Newcomen Steam Engine (Edited from Wikipedia)

Total Page:16

File Type:pdf, Size:1020Kb

Newcomen Steam Engine (Edited from Wikipedia) Newcomen Steam Engine (Edited from Wikipedia) SUMMARY The atmospheric engine was invented by Thomas Newcomen in 1712, often referred to simply as a Newcomen engine. The engine operated by condensing steam drawn into the cylinder, thereby creating a partial vacuum, thereby allowing the atmospheric pressure to push the piston into the cylinder. It was the first practical device to harness steam to produce mechanical work. Newcomen engines were used throughout Britain and Europe, principally to pump water out of mines. Hundreds were constructed through the 18th century. HOW IT WORKS Although based on simple principles, Newcomen's engine was rather complex and showed signs of incremental development, problems being empirically addressed as they arose. It consisted of a boiler, usually a haystack boiler, situated directly below the cylinder. This produced large quantities of very low pressure steam, no more than 1 – 2 psi (0.07 – 0.14 bar) – the maximum allowable pressure for a boiler that in earlier versions was made of copper with a domed top of lead and later entirely assembled from small riveted iron plates. The action of the engine was transmitted through a rocking "Great balanced Beam", the fulcrum of which rested on the very solid end-gable wall of the purpose-built engine house with the pump side projecting outside of the building, the engine being located in-house. The pump rods were slung by a chain from the arch-head of the great beam. From the in-house arch-head was suspended a piston working in a cylinder, the top end of which was open to the atmosphere above the piston and the bottom end closed, apart from the short admission pipe connecting the cylinder to the boiler; early cylinders were made of cast brass, but cast iron was soon found more effective and much cheaper to produce. The piston was surrounded by a seal in the form of a leather ring, but as the cylinder bore was finished by hand and not absolutely true, a layer of water had to be constantly maintained on top of the piston. Installed high up in the engine house was a water tank 1 (or header tank) fed by a small in-house pump slung from a smaller arch-head. The header tank supplied cold water under pressure via a stand-pipe for condensing the steam in the cylinder with a small branch supplying the cylinder-sealing water; at each top stroke of the piston excess warm sealing water overflowed down two pipes, one to the in-house well and the other to feed the boiler by gravity. The pump equipment was heavier than the steam piston, so that the position of the beam at rest was pump-side down/engine-side up, which was called "out of the house". To start the engine, the regulator valve was opened and steam admitted into the cylinder from the boiler, filling the space beneath the piston. The regulator valve was then closed and the water injection valve briefly snapped open and shut, sending a spray of cold water into the cylinder. This condensed the steam and created a partial vacuum under the piston. The pressure differential (difference) between the atmosphere above the piston and the partial vacuum below then drove the piston down making the power stroke, bringing the beam "into the house" and raising the pump gear. Steam was then readmitted to the cylinder, destroying the vacuum and driving the condensate down the sinking or "eduction" pipe. As the low pressure steam from the boiler flowed into the cylinder, the weight of the pump and gear returned the beam to its initial position whilst at the same time driving the water up from the mine. This cycle was repeated around 12 times per minute. HISTORY In 1698 Thomas Savery patented a steam-powered pump he called the "Miner's Friend", essentially identical to Somerset's design and almost certainly a direct copy. The process of cooling and creating the vacuum was fairly slow, so Savery later added an external cold water spray to quickly cool the steam. Savery's invention cannot be strictly regarded as the first steam "engine" since it had no moving parts and could not transmit its power to any external device. There were evidently high hopes for the Miner's Friend, which led Parliament to extend the life of the patent by 21 years, so that the 1699 patent would not expire until 1733. Unfortunately, Savery's device proved much less successful than had been hoped. A theoretical problem with Savery's device stemmed from the fact that a vacuum could only raise water to a maximum height of about 30 ft (9 m), to this could be added another 40 ft (12 m), or so, raised by steam pressure. This was insufficient to pump 2 water out of a mine. In Savery's pamphlet, he suggests setting the boiler and containers on a ledge