Steady Flow Analysis of Pipe Networks: an Instructional Manual

Total Page:16

File Type:pdf, Size:1020Kb

Steady Flow Analysis of Pipe Networks: an Instructional Manual Utah State University DigitalCommons@USU Reports Utah Water Research Laboratory January 1974 Steady Flow Analysis of Pipe Networks: An Instructional Manual Roland W. Jeppson Follow this and additional works at: https://digitalcommons.usu.edu/water_rep Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons Recommended Citation Jeppson, Roland W., "Steady Flow Analysis of Pipe Networks: An Instructional Manual" (1974). Reports. Paper 300. https://digitalcommons.usu.edu/water_rep/300 This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. STEADY FLOW ANALYSIS OF PIPE NETWORKS­ An Instructional Manual by Roland W. Jeppson Developed with support from the Quality of Rural Life Program funded by the Kellogg Foundation and Utah State University Copyright ® 1974 by Roland W. Jeppson This manual, or parts thereof, may not be reproduced in any form without permission of the author. Department of Civil and Environmental Engineering and Utah Water Research Laboratory Utah State University Logan. Utah 84322 $6.50 September 1974 TABLE OF CONTENTS Chapter Page FUNDAMENTALS OF FLUID MECHANICS Introduction . Fluid Properties Density. I Specific weight I Viscosity 1 Example Problems Dealing with Fluid Properties 2 Conservation Laws 3 In trodu cti on 3 Continuity. 3 Example Problems Applying Continuity 4 Conservation of Energy (Bernoulli Equation) 6 Example Problems Dealing with Conservation Laws 9 Momentum Principle in Fluid Mechanics 12 II FRICTIONAL HEAD LOSSES 13 Introduction . 13 Darcy-Weisbach Equation. 13 Friction Factor for Laminar Flow 13 Friction Factors for Turbulent Flows. 15 Example Problems Using the Darcy-Weisbach Equation. 16 Computer Use with Darcy-Weisbach Equation (the Newton-Raphson Method) 19 Empirical Equations. 20 Example Problems Using the Darcy-Weisbach Equation 21 Exponential Formula . 22 Example Problems in Defining Exponential Formula from the Darcy-Weisbach Equation 22 III MINOR LOSSES 25 Introduction 25 Bends, Values, and Other Fittings 25 Entrances, Exists, Contractions, and Enlargements 27 IV INCOMPRESSIBLE FLOW IN PIPE NETWORKS 29 Introduction . 29 Reducing Complexity of Pipe Networks 29 Series pipes 29 iii TABLE OF CONTENTS (Continued) Chapter Page Parallel pipes . 30 Branching system . 30 Minor losses . 30 Example Problem in Finding Equivalent Pipes . 31 Systems of Equations Describing Steady Flow in Pipe Networks 32 Flow rates as unknowns . 32 Example Problems in Writing Flow Rate Equations 34 Heads at Junctions as Unknowns . 3S Corrective flow rates around loops of network considered unknowns. 36 v LINEAR THEORY METHOD ............. 39 Introduction . 39 TransfOrming Nonlinear Energy Equations Into Unear Equations 39 Example Problems Using Unear Theory for Solution 43 Including Pumps and Reservoirs into Linear Theory Method 44 Example Problems which Include Pumps and Reservoirs 47 VI NEWTON·RAPHSON METHOD 61 Introduction . 61 Head-equation 62 Example Problems Based on the H-Equations 64 Corrective Flow Rate Equations 6S Example Problems in Solving .:lQ-Equations 68 VII HARDY CROSS METHOD 73 Introduction . 73 Mathematical Development 73 APPENDIX A: UNITS AND CONVERSION FACTORS UNIT DEFINITIONS (SI) . 77 APPENDIX B: AREAS FROM PIPE DIAMETERS. 79 APPENDIX C: DESCRIPTION OF INPUT DATA REQUIRED BY A COMPUTER PROGRAM WHICH SOLVES THE Q-EQUATIONS BY THE LINEAR THEORY METHOD. .. 81 APPENDIX D: DESCRIPTION OF INPUT REQUIRED BY A COMPUTER PROGRAM WHICH SOLVES THE .:lQ.EQUATIONS BY THE NEWTON-RAPHSON METHOD. .. 