Production of Valuable Compounds by Molds and Yeasts

Total Page:16

File Type:pdf, Size:1020Kb

Production of Valuable Compounds by Molds and Yeasts The Journal of Antibiotics (2017) 70, 347–360 & 2017 Japan Antibiotics Research Association All rights reserved 0021-8820/17 www.nature.com/ja REVIEW ARTICLE Production of valuable compounds by molds and yeasts Arnold L Demain1 and Evan Martens2 We are pleased to dedicate this paper to Dr Julian E Davies. Julian is a giant among microbial biochemists. He began his professional career as an organic chemistry PhD student at Nottingham University, moved on to a postdoctoral fellowship at Columbia University, then became a lecturer at the University of Manchester, followed by a fellowship in microbial biochemistry at Harvard Medical School. In 1965, he studied genetics at the Pasteur Institute, and 2 years later joined the University of Wisconsin in the Department of Biochemistry. He later became part of Biogen as Research Director and then President. After Biogen, Julian became Chair of the Department of Microbiology at the University of British Columbia in Vancouver, Canada, where he has contributed in a major way to the reputation of this department for many years. He also served as an Adjunct Professor at the University of Geneva. Among Julian’s areas of study and accomplishment are fungal toxins including α-sarcin, chemical synthesis of triterpenes, mode of action of streptomycin and other aminoglycoside antibiotics, biochemical mechanisms of antibiotic resistance in clinical isolates of bacteria harboring resistance plasmids, their origins and evolution, secondary metabolism of microorganisms, structure and function of bacterial ribosomes, antibiotic resistance mutations in yeast ribosomes, cloning of resistance genes from an antibiotic-producing microbe, gene cloning for industrial purposes, engineering of herbicide resistance in useful crops, bleomycin-resistance gene in clinical isolates of Staphylococcus aureus and many other topics. He has been an excellent teacher, lecturing in both English and French around the world, and has organized international courses. Julian has also served on the NIH study sections, as Editor for several international journals, and was one of the founders of the journal Plasmid. We expect the impact of Julian’s accomplishments to continue into the future. The Journal of Antibiotics (2017) 70, 347–360; doi:10.1038/ja.2016.121; published online 12 October 2016 INTRODUCTION are produced by plants (alkaloids, flavonoids, terpenoids, steroids, Microbes have contributed significantly to improving the health and carbohydrates, etc.) and 5% of these plant products have a microbial well-being of humans. The natural products that they have yielded origin. From all the reported natural products, ∼ 20–25% show have not only helped eradicate disease and alleviate suffering, but also biological activity and, of these, ∼ 10% have been obtained from greatly increased the average life expectancy. The first major contribu- microbes. Microorganisms produce many compounds with biological tion of microbes began back in 1928, when Alexander Fleming activity. From the 22 500 biologically active compounds so far discovered in a Petri dish seeded with Staphylococcus aureus that a obtained from microbes, ∼ 40% are produced by fungi.2,3 The role compound produced by a mold killed the bacterium. The mold, of fungi in the production of antibiotics and other drugs for treatment Penicillium notatum, produced an active agent that was named of noninfective diseases has been dramatic.4 penicillin. Fleming’s discovery began the microbial drug era. By using Biosynthetic genes are present in clusters coding for large, the same method, other naturally occurring substances, like multidomain and multimodular enzymes. Some examples of chloramphenicol and streptomycin, were later isolated from bacterial these enzymes include polyketide synthases, prenyltransferases, fermentations. Naturally occurring antibiotics are produced by nonribosomal peptide synthases and terpene cyclases. Genes adjacent fermentation, an old technique that can be traced back almost 8000 to the biosynthetic gene clusters encode regulatory proteins, years, initially for beer and wine production, and recorded in the oxidases, hydroxylases and transporters. Aspergilli usually contain written history of ancient Egypt and Mesopotamia. During the 30–40 secondary metabolite gene clusters. Strategies to activate silent past 