in the mineshaft and even a series of two or more pumps for deeper levels. Obviously these were inconvenient solutions and some sort of mechanical pump working at surface level – one that lifted the water directly instead of "sucking" it up – was desirable. Such pumps were common already, powered by horses, but required a vertical reciprocating drive that Savery's system did not provide. The more practical problem concerned having a boiler operating under pressure, as demonstrated when the boiler of an engine at Wednesbury exploded, perhaps in 1705. Denis Papin While in Marburg in 1690, having observed the mechanical power of atmospheric pressure on his 'digester', Denis Papin built a model of a piston steam engine, the first of its kind. Papin continued to work on steam engines for the next fifteen years. In 1695 he moved from Marburg to Kassel. In 1705 he developed a second steam engine with the help of Gottfried Leibniz, based on an invention by Thomas Savery, but this used steam pressure rather than atmospheric pressure. Details of the engine were published in 1707. It seems that the idea came to Papin whilst working with Robert Boyle at the Royal Society in London. Papin describes first pouring a small quantity of water into the bottom of a vertical cylinder, inserting a piston on a rod and after first evacuating the air below the piston, placing a fire beneath the cylinder to boil the water away and create enough steam pressure to raise the piston to the top end of the cylinder. The piston was then temporarily locked in the upper position by a spring catch engaging a notch in the rod. The fire was then removed, allowing the cylinder to cool, which condensed steam back into water, thus creating a vacuum beneath the piston. To the end of the piston rod was attached a cord passing over two pulleys and a weight hung down from the cord's end. Upon releasing the catch, the piston was sharply drawn down to the bottom of the cylinder by the pressure differential between the atmosphere and the created vacuum; enough force was thus generated to raise a 60 lb (27 kg) weight. Although the engine certainly worked as far as it went, it was devised merely to demonstrate the principle and having got thus far, Papin never developed it further, although in his paper he did write about the potential of boats driven by "firetubes". Instead he allowed himself to be distracted into developing a variant of the Savery engine. 3 Newcomen Newcomen took forward Papin's experiment and made it workable, although little information exists as to exactly how this came about. The main problem to which Papin had given no solution was how to make the action repeatable at regular intervals. The way forward was to provide, as Savery had, a boiler capable of ensuring the continuity of the supply of steam to the cylinder, providing the vacuum power stroke by condensing the steam, and disposing of the water once it had been condensed. The power piston was hung by chains from the end of a rocking beam. Unlike Savery's device, pumping was entirely mechanical, the work of the steam engine being to lift a weighted rod slung from the opposite extremity of the rocking beam. The rod descended the mine shaft by gravity and drove a force pump, or pole pump (or most often a gang of two) inside the mineshaft. The suction stroke of the pump was only for the length of the upward (priming) stroke, there consequently was no longer the 30-foot restriction of a vacuum pump and water could be forced up a column from far greater depths. The boiler supplied the steam at extremely low pressure and was at first located immediately beneath the power cylinder but could also be placed behind a separating wall with a connecting steam pipe. Making all this work needed the skill of a practical engineer; Newcomen's trade as an "ironmonger" or metal merchant would have given him significant practical knowledge of what materials would be suitable for such an engine and brought him into contact with persons having even more detailed knowledge. Soon orders from wet mines all over England were coming in, and some have suggested that word of his achievement was spread through his Baptist connections. Since Savery's patent had not yet run out, Newcomen was forced to come to an arrangement with Savery and operate under the latter's patent, as its term was much longer than any Newcomen could have easily obtained. During the latter years of its currency, the patent belonged to an unincorporated company, The Proprietors of the Invention for raising water by fire.
Recommended publications
  • Steam Engines