85 APPENDIX E: DESCRIPTION OF INPUT DATA REQUIRED BY PROGRAM WHICH USES THE HARDY CROSS METHOD OF SOLUTION . 87 iv CHAPTER I FUNDAMENTALS OF FLUID MECHANICS Introduction In the inter!lational system (Systeme International d'Unites) of units (abbreViated SI) which is an outgrowth This chapter provides the necessary background of the metric system, mass is measured in the unit of the information concerning the properties of fluids and the gram, gr (or kilogram, kg, which equals 1000 grams); force laws which govern their motion. Readers with some under­ is measured in Newtons, N, and length in meters, m. A standing of fluid mechanics might begin their reading with Newton is the force required to accelerate I kg at a rate of Chapter II. Those readers with better training in fluid 1 m/sec2, and equals 105 dynes which is the-force needed mechanics, equivalent to that acquired by civil, mechani­ to accelerate I gr at I cm/sec2. cal, agricultural, or aeronautical engineers, might begin their reading with Chapter IV. The units of density in the SI system are: The first section in this chapter will introduce those .1s. N-sec 2 properties of fluids which are needed to understand later m30r~ material in this manual. Along with these properties you will become acquainted with symbols which are used to The conversion of density from the ES system to the SI denote fluid properties, as well as units and dimensions system or vice versa can be determined by substituting the which are associated with these symbols. Later these equivalent of each dimension as given in Appendix A. symbols will appear in equations, and consequently as you Upon doing this read this chapter you should make the association between the symbol and what it represents. After covering I Slug/ft3 = 515.363kg/m3 basic fluid properties, with particular emphasis on liquids (or more precisely referred to as incompressible fluids; The density of water equals 1.94 slug/ft3 or 1000 kg/m3 gases are compressible fluids), the fundamental conserva­ (I gr/cm3). tion principles of mass and energy are discussed in the later portion of this first chapter with special reference to Specific weight liquid (Le., incompressible) flow in pipes and other closed conduits. The specific weight (sometimes referred to as the unit weight) is the weight of fluid per unit volume, and is Fluid Properties denoted by the Greek letter 'Y (gamma). The specific weight thus has dimensions of force per unit volume. Its Density units in the ES and SI systems respectively are: Ib N.. kg The mass per unit volume is referred to as the ft3 and m3 or m2-sec2 density of the fluid and is denoted by the Greek letter p (rho). The dimensions of density are mass per length The specific weight is related to the fluid density by cubed or M/t3. The English system of units (abbreviated the acceleration of gravity or ES) uses the slug for the unit of mass, and feet for the unit of length. The dimensions commonly used in 'Y gp . (1-1) connection with the ES system of units are force, F, length, L, and time, T. In the Systeme internationale, SI, Since g = 32.2 ft/sec2 (9.81 m/sec2), the specific weight the common dimensions are mass, M, length, L, and time, of water is T. Thus in using FLT, dimensions for the slug can be 3 obtained by relating mass to force through the gravita­ 'Y == 32.2 (1.94) = 62.4 Ib/ft (ES) tional acceleration, g, i.e. F(force) = M(mass) x g(accelera­ or tion of gravity). Thus since the units of acceleration are 'Y = 9.81 (1000) 9810 N/m3 (SI) ft/sec2, the units of density are, Viscosity . Slu g lb-sec 2 ft 3 or~ Another important fluid property is its viscosity (also referred to as dynamic or absolute viscosity). in the English