4000 years, Penicillium roqueforti has been utilized for cheese genes have been reviewed by Brakhage and Schroekh.3 production, and for the past 3000 years, soy sauce in Asia and bread in Given that the vast majority of microbes in nature have yet to be Egypt represented examples of traditional fermentations.1 cultured (~99%), there have been major advances in isolating and Natural products from microbes have a broad range of therapeutic growing different microbial species.5 Furthermore, metagenomics— applications and are often produced via primary or secondary that is, the extraction of DNA from soil, plants and marine habitats metabolism. Because of technical improvements in screening pro- and its incorporation into known organisms—is allowing access to a grams and separation and isolation techniques, the number of natural vast untapped reservoir of genetic and metabolic diversity.6,7 The compounds discovered exceeds one million.2 Among them, 50–60% potential for discovery of new secondary metabolites with beneficial 1Research Institute for Scientists Emeriti (RISE), Drew University, Madison, NJ, USA and 2Cempra, Chapel Hill, NC, USA Correspondence: Professor AL Demain, Research Institute for Scientists Emeriti (RISE), Drew University, 36 Madison Avenue, Madison, NJ 07940, USA. E-mail: [email protected] Received 28 June 2016; revised 31 August 2016; accepted 1 September 2016; published online 12 October 2016 Production of valuable compounds by molds and yeasts AL Demain and E Martens 348 use for humans is great. A method to predict secondary metabolite are a family of neutral, highly lipophilic, cyclic undecapeptides gene clusters in filamentous fungi has recently been devised.8 containing some unusual amino acids, synthesized by a nonribosomal Interestingly, microbial production of secondary metabolites is peptide synthetase, cyclosporin synthetase. Discovery of the immuno- limited to a very low level by certain regulatory mechanisms. Despite suppressive activity of this secondary metabolite led to its use in heart, this, the extent of such production is sufficient for the microbe to liver and kidney transplants and to the overwhelming success of the compete with other organisms or maintain a commensal/mutual organ transplant field.16 Cyclosporin was approved for use in 1983. It relationship with other species. The industrial microbiologist, how- is thought to bind to the cytosolic protein cyclophilin (immunophilin) ever, desires a strain that will overproduce the molecule of interest. of immunocompetent lymphocytes, especially T lymphocytes. This Development of higher-producing strains involves mutagenesis and, complex of cyclosporin and cyclophilin inhibits calcineurin that under more recently, recombinant DNA technologies.9 Although some normal circumstances is responsible for activating the transcription of metabolites of interest can be made by plants or animals, or by interleukin-2. It also inhibits lymphokine production and interleukin chemical synthesis, the recombinant microbe is usually the ‘creature of release and therefore leads to a reduced function of effector T cells. ’ choice . Thousand-fold increases in production of small molecules Annual world sales of cyclosporin A are ∼ $2 billion. Cyclosporin A have been obtained by mutagenesis and/or genetic engineering. The also has activity against coronaviruses.17 use of genome mining to discover new fungal natural products has Studies on the mode of action of cyclosporin, and the later 10 been reviewed by Wiemann and Keller. Other important parts of developed immunosuppressants from actinomycetes, such as sirolimus industrial production include creating a proper nutritional environ- (a rapamycin) and FK-506 (tacrolimus), have markedly expanded ment for the organism to grow and produce its product, and the current knowledge of T-cell activation and proliferation. These agents avoidance of negative effects such as inhibition and/or repression by act by interacting with an intracellular protein (an immunophilin), fi carbon, nitrogen and phosphorus sources, metals and the nal thus forming a novel complex that selectively disrupts the signal 4,11 product itself. Avoidance of enzyme decay is also desired. transduction events of lymphocyte activation. Their targets are inhibitors of signal transduction cascades in microbes and humans. BROAD USE OF SECONDARY METABOLITES PRODUCED In humans, the signal transduction pathway is required for activation BY FUNGI of T cells. Fingolimod (FTY720), another immunosuppressant, was Given the diverse array of secondary metabolites that fungi are capable approved by the US Food and Drug Administration (FDA) in 2010, of producing, the pharmaceutical industry began to focus their efforts specifically for relapsing forms of multiple sclerosis. The drug, initially on the screening of compounds for indications other than anti- discovered by Professors Fujita, Yoshitomi and Taito in collaboration, infectives.12,13 As microorganisms are such a prolific source of is a derivative of myriocin isolated from the fungus Isaria sinclairii. structurally diverse bioactive metabolites, the industry extended their The annual world sales of fingolimod are ∼ $2.7 billion. screening
Recommended publications
  • Health Hazard Evaluation Report 1983-0019-1562
    r ILi:. llUr I Health Hazard . Evaluation HETA 83-019-1562 I BERLEX LABS. Report WAYNE., NEW JERSEY . "'-':'. ·· J· PREFACE .......~ The Hazard Evaluation~ ·- ~nd .. "rechni cal Assistance Branch of NIOSH conducts field i nyesti gations of possible hea.lth hazards i n the workplace. These investigations ~are conducted ~under the authority of Section 20(a)(6) of the Occupational Safety and.,Heal'ttr Act of 1970 , 29 u ~ s.c. 66~(a)(6) which authorizes t he Secretary of Health·and Human Services, following a written request from any employer of~ au~horized representative of employees, to determine whether any substance normally found in the place of employ~nt has potentiall~ toxic· .effects in such concentrations as used or fotmd. The Hazard Evaluations and Technical Assistance Branch also provides, upon request, medical, nursing, and industrial hygiene technical and consultative assistance (TA) to Federal, state, and local agencies; labor; industry and other groups or individuals to control occupational health hazards and to prevent related trauma and disease. Mention of company nair.es or products does not constitute e ndorsement by the National Institute for Occupational Safety and Health. HETA 83-019-1562 Investigators: SEPTEMBER, 1985 REVISED Raja Igliewicz, RN, MS BERLEX LABS. Michael Schmidt, MD WAYNE, NEW JERSEY Peter Gann, MD 1. SUMMARY In October, 1982, the National Institute for Occupational Safety and Health (NIOSH) received a request to evaluate workers involved in the production of a drug, quinidine gluconate at Berlex Laborateries, Wayne, N.J. These workers had developed work-related skin rashes and respiratory symptoms. Staff from the Occupational Health Program of the New Jersey State Department of Health performed the investigation under a cooperative agreement with NlOSH.
    [Show full text]
  • Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies
    agronomy Review Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies Sofia Agriopoulou Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; [email protected]; Tel.: +30-27210-45271 Abstract: Ergot alkaloids (EAs) are a group of mycotoxins that are mainly produced from the plant pathogen Claviceps. Claviceps purpurea is one of the most important species, being a major producer of EAs that infect more than 400 species of monocotyledonous plants. Rye, barley, wheat, millet, oats, and triticale are the main crops affected by EAs, with rye having the highest rates of fungal infection. The 12 major EAs are ergometrine (Em), ergotamine (Et), ergocristine (Ecr), ergokryptine (Ekr), ergosine (Es), and ergocornine (Eco) and their epimers ergotaminine (Etn), egometrinine (Emn), egocristinine (Ecrn), ergokryptinine (Ekrn), ergocroninine (Econ), and ergosinine (Esn). Given that many food products are based on cereals (such as bread, pasta, cookies, baby food, and confectionery), the surveillance of these toxic substances is imperative. Although acute mycotoxicosis by EAs is rare, EAs remain a source of concern for human and animal health as food contamination by EAs has recently increased. Environmental conditions, such as low temperatures and humid weather before and during flowering, influence contamination agricultural products by EAs, contributing to the Citation: Agriopoulou, S. Ergot Alkaloids Mycotoxins in Cereals and appearance of outbreak after the consumption of contaminated products. The present work aims to Cereal-Derived Food Products: present the recent advances in the occurrence of EAs in some food products with emphasis mainly Characteristics, Toxicity, Prevalence, on grains and grain-based products, as well as their toxicity and control strategies.