    Evolving Design Steam Engines Tetsuo Tomiyama ([email protected]) 1 Intelligent Mechanical Systems, Bio-Mechanical Engineering Faculty of Mechanical, Maritime and Materials Engineering Overview • A Small Question • History of Thermodynamics • Steam Engines • Thomas Newcomen • James Watt • After Watt • Improvements • Steam Cars • Steam Locomotives • Steamboats • Exam 2008 Wb3110: Steam Engines 2 ©2011 Tetsuo Tomiyama Which is the Oldest? • MIT 1861 • Second Law of Thermodynamics 1850 Rudolf Julius Emanuel Clausius (1822-1888) • TU Delft 1842 Wb3110: Steam Engines 3 ©2011 Tetsuo Tomiyama Definition of Mechanical Engineering • “To Build and Run a Steam Engine!” • (Unofficial Version@ME MIT) Wb3110: Steam Engines 4 ©2011 Tetsuo Tomiyama History of Thermodynamics • 1660: Robert Boyle Boyle's Law • 1712: Thomas Newcomen • 1741: École Nationale des Ponts et Chaussés • 1765: James Watt (Only the Idea) • 1770: Steam Car • 1776: James Watt (The Engine), Steamboat • 1794: Ecole Polytechnique • 1804: Steam Locomotive • 1824: Sadi Carnot, Carnot Cycle • 1842: TU Delft Wb3110: Steam Engines 5 ©2011 Tetsuo Tomiyama History of Thermodynamics • 1843: James Joule, Mechanical Equivalent of Heat • 1847: Hermann von Helmholtz, Definitive Statement of the First Law of Thermodynamics • 1849: William John Macquorn Rankine, Saturated Vapor Table (Pressure and Temperature) • 1850: Rudolf Clausius, The Second Law of Thermodynamics • 1851: Thomson an Alternative Statement of the Second Law • 1854: Clausius, Found dQ/T, but Did Not Name It • 1854: Rankine, Entropy
    [Show full text]
  • The Mechanical Career of Councillor Orffyreus, Confidence
    The mechanical career of Councillor Orffyreus, confidence man Alejandro Jenkins∗ High Energy Physics, Florida State University, Tallahassee, FL 32306-4350, USA and Escuela de F´ısica, Universidad de Costa Rica, 11501-2060 San Jos´e, Costa Rica (Dated: Jan. 2013, last revised Mar. 2013; to appear in Am. J. Phys. 81) In the early 18th century, J. E. E. Bessler, known as Orffyreus, constructed several wheels that he claimed could keep turning forever, powered only by gravity. He never revealed the details of his invention, but he conducted demonstrations (with the machine’s inner workings covered) that persuaded competent observers that he might have discovered the secret of perpetual motion. Among Bessler’s defenders were Gottfried Leibniz, Johann Bernoulli, Professor Willem ’s Gravesande of Leiden University (who wrote to Isaac Newton on the subject), and Prince Karl, ruler of the German state of Hesse-Kassel. We review Bessler’s work, placing it within the context of the intellectual debates of the time about mechanical conservation laws and the (im)possibility of perpetual motion. We also mention Bessler’s long career as a confidence man, the details of which were discussed in popular 19th-century German publications, but have remained unfamiliar to authors in other languages. Keywords: perpetual motion, early modern science, vis viva controversy, scientific fraud PACS: 01.65.+g, 45.20.dg I. INTRODUCTION The perpetual motion devices whose drawings add mystery to the pages of the more effusive encyclopedias do not work either. Nor do the metaphysical and theological theories that customarily declare who we are and what manner of thing the world is.
    [Show full text]
  • Vacuum in the 17Th Century and Onward the Beginning of Experimental Sciences Donald M
    HISTORY CORNER A SHORT HISTORY: VACUUM IN THE 17TH CENTURY AND ONWARD THE BEGINNING OF Experimental SCIENCES Donald M. Mattox, Management Plus Inc., Albuquerque, N.M. acuum as defined as a space with nothing in it (“perfect Early Vacuum Equipment vacuum”) was debated by the early Greek philosophers. The early period of vacuum technology may be taken as the V The saying “Nature abhors a vacuum” (horror vacui) is gener- 1640s to the 1850s. In the 1850s, invention of the platinum- ally attributed to Aristotle (Athens ~350 BC). Aristotle argued to-metal seal and improved vacuum pumping technology al- that vacuum was logically impossible. Plato (Aristotle’s teach- lowed the beginning of widespread studies of glow discharges er) argued against there being such a thing as a vacuum since using “Geissler tubes”[6]. Invention of the incandescent lamp “nothing” cannot be said to exist. Hero (Heron) of Alexandria in the 1850s provided the incentive for development of indus- (Roman Egypt) attempted using experimental techniques to trial scale vacuum technology[7]. create a vacuum (~50 AD) but his attempts failed although he did invent the first steam engine (“Heron’s steam engine”) and Single-stroke Mercury-piston Vacuum Pump “Heron’s fountain,” often used in teaching hydraulics. Hero It was the latter part of 1641 that Gasparo Berti demonstrated wrote extensively about siphons in his book Pneumatica and his water manometer, which consisted of a lead pipe about 10 noted that there was a maximum height to which a siphon can meters tall with a glass flask cemented to the top of the pipe “lift” water.