system. Viscosity is the fluid resistance to flow, which reveals 1 itself as a shearing stress within a flowing fluid and The dimensions of kinematic viscosity are length squared between a flowing fluid and its container. The viscosity is per time. Common units for v in the ES and SI system given the symbol fJ. (Greek symbol mu) and is defined as respectively are: the ratio of the shearing stress T (Greek letter tau) to the 2 rate of change in velocity, v, or mathematically dv/dy. and --m This definition results in the following important equation sec sec for fluid shear. Another often used unit for kinematic viscosity in the metric system is the stoke (or centistoke = .01 stoke). The T = . (1-2) stoke equals 1 cm2/sec. The viscosity of many common fluids such as water in which dv/dy is the derivative of the velocity with depends upon temperature but not the shear stress 7 or respect to the distance y. The derivative dv/dy is called dv /dy. Such fluids are called Newtonian fluids to the velocity gradient. Equation 1-2 is valid for viscous or distinguish them from non-Newtonian fluids whose laminar flow bu t not for turbulent flow when much of the viscosity does depend upon dv / dy. Table I-I gives values apparent shear stress is due to exchange of momentum of the absolute and kinematic viscosities of water over a between adjacent layers of flow. Later, means for deter­ range of temperatures. mining whether the flow is laminar or turbulent are given. From Eq. 1-2 it can be determined that the Table 1-1. Viscosities of water. dimensions of viscosity are force multiplied by time 2 divided by length squared or FT/L . Its units in the ES Kinematic and SI systems are respectively, Temperature Viscosity, fJ. Viscosity, v 2 2 lb-sec SIU!' d N-sec Ib-sec/ft2 N-sec/m ft2/sec m /sec -- or~ an --2 or ft2 ft-sec m m-sec % °c x 10 5 x 10 3 x 105 x 106 32 C 3.746 1.793 1.931 1.794 Occasionally the viscosity is given in poises (1 poise 40 4.4 3.229 1.546 1.664 1.546 dyne sec/ cm2). One poise equal 0.1 N-sec/m2.
Recommended publications
  • Properties and Definitions
    Properties and Definitions Useful constants, properties, and conversions 2 2 gc = 32.2 ft/sec [lbm-ft/lbf-sec ] 3 ρwater = 1.96 slugs/ft 3 γwater = 62.4 lb/ft 1 ft3/sec = 449 gpm 1 mgd = 1.547 ft3/sec 1 foot of water = 0.433 psi 1 psi = 2.31 ft of water Definitions discharge: flow rate, usually in ft3/sec or gpm Properties Density Density (ρ) is mass per unit volume (slugs/ft3) Specific Weight (aka Unit Weight) Specific Weight (γ) is weight per unit volume (lb/ft3) = ρg Specific Gravity Specific Gravity (S) is the ratio of the weight (or mass) or a substance to the weight (or mass) of water. where the subscript "s" denotes of a given substance and the subscript "w" denotes of water. Given S of a substance, you can easily calculate ρ and γ using the equations Specific Volume Specific Volume is the volume per unit mass (usually in ft3/lbm) Viscosity Viscosity (υ) is a measure of a fluid's ability to resist shearing force (usually in 2 lbf·sec/ft ) υ is a proportionality constant and is also known as absolute viscosity or dynamic viscosity. Viscosity is often given in the SI unit of Poise. To convert to English units use the relationship Kinematic Viscosity where γ = kinematic viscosity (ft2/s) 2 υ = dynamic viscosity (lbf·sec/ft ) ρ = mass density (slugs/ft3) Note: See CERM Appendix 14.A (page A-13) for a listing of water properties at various temperatures. Absolute and Gauge Pressure Absolute Pressure (psia) = Atmospheric Pressure + Gauge Pressure (psig) Atmospheric Pressure changes with weather conditions and altitude though is usually assumed to be 14.7 psi at sea level.