    [Show full text]
  • Pharmacology/Therapeutics Ii Block 1 Handouts – 2015-16
    PHARMACOLOGY/THERAPEUTICS II BLOCK 1 HANDOUTS – 2015‐16 55. H2 Blockers, PPls – Moorman 56. Palliation of Contipation & Nausea/Vomiting – Kristopaitis 57. On‐Line Only – Principles of Clinical Toxicology – Kennedy 58. Anti‐Parasitic Agents – Johnson Histamine Antagonists and PPIs January 6, 2016 Debra Hoppensteadt Moorman, Ph.D. Histamine Antagonists and PPIs Debra Hoppensteadt Moorman, Ph.D. Office # 64625 Email: [email protected] KEY CONCEPTS AND LEARNING OBJECTIVES . 1 To understand the clinical uses of H2 receptor antagonists. 2 To describe the drug interactions associated with the use of H2 receptor antagonists. 3 To understand the mechanism of action of PPIs 4 To describe the adverse effects and drugs interactions with PPIs 5 To understand when the histamine antagonists and the PPIs are to be used for treatment 6 To describe the drugs used to treat H. pylori infection Drug List: See Summary Table. Histamine Antagonists and PPIs January 6, 2016 Debra Hoppensteadt Moorman, Ph.D. Histamine Antagonists and PPIs I. H2 Receptor Antagonists These drugs reduce gastric acid secretion, and are used to treat peptic ulcer disease and gastric acid hypersecretion. These are remarkably safe drugs, and are now available over the counter. The H2 antagonists are available OTC: 1. Cimetidine (Tagamet®) 2. Famotidine (Pepcid®) 3. Nizatidine (Axid®) 4. Ranitidine (Zantac®) All of these have different structures and, therefore, different side-effects. The H2 antagonists are rapidly and well absorbed after oral administration (bioavailability 50-90%). Peak plasma concentrations are reached in 1-3 hours, and the drugs have a t1/2 of 1-3 hours. H2 antagonists also inhibit stimulated (due to feeding, gastrin, hypoglycemia, vagal) acid secretion and are useful in controlling nocturnal acidity – useful when added to proton pump therapy to control “nocturnal acid breakthrough”.
    [Show full text]
  • The Notification of Injuries from Hazardous Substances
    The Notification of Injuries from Hazardous Substances Draft Guidelines and Reference Material for Public Health Services To be used to assist in a pilot study from July – December 2001 April 2001 Jeff Fowles, Ph.D. Prepared by the Institute of Environmental Science and Research, Limited Under contract by the New Zealand Ministry of Health DISCLAIMER This report or document ("the Report") is given by the Institute of Environmental Science and Research Limited ("ESR") solely for the benefit of the Ministry of Health, Public Health Service Providers and other Third Party Beneficiaries as defined in the Contract between ESR and the Ministry of Health, and is strictly subject to the conditions laid out in that Contract. Neither ESR nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for use of the Report or its contents by any other person or organisation. Guidelines for the Notification of Injuries from Hazardous Substances April 2001 Acknowledgements The author wishes to thank Dr Michael Bates and Melissa Perks (ESR), Sally Gilbert and Helen Saba (Ministry of Health), Dr Donald Campbell (Midcentral Health), Dr Deborah Read (ERMANZ), and Dr Nerida Smith (National Poisons Centre) for useful contributions and helpful suggestions on the construction of these guidelines. Guidelines for the Notification of Injuries from Hazardous Substances April 2001 TABLE OF CONTENTS SUMMARY ........................................................................................................................1
    [Show full text]
  • Hallucinogens: a Cause of Convulsive Ergot Psychoses
    Loma Linda University TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works Loma Linda University Electronic Theses, Dissertations & Projects 6-1976 Hallucinogens: a Cause of Convulsive Ergot Psychoses Sylvia Dahl Winters Follow this and additional works at: https://scholarsrepository.llu.edu/etd Part of the Psychiatry Commons Recommended Citation Winters, Sylvia Dahl, "Hallucinogens: a Cause of Convulsive Ergot Psychoses" (1976). Loma Linda University Electronic Theses, Dissertations & Projects. 976. https://scholarsrepository.llu.edu/etd/976 This Thesis is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. It has been accepted for inclusion in Loma Linda University Electronic Theses, Dissertations & Projects by an authorized administrator of TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. For more information, please contact [email protected]. ABSTRACT HALLUCINOGENS: A CAUSE OF CONVULSIVE ERGOT PSYCHOSES By Sylvia Dahl Winters Ergotism with vasoconstriction and gangrene has been reported through the centuries. Less well publicized are the cases of psychoses associated with convulsive ergotism. Lysergic acid amide a powerful hallucinogen having one.-tenth the hallucinogenic activity of LSD-25 is produced by natural sources. This article attempts to show that convulsive ergot psychoses are mixed psychoses caused by lysergic acid amide or similar hallucinogens combined with nervous system