    [Show full text]
  • Blois Et Denis Papin »
    Focus sur enis apin Il y a trois cents ans, un illustre blésois rend son dernier souffle en Angleterre après avoir parcouru l’Europe, et surtout après « En ce qui regarde le seul gouvernement avoir contribué à l’une des inventions majeures du XVIIIe siècle : la machine de l’eau vaporisée, qu’ont fait les successeurs à vapeur. Du haut de l’escalier de Papin sinon d’agencer, de modifier plus éponyme, Denis Papin contemple heureusement ce qu’il a trouvé ? Qui donc aujourd’hui le territoire qui l’a vu est l’inventeur, le vrai, le réel inventeur ? La naître. Une sœur jumelle pour la postérité a répondu : un Français, un Blésois, statue de Blois Denis Papin. » Le dimanche 16 janvier 1887, a lieu dans la cour principale du Conservatoire Sa vie, son œuvre national des arts et métiers, à Paris, Le Service Ville d’art et d’histoire de la Ville de Blois organise Louis de la Saussaye Né en 1647, en région blaisoise, probablement dans la commune l’inauguration de la statue de Denis Papin. Sur toute l’année des visites guidées dont « Blois et Denis Papin ». 1869 de Chitenay, Denis Papin est un savant marqué par la méthode l’initiative du directeur du Conservatoire, monsieur Laussedat, une Pour plus d’informations : Blois Ville d’Art et d’Histoire Château royal de Blois cartésienne. Inventeur ingénieux, il met facilement ses théories en souscription a été ouverte par la Chambre syndicale parisienne des tél : 02 54 90 33 32 mécaniciens, chaudronniers et fondeurs. Il s’agit d’une copie de www.blois.fr rubrique « Découvrir Blois » puis « Histoire » Place du château application.
    [Show full text]
  • The Invention of the Steam Engine
    The Invention of the Steam Engine by Rochelle Forrester Copyright © 2019 Rochelle Forrester All Rights Reserved The moral right of the author has been asserted Anyone may reproduce all or any part of this paper without the permission of the author so long as a full acknowledgement of the source of the reproduced material is made. Second Edition Published 30 September 2019 Preface This paper was written in order to examine the order of discovery of significant developments in the history of the steam engine. It is part of my efforts to put the study of social and cultural history and social change on a scientific basis capable of rational analysis and understanding. This has resulted in a hard copy book How Change Happens: A Theory of Philosophy of History, Social Change and ​ Cultural Evolution and a website How Change Happens Rochelle Forrester’s Social Change, Cultural ​ ​ Evolution and Philosophy of History website. There are also philosophy of history papers such as The ​ ​ Course of History, The Scientific Study of History, Guttman Scale Analysis and its use to explain ​ ​ ​ ​ Cultural Evolution and Social Change and the Philosophy of History and papers on Academia.edu, ​ ​ ​ Figshare, Mendeley, Vixra, Phil Papers, Humanities Common and Social Science Research Network ​ ​ ​ ​ ​ ​ ​ ​ ​ websites. This paper is part of a series on the History of Science and Technology. Other papers in the series are The Invention of Stone Tools Fire The Discovery of Agriculture The Invention of Pottery ​ History of Metallurgy The Development of Agriculture
    [Show full text]
  • The Steam Engine in England and France
    Master’s Thesis 2016 30 ECTS School of Economics and Business The spark that ignited the Industrial Revolution An examination of the institutions surrounding the development of the steam engine in England and France Joshua Bragg Development and Natural Resource Economics Contents Preface and Acknowledgements ............................................................................................................. 1 Introduction ............................................................................................................................................. 3 Research Questions ............................................................................................................................. 5 Why did England dominate steam engine development and not France? ..................................... 6 Journey into Great Economic Mysteries ............................................................................................. 6 Background .............................................................................................................................................. 8 Energy Canyons ................................................................................................................................... 8 The Sources of Economic Growth ....................................................................................................... 8 The Mystery of Economic Growth ..................................................................................................... 10 Endogenous Growth
    [Show full text]
  • Experimental Philosophers and Public Demonstrators in Augustan England
    13 J B)HS, 1995, 28, 131-56 Who did the work? Experimental philosophers and public demonstrators in Augustan England STEPHEN PUMFREY* The growth of modern science has been accompanied by the growth of professionalization. We can unquestionably speak of professional science since the nineteenth century, although historians dispute about where, when and how much. It is much more problematic and anachronistic to do so of the late seventeenth century, despite the familiar view that the period saw the origin of modern experimental science. This paper explores the broad implications of that problem. One area of scientific activity, public science lecturing and demonstrating, certainly produced its first professionals in the period 1660-1730. This was a period which Geoffrey Holmes called 'Augustan England', and which he found to be marked by the expansion of many of the professions.1 Swollen lower ranks of physicians, civil servants and teachers crowded onto the ladder up to gentility, and even solicitors achieved respectability. Alongside these established types the professional scientist, such as the public lecturer, was a novelty. Later, in the high Georgian era, a small army of men like Stephen Demainbray and Benjamin Martin made recognized if precarious livings from public experimentation, but the first generation pioneers were entering new and risky territory. As Larry Stewart has shown, 'the rise of public science' was a successful social and economic transformation of the highest significance in the history of science which was part of what has been called England's commercial revolution.2 We are accustomed to think of early, pioneering professionals like Robert Hooke, Francis Hauksbee or Denis Papin as 'notable scientists'.