    [Show full text]
  • Hydropower Engineering Ii Lecture Note Compiled By
    Arbaminch University, Department of Hydraulic Eng’g HYDROPOWER ENGINEERING II LECTURE NOTE COMPILED BY: YONAS GEBRETSADIK LECTURER IN HYDRAULIC ENGINEERING DEPARTMENT OF HYDRAULIC ENGINEERING ARBA MINCH WATER TECHNOLOGY INSTITUTE ARBA MINCH UNIVERSITY JANUARY 2011 Hydropower Engineering-II Lecture Note/2010/2011 1 Arbaminch University, Department of Hydraulic Eng’g TABLE OF CONTENTS 1. HYDRAULIC TURBINES ............................................................................................................................. 5 1.1 GENERAL ............................................................................................................................................. 5 1.2 CLASSIFICATION .................................................................................................................................. 5 1.3 CHARACTERISTICS OF TURBINES ......................................................................................................... 6 1.4 PROCEDURE IN PRELIMINARY SELECTION OF TURBINES ...................................................................... 7 1.5 TURBINE SCROLL CASE ....................................................................................................................... 9 1.6 DRAFT TUBES .................................................................................................................................... 10 1.7 CAVITATION IN TURBINE & TURBINE SETTING ................................................................................. 11 1.8 GENERATORS AND TURBINE
    [Show full text]
  • Calculate the Friction Factor for a Pipe Using the Colebrook-White Equation
    TOPIC T2: FLOW IN PIPES AND CHANNELS AUTUMN 2013 Objectives (1) Calculate the friction factor for a pipe using the Colebrook-White equation. (2) Undertake head loss, discharge and sizing calculations for single pipelines. (3) Use head-loss vs discharge relationships to calculate flow in pipe networks. (4) Relate normal depth to discharge for uniform flow in open channels. 1. Pipe flow 1.1 Introduction 1.2 Governing equations for circular pipes 1.3 Laminar pipe flow 1.4 Turbulent pipe flow 1.5 Expressions for the Darcy friction factor, λ 1.6 Other losses 1.7 Pipeline calculations 1.8 Energy and hydraulic grade lines 1.9 Simple pipe networks 1.10 Complex pipe networks (optional) 2. Open-channel flow 2.1 Normal flow 2.2 Hydraulic radius and the drag law 2.3 Friction laws – Chézy and Manning’s formulae 2.4 Open-channel flow calculations 2.5 Conveyance 2.6 Optimal shape of cross-section Appendix References Chadwick and Morfett (2013) – Chapters 4, 5 Hamill (2011) – Chapters 6, 8 White (2011) – Chapters 6, 10 (note: uses f = 4cf = λ for “friction factor”) Massey (2011) – Chapters 6, 7 (note: uses f = cf = λ/4 for “friction factor”) Hydraulics 2 T2-1 David Apsley 1. PIPE FLOW 1.1 Introduction The flow of water, oil, air and gas in pipes is of great importance to engineers. In particular, the design of distribution systems depends on the relationship between discharge (Q), diameter (D) and available head (h). Flow Regimes: Laminar or Turbulent laminar In 1883, Osborne Reynolds demonstrated the occurrence of two regimes of flow – laminar or turbulent – according to the size of a dimensionless parameter later named the Reynolds number.
    [Show full text]
  • Intermittency As a Transition to Turbulence in Pipes: a Long Tradition from Reynolds to the 21St Century Christophe Letellier
    Intermittency as a transition to turbulence in pipes: A long tradition from Reynolds to the 21st century Christophe Letellier To cite this version: Christophe Letellier. Intermittency as a transition to turbulence in pipes: A long tradition from Reynolds to the 21st century. Comptes Rendus Mécanique, Elsevier Masson, 2017, 345 (9), pp.642- 659. 10.1016/j.crme.2017.06.004. hal-02130924 HAL Id: hal-02130924 https://hal.archives-ouvertes.fr/hal-02130924 Submitted on 16 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License C. R. Mecanique 345 (2017) 642–659 Contents lists available at ScienceDirect Comptes Rendus Mecanique www.sciencedirect.com A century of fluid mechanics: 1870–1970 / Un siècle de mécanique des fluides : 1870–1970 Intermittency as a transition to turbulence in pipes: A long tradition from Reynolds to the 21st century Les intermittencies comme transition vers la turbulence dans des tuyaux : Une longue tradition, de Reynolds au XXIe siècle Christophe Letellier Normandie Université, CORIA, avenue de l’Université, 76800 Saint-Étienne-du-Rouvray, France a r t i c l e i n f o a b s t r a c t Article history: Intermittencies are commonly observed in fluid mechanics, and particularly, in pipe Received 21 October 2016 flows.