    [Show full text]
  • 615.9Barref.Pdf
    INDEX Abortifacient, abortifacients bees, wasps, and ants ginkgo, 492 aconite, 737 epinephrine, 963 ginseng, 500 barbados nut, 829 blister beetles goldenseal blister beetles, 972 cantharidin, 974 berberine, 506 blue cohosh, 395 buckeye hawthorn, 512 camphor, 407, 408 ~-escin, 884 hypericum extract, 602-603 cantharides, 974 calamus inky cap and coprine toxicity cantharidin, 974 ~-asarone, 405 coprine, 295 colocynth, 443 camphor, 409-411 ethanol, 296 common oleander, 847, 850 cascara, 416-417 isoxazole-containing mushrooms dogbane, 849-850 catechols, 682 and pantherina syndrome, mistletoe, 794 castor bean 298-302 nutmeg, 67 ricin, 719, 721 jequirity bean and abrin, oduvan, 755 colchicine, 694-896, 698 730-731 pennyroyal, 563-565 clostridium perfringens, 115 jellyfish, 1088 pine thistle, 515 comfrey and other pyrrolizidine­ Jimsonweed and other belladonna rue, 579 containing plants alkaloids, 779, 781 slangkop, Burke's, red, Transvaal, pyrrolizidine alkaloids, 453 jin bu huan and 857 cyanogenic foods tetrahydropalmatine, 519 tansy, 614 amygdalin, 48 kaffir lily turpentine, 667 cyanogenic glycosides, 45 lycorine,711 yarrow, 624-625 prunasin, 48 kava, 528 yellow bird-of-paradise, 749 daffodils and other emetic bulbs Laetrile", 763 yellow oleander, 854 galanthamine, 704 lavender, 534 yew, 899 dogbane family and cardenolides licorice Abrin,729-731 common oleander, 849 glycyrrhetinic acid, 540 camphor yellow oleander, 855-856 limonene, 639 cinnamomin, 409 domoic acid, 214 rna huang ricin, 409, 723, 730 ephedra alkaloids, 547 ephedra alkaloids, 548 Absorption, xvii erythrosine, 29 ephedrine, 547, 549 aloe vera, 380 garlic mayapple amatoxin-containing mushrooms S-allyl cysteine, 473 podophyllotoxin, 789 amatoxin poisoning, 273-275, gastrointestinal viruses milk thistle 279 viral gastroenteritis, 205 silibinin, 555 aspartame, 24 ginger, 485 mistletoe, 793 Medical Toxicology ofNatural Substances, by Donald G.
    [Show full text]
  • International Emergency Medicine a Guide for Clinicians in Resource-Limited Settings
    International Emergency Medicine A Guide for Clinicians in Resource-Limited Settings Joseph Becker, MD and Erika Schroeder, MD, MPH Editors-in-Chief Bhakti Hansoti, MBcHB • Gabrielle Jacquet, MD, MPH Navigating this PDF Handbook of International Emergency Medicine Use left mouse button to advance one page. Use right mouse button to go back one page. Editorial Staff Editors-in-Chief “Home” key on keyboard jumps to cover. “End” key on keyboard jumps to last page. Joseph Becker, MD and Erika Schroeder, MD, MPH Associate Editors Navigate to specific chapters using the table of contents. Bhakti Hansoti, MBcHB and Gabrielle Jacquet, MD, MPH Touch “Escape” to exit full-screen mode. Faculty Editors Kris Arnold, MD S.V. Mahadevan, MD Christine Babcock, MD Ian Martin, MD Elizabeth DeVos, MD Stephanie Kayden, MD, MPH Kate Douglass, MD, MPH Matthew Strehlow, MD Linda Druelinger, MD Christian Theodosis, MD, MPH Troy Foster, MD Susan Thompson, DO Disclaimer Simon Kotlyar, MD, MSc David Walker, MD This handbook is intended as a general guide only. While the editors have taken Suzanne Lippert, MD, MS reasonable measures to ensure the accuracy of drug and dosing information used in this guide, the user is encouraged to consult other resources or consultants Authors when necessary to confirm appropriate therapy, side effects, interactions, and Spencer Adoff, MD Mark Goodman, MD contraindications. The publisher, authors, editors, and sponsoring organizations James Ahn, MD Jessica Holly, MD specifically disclaim any liability for any omissions or errors found in this handbook, Lauren Alexander, MD Aaron Hultgren, MD, MPH for appropriate use, or treatment errors. Furthermore, although this handbook is as Maya Arii, MD, MPH Aliasgher Hussain, MD comprehensive as possible, the vast differences in emergency practice settings may Nanaefua Baidoo, MD Masayuki Iyanaga, MD necessitate treatment approaches other than presented here.
