill 0 1I00l~"ERE e YS I DO"" C 'ltAS~;'U~N "EST8R'l0~ ~ .. aLAtY 8 "COL PIYER C YfURelOE A ~U>totl",r.TC~ ~ "oS TaURY C Wlll.\KE~ZIE C lIllCC ROCK d YUIA 0 •• ::.t4+"~ C wESrcRHK R "ILLA"'" 0 "OUORC" C YUKO'" 0 .. ,)~.JlJG'l d WESTE.VILlf C wlll""ElIE B WOOO S CMLSS 0 TUNES 0 lI .. ~ .... r~'A" tn "ESIFAll C .lllAPA t lO(ll;O SF IELO t YUNOUE C ..., III • C "eSTfIELO "lllARO t 1tOO0 SIDE .. "AS I 'J" C w£STfORO "lllElTE ../0 wooOSCh C lA..R 0 "AS;;'AJC 8 .BIL....O diD .. lllH""C 8 WOOC STeCK tlO lAtA C ~A' ~." C wESI"I"STER CIC ~llllA"S e toOOll STC." t lAC..ARiAS 8 • .aTA.h-;A ~ .esT"ORE s .. llllA"SBURG B ItOOC..UO 8 lAtl'ARV 0 .'T\...... ·tG 8 .EST"uRELANO 8 .IlLIAPSCN t lIOOL"AN 8 lAFRA d .ATC.... ~·:l.i .> WESTCN 0 wILLIS C "OOLP'E~ t lAHlll I .'T t;;'c ;R;"':: wESIPHALIA 8 .. lllIIS s' ItOOL!>EY C lAHl 8 W'l'~'".U"Y 0 ..eSTPL.. IN C '''ll~UGH8Y 8 weCSt EY I lALESKI C .aIE.I~O C ..bTPORT A ..lllC.. CRHK 8 "COSTER t lALLA A 'ltAJE;..S C "ESTvIlLE d "IlLC.C"U B lOOtSTERN 8 lAIlORA e ~AT"I "4S 8 .E1HERSFIHlI C .. lllC.S 0 "OCHN .. lANE C .AT"I~~ " IllGt 8 • ElHEY 81C ItIlL"CCC A ..ORCt srER a lANflS 8 WATOPA 8 .ETZH 0 WIlI'ER C "ORF 0 lANESVILLE C ..AT A. 1lJS 8 "EY"CUTH B WIlPAR 0 "ORK C lANONE t WATS.!::I(A C _HAL'" 8 wIlSC.. Q "CRLANO I l ...ATA t .ATSO~ C WHAR TON C .IlTSHIRE t _LtY C lAVAl.. 8 .alSO"A 0 "HAlCO" C .." .... S 81t "OR"SER t lAVCO C ."T>J"VlllE 0 "HAIEL Y 0 .INCHESTER .. IIORO\:K 8 lU 8 WATT 0 "HEAlLEY C IIINt~UtK t weRS"''''' 0 lEESU t ....T! IN C .HE ATR lOGE C IIINOER 810 WOItTt-t C lEll B w'Ue\¥ 8 "HEATVlllE 8 .1"'''lll 8 ..0,(l11EN 8 lEll C ~AL'8iEJ( 8 "HtHER 8 "INOCIl a IOORT ~I"G r. lEIlCA c ....1J'c;NS If a "~EHING 8 ItlllO RIVER I "ORH

1. Modern Sewer Design, American Iron and Steel Institute, First Edition, 1980.

2. National Clay Pipe Institute, "Gravity Flow Hydraulics Calculator"

3. Standard Handbook for Civil Engineers, McGrawHill, Second Edition 1976.

4. Technical Release No. 55, Urban Hydrology for Small Watersheds, Soil Conservation Services, January, 1975.

5. Texas Instruments, TI99/4A Personal Computer, User's Handbook,First Edition, 1983.

6. Introduction to Linear and Nonlinear Programming, by David G. Luenberger, Addison-Wesley Publishing Company, Inc., 1973.

7. National Engineering Handbook, Section 4, Soil Conservation Service August, 1972.

8. A Computer Program for the Minimum Cost Design of a Sewer System, Civil Engineering Thesis, Number 1348, Youngstown State University.