    [Show full text]
  • Innovative and Low Cost Technologies Utilized in Sewerage
    ENVIRONMENTAL HEALTH PROGRAM INNOVATIVE AND LOW COST TECHNOLOGIES UTILIZED IN SEWERAGE TECHNICAL SERIES No. 29 PAN AMERICAN H EAU H ORGANIZATION Pan American Sanitary Bureau, Regional Office of the WORLD HhALTH ORGANIZATION ENVIRONMENTAL HEALTH PROGRAM u, •:'< i .:••;: .•: a. ! 4 INNOVATIVE AND LOW COST TECHNOLOGIES UTILIZED IN SEWERAGE AUTHOR José M. Azevedo Netto EDITED Raymond Reid WASHINGTON, D.C., MARCH 1992 PROLOGUE This publication is the product of the last contract of the late Jose Martiniano de Azevedo Netto with the Pan American Health Organization and is a significant example of a relationship of more than 40 years duration —a relationship that was characterized always with a touch of daring, and clever, innovative approaches to the solution of environmental health problems and risks. The contribution of Azevedo Netto to sanitary engineering goes far beyond his countless books, papers and articles. Thousands of public health and sanitary engineering professionals in Latin America have been affected and influenced by his inspiring and dedicated teachings and instruction. Azevedo Netto was born in Brazil in 1918, graduated as a civil engineer from the University of Sao Paulo, and earned his masters degree in sanitary engineering from Harvard University and his doctorate in public health from the University of Sao Paulo. The professional life of Professor Azevedo Netto, as he liked to be called, took him to all continents as a teacher and as technical advisor to governments and institutions such as Pan American Health Organization, the World Bank, Inter- American Development Bank and others. A founding member of the Inter-American and the Brazilian Associations of Sanitary and Environmental Engineering, Azevedo Netto raised the consciousness of the importance of sanitary engineering to improvement of peoples' health and quality of life.
    [Show full text]
  • Basic Principles of Flow of Liquid and Particles in a Pipeline
    1. BASIC PRINCIPLES OF FLOW OF LIQUID AND PARTICLES IN A PIPELINE 1.1 LIQUID FLOW The principles of the flow of a substance in a pressurised pipeline are governed by the basic physical laws of conservation of mass, momentum and energy. The conservation laws are expressed mathematically by means of balance equations. In the most general case, these are the differential equations, which describe the flow process in general conditions in an infinitesimal control volume. Simpler equations may be obtained by implementing the specific flow conditions characteristic of a chosen control volume. 1.1.1 Conservation of mass Conservation of mass in a control volume (CV) is written in the form: the rate of mass input = the rate of mass output + the rate of mass accumulation. Thus d ()mass =−()qq dt ∑ outlet inlet in which q [kg/s] is the total mass flow rate through all boundaries of the CV. In the general case of unsteady flow of a compressible substance of density ρ, the differential equation evaluating mass balance (or continuity) is ∂ρ G G +∇.()ρV =0 (1.1) ∂t G in which t denotes time and V velocity vector. For incompressible (ρ = const.) liquid and steady (∂ρ/∂t = 0) flow the equation is given in its simplest form ∂vx ∂vy ∂vz ++=0 (1.2). ∂x ∂y ∂z The physical explanation of the equation is that the mass flow rates qm = ρVA [kg/s] for steady flow at the inlet and outlet of the control volume are equal. Expressed in terms of the mean values of quantities at the inlet and outlet of the control volume, given by a pipeline length section, the equation is 1.1 1.2 CHAPTER 1 qm = ρVA = const.
    [Show full text]
  • Oft/Milar/ON in SEWER. DESIGN Flold Cjjflr.T
    · COST EFFECTIVENESS IN SEWER DESIGN by Gary J. Diorio, P.E. SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS for the Degree of Master of Science in the Civil Engineering Program ~{).~. ADVISER DATE DEAN of the Graduate School DATE Youngstown State University December, 1986 COST EFFECTIVENESS IN SEWER DESIGN © 1986 GARY J. DIORIO, P.E. All Rights Reserved i ABSTRACT COST EFFECTIVENESS IN SEWER DESIGN GARY J. DIORIO, P.E. MASTER OF SCIENCE YOUNGSTOWN STATE UNIVERSITY Probably the most important challenge facing an engineer today is to ensure that his design is competitive in terms of costs. Besides being technically sound, the designer's objectives are to provide a cost effective solution. This thesis presents a computer program to be used as a guide for the design of storm sewers to ensure a cost effective solution. The computer program is compiled to generate overland flows to inlets by use of a combination of the Rational Method and the Soil Conservation Method. The cost effective solution is found by applying the cost function according to the constraints set forth in the program. The program ~ constraints involve minimum slopes to ensure proper velocities in the pipe, proper pipe sizes to ensure a technically sound design, and to provide a minimum depth of sewer throughout the entire length. A case study is also included and analyzed to provide reliability data for the computer program. The design process, including cost computation, is laborious to the extent that it discourages the effort to explore all situations to arrive at a cost effective design. The purpose of this thesis is to provide the designer with the following: ii 1.