    [Show full text]
  • Question of the Day Archives: Monday, December 5, 2016 Question: Calcium Oxalate Is a Widespread Toxin Found in Many Species of Plants
    Question Of the Day Archives: Monday, December 5, 2016 Question: Calcium oxalate is a widespread toxin found in many species of plants. What is the needle shaped crystal containing calcium oxalate called and what is the compilation of these structures known as? Answer: The needle shaped plant-based crystals containing calcium oxalate are known as raphides. A compilation of raphides forms the structure known as an idioblast. (Lim CS et al. Atlas of select poisonous plants and mushrooms. 2016 Disease-a-Month 62(3):37-66) Friday, December 2, 2016 Question: Which oral chelating agent has been reported to cause transient increases in plasma ALT activity in some patients as well as rare instances of mucocutaneous skin reactions? Answer: Orally administered dimercaptosuccinic acid (DMSA) has been reported to cause transient increases in ALT activity as well as rare instances of mucocutaneous skin reactions. (Bradberry S et al. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. 2009 Q J Med 102:721-732) Thursday, December 1, 2016 Question: What is Clioquinol and why was it withdrawn from the market during the 1970s? Answer: According to the cited reference, “Between the 1950s and 1970s Clioquinol was used to treat and prevent intestinal parasitic disease [intestinal amebiasis].” “In the early 1970s Clioquinol was withdrawn from the market as an oral agent due to an association with sub-acute myelo-optic neuropathy (SMON) in Japanese patients. SMON is a syndrome that involves sensory and motor disturbances in the lower limbs as well as visual changes that are due to symmetrical demyelination of the lateral and posterior funiculi of the spinal cord, optic nerve, and peripheral nerves.
    [Show full text]
  • Utilization of Bone Scan and Single Photon Emission Computed Tomography on Amputation Planning in Acute Microvascular Injury: Two Cases T
    The Foot 40 (2019) 109–115 Contents lists available at ScienceDirect The Foot journal homepage: www.elsevier.com/locate/foot Case Report Utilization of bone scan and single photon emission computed tomography on amputation planning in acute microvascular injury: Two cases T Michael Huchitala,c,*, Andrew Aub,Jeffrey V. Lucidoc,d a North Jersey Reconstructive Foot and Ankle Fellowship, United States b California School of Podiatric Medicine, United States c NYU Langone Medical Center, United States d NYU Langone Brooklyn-Chief of Podiatry, United States ABSTRACT The use of single photon emission computer tomography (SPECT/CT) in acute vascular injury is not well documented. SPECT/CT combines the anatomic detail of computer tomography with the functional vascular perfusion of photon emission to determine the viability of osseous structures and surrounding soft tissue. The superimposed imaging provides the practitioner with a reliable anatomic image of viability of a specific anatomic area following insult or injury. We present two cases, bilateral lower extremity frostbite, and symmetric peripheral gangrene in which this imaging modality provided guidance for surgical intervention with adequate predictability and results. 1. Introduction damage [2]. Classically, there are four phases of cold induced thermal injury [2]. Single photon emission computed tomography (SPECT/CT) com- The first phase is hallmarked by local vasoconstriction with resultant bines the use of a radiotracer to visualize functional blood flow to tis- paresthesia leading to a superficial skin desquamation. The second sues and organs with the anatomically detailed cross sectional images of phase involves intracellular and extracellular ice crystal formation that a computerized tomography scan.