    [Show full text]
  • Gottfried Wilhelm Leibniz, the Humanist Agenda and the Scientific Method
    3237827: M.Sc. Dissertation Gottfried Wilhelm Leibniz, the humanist agenda and the scientific method Kundan Misra A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science (Research), University of New South Wales School of Mathematics and Statistics Faculty of Science University of New South Wales Submitted August 2011 Changes completed September 2012 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Misra First name: Kundan Other name/s: n/a Abbreviation for degree as given in the University calendar: MSc School: Mathematics and Statistics Faculty: Science Title: Gottfried Wilhelm Leibniz, the humanist agenda and the scientific method Abstract 350 words maximum: Modernity began in Leibniz’s lifetime, arguably, and due to the efforts of a group of philosopher-scientists of which Leibniz was one of the most significant active contributors. Leibniz invented machines and developed the calculus. He was a force for peace, and industrial and cultural development through his work as a diplomat and correspondence with leaders across Europe, and in Russia and China. With Leibniz, science became a means for improving human living conditions. For Leibniz, science must begin with the “God’s eye view” and begin with an understanding of how the Creator would have designed the universe. Accordingly, Leibniz advocated the a priori method of scientific discovery, including the use of intellectual constructions or artifices. He defended the usefulness and success of these methods against detractors. While cognizant of Baconian empiricism, Leibniz found that an unbalanced emphasis on experiment left the investigator short of conclusions on efficient causes.
    [Show full text]
  • European Steamboats Prior to The
    222 Scientific American SEPTEMBER 25, 1909. to the exercise of the profession of a civil engineer. He The engine was horizontal, and the reciprocating mo­ EUROPEAN STEAMBOATS PRIOR obtained patents for several improvements in the steam tion of the piston was converted into rotary motion by engine, and deSigned a steam carriage, which in 1786 means of "a ratchet' gear acting upon a spur wheel upon TO THE "CLERMONT." he submitted to several learned and scientific men in the main driving axle. ------,-._..... HI Edinburgh. Here he met Patrick Miller of Dalswin­ ....__ - ____ ton, a wealthy banker, who informed Symington that AMERICAN STEAMBOATS PRIOR TO THE "CLERMONT." As in America, so in Europe, the quarter of a cen­ h'l had "spent much time in making experim ents as (Concluded. from page 219.) tury preceding the successful inauguration of steam­ to the propelling of vessels upon water by using Council, after a trip on the Delaware, were so greatly boat service on �he Hudson River was a period of wheels in place of sails or oars. These �heels he pleased as to present Fitch with a suit of colors for his extraordinary interest among inventors in the possi­ had put in motion, applying the strength of men to boat. bilities of steamboat navigation, during which a great the turning of a handle or winch." Symington told The new venture was now ready for commercial amount of thought and experimental work was devoted Miller that he believed a steam engine might be con­ exploitation. A schedule of sailing dates and fares to the development of a successful steam-driven ves­ structed for the purpose, and he proposed that favorite was drawn up, and during the following three months sel.