    [Show full text]
  • Guide for Selecting Manning's Roughness Coefficients
    GUIDE FOR SELECTING MANNING’S ROUGHNESS Turner-Fairbank Highway COEFFICIENTS FOR NATURAL CHANNELS Research Center 6300 Georgetown Pike AND FLOOD PLAINS McLean, Virginia 22101 Report No. 3 t u FHWA-TS-84-204 U.S. Department of Transportation Final Report April 1984 -1 HishrwaV AdministrWon Archived ‘This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 2216 FOREWORD This Technology Sharing Report provides procedures for determining Manning's roughness coefficient for densely vegetated flood plains. The guidelines should be of interest to hydraulic and bridge engineers. Environmental specialists concerned with flood plains and wetlands may also find this report useful. The report was prepared by the United States Geological Survey, Water Resources Division, with technical guidance from the FHWA Office of Engineering and Highway Operations Research and Development. Sufficient copies of the publication are being distributed to provide a minimum of one copy to each FHWA region office, division office, and to each State highway agency. Additional copies of the report can be obtained from the National Technical Information Service, Springfield, Virginia 22161. DirectdrJ Office of / Director, Office of Engineering and Highway Implementation Operations R&D NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The contents of this report reflect the views of the contractor, who is responsible for the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation.
    [Show full text]
  • Calculating Resistance to Flow in Open Channels 1. Introduction
    Alternative Hydraulics Paper 2, 5 April 2010 Calculating resistance to flow in open channels John D. Fenton http://johndfenton.com/Alternative-Hydraulics.html [email protected] Abstract The Darcy-Weisbach formulation of flow resistance has advantages over the Gauckler-Manning- Strickler form. It is more fundamental, and research results for it should be able to be used in practice. A formula for the dimensionless resistance coefficient was presented by Yen (1991, equa- tion 30), which bridges between the limits of smooth flow and fully rough flow, to give a general formula for calculating resistance as a function of relative roughness and Reynolds number, appli- cable for a channel Reynolds number R>30 000 and relative roughness ε<0.05. In this paper, the author shows how a closely similar formula was obtained which is in terms of natural loga- rithms, which are simpler if further operations such as differentiation have to be performed. The formulae are shown to agree with predictions from the Gauckler-Manning-Strickler form, and with a modified form for open channels, have advantages that the equations are simpler and terms are more physically-obvious, as well as using dimensionless coefficients with a greater connectedness to other fluid mechanics studies. 1. Introduction The ASCE Task Force on Friction Factors in Open Channels (1963) expressed its belief in the general utility of using the Darcy-Weisbach formulation for resistance to flow in open channels, noting that it was more fundamental, and was based on more fundamental research. The
    [Show full text]
  • PDF, Bottom Friction Models for Shallow Water Equations: Manning's
    Journal of Physics: Conference Series PAPER • OPEN ACCESS Related content - Model reduction of unstable systems using Bottom friction models for shallow water balanced truncation method and its application to shallow water equations Kiki Mustaqim, Didik Khusnul Arif, Erna equations: Manning’s roughness coefficient and Apriliani et al. small-scale bottom heterogeneity - An averaging method for the weakly unstable shallow water equations in a flat inclined channel To cite this article: Tatyana Dyakonova and Alexander Khoperskov 2018 J. Phys.: Conf. Ser. 973 Richard Spindler 012032 - Computational multicore on two-layer 1D shallow water equations for erodible dambreak C A Simanjuntak, B A R H Bagustara and P H Gunawan View the article online for updates and enhancements. Recent citations - Numerical hydrodynamic model of the Lower Volga A Yu Klikunova and A V Khoperskov - Flow resistance in a variable cross section channel within the numerical model of shallow water T Dyakonova and A Khoperskov This content was downloaded from IP address 170.106.35.234 on 23/09/2021 at 14:15 AMSCM IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series1234567890 973 (2018) ‘’“” 012032 doi :10.1088/1742-6596/973/1/012032 Bottom friction models for shallow water equations: Manning's roughness coefficient and small-scale bottom heterogeneity Tatyana Dyakonova, Alexander Khoperskov Volgograd State University, Department of Information Systems and Computer Simulation, Volgograd, 400062, Russia E-mail: [email protected] Abstract. The correct description of the surface water dynamics in the model of shallow water requires accounting for friction. To simulate a channel flow in the Chezy model the constant Manning roughness coefficient is frequently used.