    [Show full text]
  • Small Dose... Big Poison
    Traps for the unwary George Braitberg Ed Oakley Small dose... Big poison All substances are poisons; Background There is none which is not a poison. It is not possible to identify all toxic substances in a single The right dose differentiates a poison from a remedy. journal article. However, there are some exposures that in Paracelsus (1493–1541)1 small doses are potentially fatal. Many of these exposures are particularly toxic to children. Using data from poison control centres, it is possible to recognise this group of Poisoning is a frequent occurrence with a low fatality rate. exposures. In 2008, almost 2.5 million human exposures were reported to the National Poison Data System (NPDS) in the United Objective States, of which only 1315 were thought to contribute This article provides information to assist the general to fatality.2 The most common poisons associated with practitioner to identify potential toxic substance exposures in children. fatalities are shown in Figure 1. Polypharmacy (the ingestion of more than one drug) is far more common. Discussion In this article the authors report the signs and symptoms Substances most frequently involved in human exposure are shown of toxic exposures and identify the time of onset. Where in Figure 2. In paediatric exposures there is an over-representation clear recommendations on the period of observation and of personal care products, cleaning solutions and other household known fatal dose are available, these are provided. We do not discuss management or disposition, and advise readers products, with ingestions peaking in the toddler age group. This to contact the Poison Information Service or a toxicologist reflects the acquisition of developmental milestones and subsequent for this advice.
    [Show full text]
  • Pietro Biginelli: the Man Behind the Reaction
    IN MEMORIAM DOI: 10.1002/ejoc.201100661 Pietro Biginelli: The Man Behind the Reaction Gian Cesare Tron,*[a] Alberto Minassi,*[a] and Giovanni Appendino[a] Dedicated to Professor Gianfranco Scorrano on the occasion of his 72nd birthday Keywords: Biginelli reaction / Multicomponent reactions / Nitrogen heterocycles / History of science The Biginelli dihydropyrimidine synthesis is one of the most with the prematurity of bio-organometallic chemistry and the important and oldest multicomponent reactions and has been scarce popularity of pyrimidines before the discovery of their extensively investigated in terms of application and mecha- biological relevance, resulted in a paradoxical situation that nism. Surprisingly, little information is available on its dis- led Biginelli to be remembered mostly for his administrative coverer, the Piedmontese chemist Pietro Biginelli, who also merits and career. By capitalizing on original documentation carried out the first studies on the purification and characteri- retrieved in archives or provided by his family, we present zation of the (in)famous Gosio’s gas. The reasons for the lack an account of the life of this forgotten chemist in the context of a current biography on Biginelli can be traced back to his of his contemporary chemical research. early demise from the research community. This, combined Introduction on the structure of the (in)famous Gosio’s gas. However, the role of pyrimidines as a building block of biomolecules Most named reactions, from Appel halogenation to was still decades to come, as was the discovery that metal Yamaguchi esterification, celebrate synthetic chemists who metabolization had implications that went well beyond the devoted their lives to the advancement of this discipline realm of toxicology.
    [Show full text]
  • Ecairdiac Poisons
    CHAPTER 36 ECAIRDIAC POISONS NICOTIANA TABACUM : All parts are FATAL DOSE: 50 to 100 rug, of nicotine. It rivals poisonous except the ripe seeds. The dried leaves cyanide as a poison capable of producing rapid death; (tobacco, lanthaku) contain one to eight percent of 15 to 30 g. of crude tobacco. nicotine and are used in the form of smoke or snuff FATAL PERIOD: Five to 15 minutes. or chewed. The leaves contain active principles, which TREATMENT: (I) Wash the stomach with warm are the toxic alkaloids nicotine and anabasine (which water containing charcoal, tannin or potassium are equall y toxic); nornicotine (less toxic). Nicotine permanganate. (2) A purge and colonic wash-out. (3) is a colourless, volatile, hitter, hygroscopic liquid Mecamylamine (Inversine) is a specific antidote given alkaloid. It is used extensively in agricultural and orally (4) Protect airway. (5) Oxygen. (6) horticultural work, for fumigating and spraying, as Symptomatic. insecticides, worm powders, etc. POST-MORTEM APPEARANCES: They are those ABSORPTION ANT) EXCRETION : Each of asphyxia. Brownish froth at mouth and nostrils, cigarette contains about IS to 20 mg. of nicotine of haemorrhagic congestion of Cl tract, and pulmonary which I to 2 rug, is absorbed by smoking; each cigar oedema are seen. Stomach may contain fragments of contains 15 to 40 mg. Nicotine is rapidly absorbed from leaves or may smell of tobacco. all mucous membranes, lungs and the skin. 80 to. 90 THE CIRCUMSTANCES OF POISONING: (1) percent is metabolised by the liver, but some may be Accidental poisoning results due to ingestion, excessive metabolised in the kidneys and the lungs.
    [Show full text]