    [Show full text]
  • Translating Early Modern Science
    Translating Early Modern Science Sietske Fransen, Niall Hodson, and Karl A.E. Enenkel - 978-90-04-34926-1 Downloaded from Brill.com02/23/2021 02:30:39PM via free access Intersections Interdisciplinary Studies in Early Modern Culture General Editor Karl A.E. Enenkel (Chair of Medieval and Neo-Latin Literature Westfälische Wilhelms-Universität Münster e-mail: kenen_01@uni_muenster.de) Editorial Board W. van Anrooij (University of Leiden) W. de Boer (Miami University) Chr. Göttler (University of Bern) J.L. de Jong (University of Groningen) W.S. Melion (Emory University) R. Seidel (Goethe University Frankfurt am Main) P.J. Smith (University of Leiden) J. Thompson (Queen’s University Belfast) A. Traninger (Freie Universität Berlin) C. Zittel (University of Stuttgart) C. Zwierlein (Ruhr-Universität Bochum) VOLUME 51 – 2017 The titles published in this series are listed at brill.com/inte Sietske Fransen, Niall Hodson, and Karl A.E. Enenkel - 978-90-04-34926-1 Downloaded from Brill.com02/23/2021 02:30:39PM via free access Translating Early Modern Science Edited by Sietske Fransen Niall Hodson Karl A.E. Enenkel LEIDEN | BOSTON Sietske Fransen, Niall Hodson, and Karl A.E. Enenkel - 978-90-04-34926-1 Downloaded from Brill.com02/23/2021 02:30:39PM via free access Cover illustration: Adriaen Lommelin, frontispiece of Noël de Berlaimont, Dictionariolum et colloquia octo linguarum, Latinae, Gallicae, Belgicae, Teutonicae, Hispanicae, Italicae, Anglicae et Portugallicae (Antwerp, Hendrick Aertsen: 1662). Engraving. The Hague, Koninklijke Bibliotheek. Image © Koninklijke Bibliotheek. Library of Congress Cataloging-in-Publication Data Names: Fransen, Sietske, editor. | Hodson, Niall, editor. | Enenkel, K. A. E., editor.
    [Show full text]
  • Leibniz, in the Best of Company
    LEIBNIZ, IN THE BEST OF COMPANY Insights into correspondence with 8 personalities 000I0 3 Leibniz, in the best Gottfried Wilhelm Leibniz (1646–1716) was a tireless Interesting insights in the life and work of one of the of company writer of letters. A fact demonstrated by some 20,000 most prominent scientists and universal scholars of his letters from and to about 1,300 correspondents with time can be gained, for example, from the exchange of whom he was in contact across the globe. The Gottfried letters with the following eight eminent contemporaries: Wilhelm Leibniz Bibliothek (GWLB), part of the Nieder- Queen Sophia Charlotte, Sir Isaac Newton, Czar Peter I, sächsische Landesbibliothek (Lower Saxony State Library), Baruch de Spinoza, Electress Sophia, Emperor Kangxi, houses the lion’s share of his extensive legacy. Denis Papin and Princess Caroline. UNESCO accepted the Leibniz correspondence into To see and listen to three letters and a memorandum the Memory of the World Register in August 2007 as a penned by Leibniz, please visit: ‘unique testimony of the European republic of scholars www.wissen.hannover.de/leibniz in its transition from Baroque to the early Enlighten - ment’. 00I00 Gottfried Wilhelm Leibniz in Hannover 5 For Leibniz, Hannover was a blessing and a curse Europe as a scientist, philosopher and science organ - at the same time. iser he was unable to permanently settle in Vienna, Paris or London. Leibniz died after a short illness on “Every morning he (Leibniz) would travel past my 14 November 1716 in his apartment in the Schmiede- parents’ house to the court, because every time his straße in Hannover and was buried on 14 December in large jet black wig caught my eye (...).
    [Show full text]
  • 17. Engineering Empires: Chaps 1–2 1. Cultural History of Technology
    17. Engineering Empires: Chaps 1–2 1. Cultural History of Technology Whig history "...the history of the winning side, valuing the past only where it matches, or approaches, the present, and all but ignoring the 'failures', 'dead-ends' or paths not taken, except where they stand as salutary reminders of the extent of human folly, nurtured by arrogance or fashion". (MS05, pg. viii.) "A central aim of our book... is to highlight the cultural contingencies which shaped the varied technologies of empire in the long 19th century [~1760–WWII]." (MS05, pg. ix.) history of technology Cultural history = history of science of technology cultural history Types of history of technology: (i) Popularized accounts: "...the inexorable march of material technological progress; the individual triumph over adversity and the forces of conservatism; and the moralized life of the engineering 'visionary', outside—and yet ahead of—his (always his) time." (ii) Economic accounts: quantitative analyses of technologies based on "economic impact". (iii) Antiquarian accounts: "Internal", detail-specific accounts, as opposed to "external" accounts of broader meanings or patterns of use. Cultural history = "the study of the construction (or production) and the dissemination (or reproduction) of meanings in varying historical and cultural settings." Is there a distinction between "technology" and "culture"? • Does technology produce culture, or does culture produce technology? "...we might instead prefer to see 'technology' and 'culture' in simultaneous reciprocal transformation—each involved in the other's production and each conferring meaning on the other." (MS05, pg. 5.) "We accept, therefore, historical contingency rather than assuming the inevitable success of certain projects or technologies, especially those subsequently found to have been 'successful', in some sense, in the long term." (MS05, pg.
    [Show full text]