    [Show full text]
  • Sediment Transport in Open Channel Flows
    Introduction to Sediment Transport in Open Channel Flows Image source: http://earthsci.org/processes/geopro/stream/stream.html Arturo S. Leon, Ph.D., P.E., D.WRE Movies Scour at bridge model pier https://www.youtube.com/watch?v=48S_k6qAmsY&feature=emb_logo Utah Flash Flood https://www.youtube.com/watch?v=mXlr_Bgb-s0 Santa Clara Pueblo Flash Flood https://www.youtube.com/watch?v=nKOQzkRi4BQ Sediment Transport ● We study sediment transport to predict the risks of scouring of bridges, to estimate the siltation of a reservoir, etc. ● Most, if not all, natural channels have mobile beds ● Most mobile beds are in dynamic equilibrium: on average: sediment in = sediment out ● This dynamic equilibrium can be disturbed by . short-term extreme events (e.g., flash floods) . man-made infrastructure (e.g., dams) Source: https://www.flow3d.com/modeling-capabilities/sediment-transport-model/ Sediment Transport Fundamental Questions: ● Does sediment transport occur? (Threshold of motion). ● If so, then at what rate? (Sediment load) ● What net effect does it have on the bed? (Scour/accretion) The main types of sediment load (volume of sediment per unit of time) are Bed load and Suspended load. The sum is total load z = h Velocity Concentration Profile Profile Suspended z = z load ref Bed load Bed form motion: Dune Antidune Source: Lecture notes on Hydraulic, David Apsley Bed form motion (Cont.) Dune Antidune Source: https://armfield.co.uk/product/s8-mkii-sediment-transport-demonstration-channel/ Relevant Properties ● Particle ● Flow ‐Diameter, ‐Bed shear
    [Show full text]
  • Chapter 6 155 Design of PE Piping Systems
    Chapter 6 155 Design of PE Piping Systems Chapter 6 Design of PE Piping Systems Introduction Design of a PE piping system is essentially no different than the design undertaken with any ductile and flexible piping material. The design equations and relationships are well-established in the literature, and they can be employed in concert with the distinct performance properties of this material to create a piping system which will provide very many years of durable and reliable service for the intended application. In the pages which follow, the basic design methods covering the use of PE pipe in a variety of applications are discussed. The material is divided into four distinct sections as follows: Section 1 covers Design based on Working Pressure Requirements. Procedures are included for dealing with the effects of temperature, surge pressures, and the nature of the fluid being conveyed, on the sustained pressure capacity of the PE pipe. Section 2 deals with the hydraulic design of PE piping. It covers flow considerations for both pressure and non-pressure pipe. Section 3 focuses on burial design and flexible pipeline design theory. From this discussion, the designer will develop a clear understanding of the nature of pipe/soil interaction and the relative importance of trench design as it relates to the use of a flexible piping material. Finally, Section 4 deals with the response of PE pipe to temperature change. As with any construction material, PE expands and contracts in response to changes in temperature. Specific design methodologies will be presented in this section to address this very important aspect of pipeline design as it relates to the use of PE pipe.
    [Show full text]